Fire Resistance, Thermal and Anti-Ageing Properties of Transparent Fire-Retardant Coatings Modified with Different Molecular Weights of Polyethylene Glycol Borate
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Polyethylene Glycol Borate (PEG-BA)
2.3. Synthesis of Flexible Phosphate Esters (PPBs)
2.4. Preparation of Amino Transparent Fire-Retardant Coatings
2.5. Characterization
3. Results and Discussion
3.1. Chemical Structure Characterization
3.2. Transparency and Morphology Analyses
3.3. Hardness and Adhesion Analyses
3.4. Thermal Stability Analysis
3.5. Fire Resistance Analysis
3.6. Cone Calorimetric Analysis
3.7. Ageing Resistance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alongi, J.; Han, Z.; Bourbigot, S. Intumescence: Tradition versus novelty. A comprehensive review. Prog. Polym. Sci. 2015, 51, 28–73. [Google Scholar] [CrossRef]
- Shree, R.; Naik, R.B.; Gunasekaran, G. Effect of three structurally different epoxy resins on fire resistance, optical transparency, and physicomechanical properties of intumescent fire-retardant transparent coatings. J. Coat. Technol. Res. 2021, 18, 535–547. [Google Scholar] [CrossRef]
- Loste, J.; Lopez-Cuesta, J.-M.; Billon, L.; Garay, H.; Save, M. Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Prog. Polym. Sci. 2019, 89, 133–158. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, X.; Yan, L.; Feng, Y. Fabrication of organophosphate-grafted kaolinite and its effect on the fire-resistant and anti-ageing properties of amino transparent fire-retardant coatings. Polym. Degrad. Stab. 2021, 188, 109589. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, N.; Yan, L. Flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings reinforced with layered double hydroxides. J. Coat. Technol. Res. 2020, 17, 157–169. [Google Scholar] [CrossRef]
- Dai, S.; Yu, X.; Chen, R.; Zhou, H.; Pan, Z. Transparent epoxy resin material with excellent fire retardancy enabled by a P/N/S containing flame retardant. J. Appl. Polym. Sci. 2021, 138, 50263. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Yan, L.; Feng, Y. Comparative Study of Fire Resistance and Anti-Ageing Properties of Intumescent Fire-Retardant Coatings Reinforced with Conch Shell Bio-Filler. Polymers 2021, 13, 2620. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Sun, J.; Gu, X.; Feng, W.; Liu, W.; Li, H.; Zhang, S. The preparation of a bisphenol A epoxy resin based ammonium polyphosphate ester and its effect on the char formation of fire resistant transparent coating. Prog. Org. Coat. 2019, 129, 349–356. [Google Scholar] [CrossRef]
- Wang, F.; Liao, J.; Yan, L.; Liu, H. Fabrication of Diaminodiphenylmethane Modified Ammonium Polyphosphate to Remarkably Reduce the Fire Hazard of Epoxy Resins. Polymers 2021, 13, 3221. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, H.; Jiang, Y.; He, H.; Liu, H.; Huang, H.; Wan, C. Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin. J. Hazard. Mater. 2019, 379, 120793. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Appl. Surf. Sci. 2016, 385, 453–463. [Google Scholar] [CrossRef]
- Tian, C.; Wang, C.; Ren, X.; Hong, L. Synthesis of silane-modified polyphosphate esters and its application in transparent flame-retardant coatings. J. Appl. Polym. Sci. 2019, 136, 47199. [Google Scholar] [CrossRef]
