Analysing Powder Injection Moulding of a Helix Geometry Using Soft Tooling
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Freeform Injection Moulding Process Chain
2.2. Investigated Geometry
2.3. Numerical Model
3. Results and Discussion
3.1. Geometrical Displacement
3.2. Shear Induced Defects
3.3. Pressure Difference in the Cavity
3.4. Shrinkage of the Part
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sidbade, A.T.; Todd, T.; Hatten, P. Effect of process conditions on the properties of metal injection moulding titanium dental implants. Mater. Sci. Forum 2015, 828–829, 145–151. [Google Scholar] [CrossRef]
- Ferreira, T.G.; Viera, M.T.; Costa, J.; Silva, M.; Gago, P.T. Manufacturing dental implants using powder injection moulding. J. Orthod. Endod. 2016, 2, 21. [Google Scholar]
- Handi, M.F.F.A.; Harun, W.S.W.; Samykano, M.; Ghani, S.A.C.; Ghazami, Z.; Ahamad, F.; Sulong, A.B. A review of biocompatible metal injection moulding process parameters for biomedical applications. Mater. Sci. Eng. C 2017, 78, 1263–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinbade, A.T. Biocompatibility of advanced manufactured titanium implants—A review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef] [Green Version]
- German, R.M. Materials for microminiature powder injection moulded medical and dental devices. Int. J. Powder Metall. 2010, 46, 15–19. [Google Scholar]
- Dehghan-Manshadi, A.; Yu, P.; Dargush, M.; StJhon, D.; Qian, M. Metal injection moulding of furgical tools, biomaterials and medical devices. A review. Powder Technol. 2020, 364, 189–204. [Google Scholar] [CrossRef]
- Yu, P.C.; Li, Q.F.; Fuh, J.Y.H.; Li, T.; Ho, P.W. Micro injection moulding of micro gears using nano-sized zirconia powders. Tech. Pap. 2009, 15, 401–406. [Google Scholar] [CrossRef]
- Lin, D.; Xu, J.; Shan, Z.; Chung, S.T.; Park, S.J. Fabrication of WC-co cutting tool by powder injection molding. Int. J. Precis. Eng. Manuf. 2015, 16, 1435–1439. [Google Scholar] [CrossRef]
- Tosello, G.; Charalambis, A.; Kerbache, L.; Mischkot, M.; Pedersen, D.B.; Caloan, M.; Hansen, N.H. Value chain and production cost optimization by integrating additive manufacturing in injection molding process chain. Int. J. Adv. Manuf. Technol. 2019, 100, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. Ann. CIRP 2016, 65, 737–760. [Google Scholar] [CrossRef] [Green Version]
- Khurram, A.; Qayyum, J.A.; Rani, A.M.A.; Ahmad, F.; Megat-Yusoff, P.S.M.; Baharom, M.; Aziz, A.R.A.; Jahanzaib, M.; German, R.M. Performance Analysis of Enhanced 3D Printed Polymer Molds for Metal Injection Molding Process Khurram. Metals 2018, 8, 433. [Google Scholar] [CrossRef] [Green Version]
- Basso, A.; Mendez Ribo, M.; Danielak, A.H.; Pedersen, D.B.; Kjeldsteen, P.; Valler, P.; Zhang, Y. 3D Printed Mold for Powder Injection Molding Process. In Joint Special Interest Group Meeting between Euspen and ASPE Advancing Precision in Additive Manufacturing; EUSPEN: Cranfield, UK, 2019. [Google Scholar]
- Pagac, M.; Hajnys, J.; Ma, Q.P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A review of vat photopolymerization technology: Materials, applications, challenges and future trends of 3D printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Liska, R.; Shwager, F.; Maier, C.; Cano-Vives, R.; Stampfl, J. Water-Soluble Photopolymers for Rapid Prototyping of Cellular Materials. Int. J. Appl. Poly. Sci. 2005, 97, 2286–2298. [Google Scholar] [CrossRef] [Green Version]
- Hein, S.B. Lost-Form Powder Injection Moulding-Combining Additive Manufacturing and PIM. In Proceedings of the Euro PM 2018-PIM Processing, Bilbao, Spain, 14–18 October 2018. [Google Scholar]
- Zhang, Y.; Basso, A.; Christensen, S.E.; Pedersen, D.B.; Staal, L.; Valler, P.; Hansen, H.N. Characterization of near-zero pressure powder injection moulding with sacrificial mould by using fingerprint geometries. Ann. CIRP 2020, 69, 185–188. [Google Scholar] [CrossRef]