- Ma, T.; Li, L.; Liu, Z.; Zhang, J.; Guo, C.; Wang, Q. A facile strategy to construct vegetable oil-based, fire-retardant, transparent and mussel adhesive intumescent coating for wood substrates. Ind. Crop. Prod. 2020, 154, 112628. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, P.; Zhang, J.; Tian, W.; Jia, R.; Nawaz, H.; Jin, K.; Zhang, J. A facile strategy to fabricate cellulose-based, flame-retardant, transparent and anti-dripping protective coatings. Chem. Eng. J. 2020, 379, 122270. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Wang, X. Synergistic effects of organically modified montmorillonite on the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog. Org. Coat. 2018, 122, 107–118. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Deng, N. Synthesis of organophosphate-functionalized graphene oxide for enhancing the flame retardancy and smoke suppression properties of transparent fire-retardant coatings. Polym. Degrad. Stab. 2020, 172, 109064. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Wang, X. Influence of nano-silica on the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog. Org. Coat. 2017, 112, 319–329. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G. An intumescent flame retardant containing caged bicyclic phosphate and oligomer: Synthesis, thermal properties and application in intumescent fire resistant coating. Prog. Org. Coat. 2016, 90, 83–90. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G. Influence of molecular weight of PEG on thermal and fire protection properties of PEPA-containing polyether flame retardants with high water solubility. Prog. Org. Coat. 2016, 90, 390–398. [Google Scholar] [CrossRef]
- Hong, L.; Hu, X.; Rao, W.; Zhang, X. Flame retardancy and crack resistance of transparent intumescent fire-resistive coatings. J. Appl. Polym. Sci. 2015, 132, 42423. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G. Influence of PEPA-containing polyether structure on fire protection of transparent fire-resistant coatings. J. Coat. Technol. Res. 2016, 13, 457–468. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Deng, N. Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates. Prog. Org. Coat. 2019, 135, 123–134. [Google Scholar] [CrossRef]
- Xie, F.; Liu, L.; Gong, X.; Huang, L.; Leng, J.; Liu, Y. Effects of accelerated aging on thermal, mechanical and shape memory properties of cyanate-based shape memory polymer: I vacuum ultraviolet radiation. Polym. Degrad. Stab. 2017, 138, 91–97. [Google Scholar] [CrossRef]
- Jimenez, M.; Bellayer, S.; Revel, B.; Duquesne, S.; Bourbigot, S. Comprehensive Study of the Influence of Different Aging Scenarios on the Fire Protective Behavior of an Epoxy Based Intumescent Coating. Ind. Eng. Chem. Res. 2013, 52, 729–743. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, G.; Su, Q. Influence of degree of polymerization of ammonium polyphosphate on anti-aging property of waterborne fire resistive coatings. Surf. Coat. Technol. 2014, 246, 71–76. [Google Scholar] [CrossRef]
- Liu, L.; Fu, M.; Wang, Z. Synthesis of Boron-Containing Toughening Agents and Their Application in Phenolic Foams. Ind. Eng. Chem. Res. 2015, 54, 1962–1970. [Google Scholar] [CrossRef]
- Lu, M.; Liu, P.; Zhang, S.; Yuan, W.; Ding, S.; Wang, F.; Ding, Y.; Yang, M. Anti-aging behavior of amino-containing co-condensed nanosilica in polyethylene. Polym. Degrad. Stab. 2018, 154, 137–148. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, M. Study on the effects of aging by accelerated weathering on the intumescent fire retardant coating for steel elements. Eng. Fail. Anal. 2020, 118, 104920. [Google Scholar] [CrossRef]
- Rossi, S.; Fedel, M.; Petrolli, S.; Deflorian, F. Accelerated weathering and chemical resistance of polyurethane powder coatings. J. Coat. Technol. Res. 2016, 13, 427–437. [Google Scholar] [CrossRef]
Samples | PEA | PPB1 | PPB2 | PPB3 | PPB4 |
---|---|---|---|---|---|
Acid number (mg KOH/g) | 532.5 ± 6 | 330.1 ± 4 | 376.3 ± 5 | 420.4 ± 5 | 497.2 ± 4 |
Performance | MPPB0 | MPPB1 | MPPB2 | MPPB3 | MPPB4 |
---|---|---|---|---|---|
Pencil hardness | B | 3B | 3B | 3B | 3B |
Adhesion classification | 3B | 4B | 3B | 3B | 3B |
Samples | Ton/°C | Tmax/°C | PMLR/(%/min) | Residue at 700 °C/% |
---|---|---|---|---|
MPPB0 | 133.5 | 345.2 a, 432.6 b, 485.8 c | 3.2 a, 1.9 b, 1.7 c | 27.8 |
MPPB1 | 144.9 | 355.2 a, 425.6 b, 469.0 c | 3.0 a, 1.8 b, 1.7 c | 36.3 |
MPPB2 | 170.4 | 294.5 a, 362.8 b, 421.6 c | 2.4 a, 2.2 b, 2.0 c | 34.3 |
MPPB3 | 187.3 | 261.7 a, 349.7 b, 486.6 c | 1.7 a, 3.8 b, 1.0 c | 31.3 |
MPPB4 | 203.5 | 276.7 a, 376.5 b, 499.1 c | 3.0 a, 3.6 b, 1.0 c | 26.9 |
Samples | Uncoated | MPPB0 | MPPB1 | MPPB2 | MPPB3 | MPPB4 |
---|---|---|---|---|---|---|
Weight loss/g | 15.5 ± 0.5 | 4.4 ± 0.2 | 3.3 ± 0.2 | 3.8 ± 0.2 | 4.1 ± 0.2 | 4.5 ± 0.1 |
Char index/cm3 | 35.6 ± 1.2 | 21.3 ± 0.6 | 12.1 ± 0.4 | 14.9 ± 0.3 | 16.5 ± 0.5 | 23.1 ± 0.5 |
FSR | 66.2 ± 4 | 20.3 ± 1 | 8.6 ± 1 | 11.3 ± 2 | 16.5 ± 1 | 21.8 ± 1 |
Intumescent factor | 0 | 28.5 ± 3 | 75.5 ± 4 | 53.2 ± 3 | 40.5 ± 2 | 25.6 ± 3 |
Samples | C, wt% | O, wt% | N, wt% | P, wt% | B, wt% | C/O |
---|---|---|---|---|---|---|
MPPB0 | 53.18 | 28.37 | 8.82 | 9.63 | - | 1.87 |
MPPB1 | 56.67 | 19.66 | 6.31 | 8.61 | 8.75 | 2.88 |
MPPB2 | 52.73 | 24.10 | 7.73 | 7.67 | 7.86 | 2.19 |
MPPB3 | 52.54 | 26.28 | 7.27 | 6.87 | 7.04 | 2.00 |
MPPB4 | 51.14 | 30.57 | 7.01 | 6.04 | 5.24 | 1.67 |
Wavenumber/cm−1 | Functional Groups | Observations | |
---|---|---|---|
Intensity | Changes | ||
3374 | N–H and–OH groups | Strong | Significantly increased |
2960 | –CH2 groups | Weak | Unclearly changed |
2370 | P–OH groups | Strong | Unclearly changed |
1650 | N–H and C=O groups | Strong | Unclearly changed |
1560, 792 | C=N groups | Weak | Unclearly changed |
1315 | P=O groups | Strong | Slightly increased |
1070 | P–O–C, P–O–P and C–O groups | Strong | Slightly increased |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Tang, X.; Xie, X.; Xu, Z. Fire Resistance, Thermal and Anti-Ageing Properties of Transparent Fire-Retardant Coatings Modified with Different Molecular Weights of Polyethylene Glycol Borate. Polymers 2021, 13, 4206. https://doi.org/10.3390/polym13234206
Yan L, Tang X, Xie X, Xu Z. Fire Resistance, Thermal and Anti-Ageing Properties of Transparent Fire-Retardant Coatings Modified with Different Molecular Weights of Polyethylene Glycol Borate. Polymers. 2021; 13(23):4206. https://doi.org/10.3390/polym13234206
Chicago/Turabian StyleYan, Long, Xinyu Tang, Xiaojiang Xie, and Zhisheng Xu. 2021. "Fire Resistance, Thermal and Anti-Ageing Properties of Transparent Fire-Retardant Coatings Modified with Different Molecular Weights of Polyethylene Glycol Borate" Polymers 13, no. 23: 4206. https://doi.org/10.3390/polym13234206
APA StyleYan, L., Tang, X., Xie, X., & Xu, Z. (2021). Fire Resistance, Thermal and Anti-Ageing Properties of Transparent Fire-Retardant Coatings Modified with Different Molecular Weights of Polyethylene Glycol Borate. Polymers, 13(23), 4206. https://doi.org/10.3390/polym13234206