- Jabbari, M.; Baran, I.; Mohanty, S.; Comminal, R.; Sonne, M.R.; Nielsen, M.W.; Spangenberg, J.; Hattel, J.H. Multiphysics modelling of manufacturing processes: A review. Adv. Mech. Eng. 2018, 10, 1–31. [Google Scholar] [CrossRef]
- Comminal, R.; Hattel, J.H.; Spangenberg, J. Numerical simulation of planar extrusion and fused filament fabrication of non-Newtonian fluids. Annu. Trans. Nord. Rheol. Soc. 2017, 25, 263–270. [Google Scholar]
- Serdeczny, M.P.; Commital, R.; Mollah, M.T.; Pedersen, P.D.; Spangenberg, J. Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing. Addit. Manuf. 2020, 36. [Google Scholar] [CrossRef]
- Commital, R.; Serdeczny, M.P.; Pedersen, P.D.; Spangenberg, J. Numerical modeling of the material deposition and contouring precision in fused deposition modeling. In Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 13–15 August 2018. [Google Scholar]
- Sandberg, M.; Yuksel, O.; Baran, I.; Hattel, J.H.; Spangenberg, J. Steady-state modelling and analysis of process-induced stress and deformation in thermoset poltrusion processes. Compos. Part B Eng. 2021, 216, 108812. [Google Scholar] [CrossRef]
- Sandberg, M.; Yuksel, O.; Baran, I.; Spangenberg, J.; Hattel, J.H. Numerical and experimental analysis of resin-flow, heat-transfer, and cure in a resin-injection poltrusion process. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106231. [Google Scholar] [CrossRef]
- Cordazzo, D. A brief history of the filling simulation of injection moulding. J. Mech. Eng. Sci. 2009, 223, 177–721. [Google Scholar] [CrossRef]
- Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gasparchuna, A. Modeling and Optimization of the Injection-Molding Process: A Review. Adv. Polym. Technol. 2018, 37, 429–449. [Google Scholar] [CrossRef]
- Yavari, R.; Khorsand, H.; Sardarian, M. Simulation and modeling of macro and micro components produced by powder injection molding: A review. Polyolefins J. 2020, 7, 45–60. [Google Scholar] [CrossRef]
- Raymond, V. Metal Injection Moulding Development: Modelling and Numerical Simulation of Injection with Experimental validation. Ph.D. Thesis, Ecole Polythechnique de Montreal, Montreal, QC, Canada, 2012. [Google Scholar]
- Cote, R.; Azzouni, M.; Ghanmi, O.; Kapoor, S.; Demeres, V. Impact of rheological model on numerical simulation of low pressure powder injection moulding. Powder Technol. 2021, 46, 8–16. [Google Scholar] [CrossRef]
- Sardarian, M.; Mirzaee, O.; Habibolahzadeh, A. Mold filling simulation of low pressure injection molding (LPIM) of alumina: Effect of temperature and pressure. Ceram Int. 2017, 43, 28–34. [Google Scholar] [CrossRef]
- Sardarian, M.; Mirzaee, O.; Habibolahzadeh, A. Numerical simulation and experimental investigation on jetting phenomenon in low pressure injection molding (LPIM) of alumina. J. Mater. Process. Technol. 2017, 243, 374–380. [Google Scholar] [CrossRef]
- Basso, A.; Zhang, Y.; Yilan, G.; Spangenberg, J.; Hansens, H.N. Effect of powder particle size on the rheology of feedstock for low pressure injection moulding. In Proceedings of the Euspens’ 21st International Conference Exhibitions, Vitrual, 7–10 June 2021; 2021. Available online: https://orbit.dtu.dk/en/publications/effect-of-powder-particle-size-on-the-rheology-of-feedstocks-for- (accessed on 10 October 2021).
- Ben Trad, M.A.; Demers, V.; Cote, R.; Sardarian, M.; Dufresne, L. Numerical simulation and experimental investigation in low-pressure powder injection moulding of metallic feedstock. Adv. Powder Technol. 2020, 31, 1349–1358. [Google Scholar] [CrossRef]
- Sin, L.T.; Rahman, W.A.W.A.; Rahmat, A.R.; Tee, T.T.; Bee, S.T.; Yu, L.C. Computer aided injection moulding process analysis of polyvynil alcohol-starch green biodegradable polymer compound. J. Manuf. Process. 2012, 14, 8–19. [Google Scholar] [CrossRef]
- Annareddy, M. MPI 6.0 release highlights range of 3D solutions with new solvers and technology enhancements. Flow Front 2005, 12–14. Available online: https://marciaswan.weebly.com/uploads/1/3/5/8/13585698/flowfront_2005oct_lr.pdf (accessed on 10 October 2021).
- Autodesk Moldflow. Flow front advancements in the 3D flow solver. In Autodesk Moldflow Insight 2011 Validation Report; Autodesk Moldflow: San Rafael, CA, USA, 2010. [Google Scholar]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on 417 Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef] [Green Version]
- Marhöfer, M.; Tosello, G.; Hansen, H.N. Validation of precision powder injection moulding process simulations using a spiral geometry. Am. Inst. Phys. 2015, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Y.; Lo, N.H.; Tor, S.B.; Knor, K.A. Characterization of powder injection moulding feedstock. Mater. Charact. 2002, 49, 313–320. [Google Scholar] [CrossRef]
- Park, D.Y.; Shin, D.S.; Cho, H.; Park, S.J. Effects of material and processing conditions on powder-binder separation using the Taguchi method. Powder Technol. 2017, 321, 369–379. [Google Scholar] [CrossRef]
- Lin, C.M.; Wu, J.J.; Tan, C.M. Processing optimization for metal injection moulding of orthodontic braces considering powder concentration distribution of feedstock. Polymers 2020, 12, 2635. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.C.; Chan, Y.J.; Hsu, C.H.; Chang, R.Y. Numerical prediction of powder concentration for mould filling simulation of powder injection moulding. Proceeding of the Polymer Processing Society 29th Annual Meeting, Nuremberg, Germany, 15–19 July 2013. [Google Scholar]
- Lammare, G.S.; Demers, V.; Chatelain, J.F. Low pressure injection moulding using an innovative injection press concept. Int. J. Adv. Manuf. Technol. 2017, 91, 2595–2605. [Google Scholar] [CrossRef]
- Demeres, V.; Farehn, F.; Turenne, S.; Demarquette, N.R.; Scalzo, O. Experimental study on moldability and segregation of Inconel 718 feedstock used in low pressure powder injection moulding. Adv. Powder Metall. 2018, 29, 180–189. [Google Scholar] [CrossRef]
- Demers, V.; Turenne, S.; Scalzo, O. Segregation measurement of powder injection molding feedstock using thermogravimetric analysis, pycnometer density and differential scanning calorimetry techniques. Adv. Powder Metall. 2015, 26, 997–1004. [Google Scholar] [CrossRef]
- Gelin, J.; Barriere, T.; Song, J. Processing defects and resulting mechanical properties after metal injection molding. J. Eng. Mater. Technol. 2010, 132, 011017. [Google Scholar] [CrossRef]
- Hsu, F.J.; Huang, C.T.; Lee, R.; Liad, D. Study on the mechanism of the surface defect of the ceramic injection molded (CIM) insulator. AIP Conf. Proc. 2019, 2065, 030001. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Injection temperature at nozzle | 120 °C |
Injection pressure | 15 MPa |
Packing pressure | 12 MPa |
Packing time Mould temperature | 3 s 20 °C |
Properties | Value | Source |
---|---|---|
Viscosity Model WLF coefficients | Fitted data from rheology measurements | |
N | 0.5699 | |
Taus | 4.93 × 104 Pa | |
D1 | 1.84 × 1016 Pa s | |
D2 | 263.15 K | |
A1 | 47.62 | |
A2T | 51.60 K | |
Thermal Conductivity | [36] | |
At 298 °C | 1.95 W/mK | |
At 383 °C | 1.40 W/mK | |
At 453 °C | 1.59 W/mK | |
Specific Heat | [36] | |
At 298 °C | 640 J/kgK | |
At 383 °C | 900 J/kgK | |
At 453 °C | 710 J/kgK | |
Mechanical properties | [37] | |
Young’s Modulus | 0.82 GPa | |
Poisson’s ratio | 0.40 | |
In plane shear modulus | 0.29 GPa | |
Thermal Properties | [37] | |
Coefficient of linear thermal expansion | 83.93 × 10−6/°C | |
Softening point | 71.90 °C | |
Transition temperature | 53.92 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basso, A.; Zhang, Y.; Kjeldahl Pløger, J.; Spangenberg, J.; Hansen, H.N. Analysing Powder Injection Moulding of a Helix Geometry Using Soft Tooling. Polymers 2021, 13, 4183. https://doi.org/10.3390/polym13234183
Basso A, Zhang Y, Kjeldahl Pløger J, Spangenberg J, Hansen HN. Analysing Powder Injection Moulding of a Helix Geometry Using Soft Tooling. Polymers. 2021; 13(23):4183. https://doi.org/10.3390/polym13234183
Chicago/Turabian StyleBasso, Alberto, Yang Zhang, Jacob Kjeldahl Pløger, Jon Spangenberg, and Hans Nørgaard Hansen. 2021. "Analysing Powder Injection Moulding of a Helix Geometry Using Soft Tooling" Polymers 13, no. 23: 4183. https://doi.org/10.3390/polym13234183
APA StyleBasso, A., Zhang, Y., Kjeldahl Pløger, J., Spangenberg, J., & Hansen, H. N. (2021). Analysing Powder Injection Moulding of a Helix Geometry Using Soft Tooling. Polymers, 13(23), 4183. https://doi.org/10.3390/polym13234183