A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects
Abstract
:1. Introduction
2. Overview on Natural Fibers
3. Technological Perspective of Natural Fibers Processing
4. Social and Economic Aspects on Utilization of Natural Fibers
5. Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CE | circular economy |
DP | degree of polymerization |
DSI | Indonesia natural fiber council |
FRC | fiber-reinforced composites |
G | coniferyl alcohol |
H | synapyl alcohol |
Iam | Intensity of amorphous region |
ISKARA | intensification of community sack community |
KORI | Indonesian Ramie Consortium |
MFA | microfibril angle |
NaOH | sodium hydroxide |
PE | polyethylene |
PET | polyethylene terephthalate |
PLA | polylactic acid |
S | p-coumaryl alcohol |
S1 | primary layer |
S2 | secondary layer |
S1, S2, S3 | secondary cell wall 1, 2, 3 |
SEM | scanning electron microscopy |
UV | ultraviolet |
XRD | X-ray diffraction |
References
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Madhu, P.; Sanjay, M.R.; Senthamaraikannan, P.; Pradeep, S.; Siengchin, S.; Jawaid, M.; Kathiresan, M. Effect of various chemical treatments of Prosopis juliflora fibers as composite reinforcement: Physicochemical, thermal, mechanical, and morphological properties. J. Nat. Fibers 2020, 17, 833–844. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Sari, N.H.; Fajrin, J.; Suteja; Fudholi, A. Characterisation of swellability and compressive and impact strength properties of corn husk fibre composites. Compos. Commun. 2020, 18, 49–54. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Li, S.; Liu, J.; Dong, M.; Li, Y.; Lu, N.; Lei, S.; Tang, J.; Fan, J.; et al. Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos. Part B Eng. 2019, 176, 107338. [Google Scholar] [CrossRef]
- Li, K.; Fu, S.; Zhan, H.; Zhan, Y.; Lucia, L. Analysis of the chemical composition and morphological structure of banana pseudo-stem. Bioresources 2010, 5, 10. [Google Scholar] [CrossRef]
- Herlina Sari, N.; Wardana, I.N.G.; Irawan, Y.S.; Siswanto, E. Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. J. Nat. Fibers 2018, 15, 545–558. [Google Scholar] [CrossRef]
- Madhu, P.; Sanjay, M.R.; Pradeep, S.; Subrahmanya Bhat, K.; Yogesha, B.; Siengchin, S. Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites. J. Mater. Res. Technol. 2019, 8, 2597–2604. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Siengchin, S. Natural fibers as perspective materials. KMUTNB Int. J. Appl. Scie. Tech. 2018, 11, 233. [Google Scholar]
- Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrishna, K.; Yogesha, B. Applications of natural fibers and its composites: An overview. Nat. Res. 2016, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Bavan, D.S.; Kumar, G.C.M. Potential use of natural fiber composite materials in India. J. Reinf. Plast. Compos. 2010, 29, 3600–3613. [Google Scholar] [CrossRef]
- Araújo, J.R.; Waldman, W.R.; De Paoli, M.A. Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polym. Degrad. Stab. 2008, 93, 1770–1775. [Google Scholar] [CrossRef]
- Kant, R.; Alagh, P. Extraction of fiber from Sansevieria trifasciata plant and its properties. IJSR 2015, 7, 2547–2549. [Google Scholar]
- Ahmed, M.J.; Balaji, M.A.S.; Saravanakumar, S.S.; Sanjay, M.R.; Senthamaraikannan, P. Characterization of Areva javanica fiber—A possible replacement for synthetic acrylic fiber in the disc brake pad. J. Ind. Text. 2018, 49, 294–317. [Google Scholar] [CrossRef]
- Davoodi, M.M.; Sapuan, S.M.; Ahmad, D.; Ali, A.; Khalina, A.; Jonoobi, M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater. Des. 2010, 31, 4927–4932. [Google Scholar] [CrossRef]
- Chandramohan, D.; Bharanichandar, J. Natural fiber reinforced polymer composites for automobile accessories. Am. J. Environ. Sci. 2013, 9, 494–504. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and Biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Sari, N.H.; Wardana, I.N.G.; Irawan, Y.S.; Siswanto, E. Corn husk fiber-polyester composites as sound absorber: Nonacoustical and acoustical properties. Adv. Acoust. Vib. 2017, 2017, 4319389. [Google Scholar] [CrossRef] [Green Version]
- Murdiyanto, D. Potensi serat alam tanaman Indonesia sebagai bahan fiber reinforced composite kedokteran gigi. J. Mater. Kedokt. Gigi 2017, 6, 14–22. [Google Scholar] [CrossRef]
- Scribante, A.; Vallittu, P.K.; Özcan, M. Fiber-reinforced composites for dental applications. BioMed Res. Int. 2018, 2018, 4734986. [Google Scholar] [CrossRef]
- Adekomaya, O.; Majozi, T. 23-Industrial and biomedical applications of fiber reinforced composites. In Fiber Reinforced Composites; Joseph, K., Oksman, K., George, G., Wilson, R., Appukuttan, S., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 753–783. [Google Scholar]
- Schlöesser, T.P. Natural Fiber Reinforced Automotive Parts. In Natural Fibers, Plastics and Composites; Wallenberger, F.T., Weston, N.E., Eds.; Springer: Boston, MA, USA, 2004; pp. 275–285. [Google Scholar]
- Mansor, M.R.; Nurfaizey, A.H.; Tamaldin, N.; Nordin, M.N.A. 11-Natural fiber polymer composites: Utilization in aerospace engineering. In Biomass, Biopolymer-Based Materials, and Bioenergy; Verma, D., Fortunati, E., Jain, S., Zhang, X., Eds.; Woodhead Publishing: Kidlington, UK, 2019; pp. 203–224. [Google Scholar]
- Novarini, E.; Sukardan, M.D. Potensi serat rami (Boehmeria nivea S. Gaud) sebagai bahan baku industri tekstil dan produk tekstil dan tekstil teknik. Arena Tekst. 2015, 30, 113–122. [Google Scholar] [CrossRef]
- Rowell, R.M. The Use of Biomass to Produce Bio-Based Composites and Building Materials; Woodhead Publishing Limited: Oxford, UK, 2014. [Google Scholar]
- Rowell, R.M. Natural Fibers: Types and Properties; Woodhead Publishing Limited: Boca Raton, FL, USA, 2008. [Google Scholar]
- Aziz, N.A.A.; Ho, L.-H.; Azahari, B.; Bhat, R.; Cheng, L.H.; Ibrahim, M.N.M. Chemical and functional properties of the native banana (Musa acuminata × balbisiana Colla cv. Awak) pseudo-stem and pseudo-stem tender core flours. Food Chem. 2011, 128, 748–753. [Google Scholar] [CrossRef]
- Sango, T.; Cheumani Yona, A.M.; Duchatel, L.; Marin, A.; Kor Ndikontar, M.; Joly, N.; Lefebvre, J.-M. Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Ind. Crop. Prod. 2018, 122, 657–668. [Google Scholar] [CrossRef]
- Zuluaga, R.; Putaux, J.-L.; Restrepo, A.; Mondragon, I.; Gañán, P. Cellulose microfibrils from banana farming residues: Isolation and characterization. Cellulose 2007, 14, 585–592. [Google Scholar] [CrossRef]
- Sapuan, S.M.; Leenie, A.; Harimi, M.; Beng, Y.K. Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 2006, 27, 689–693. [Google Scholar] [CrossRef]
- Arias, P.; Dankers, C.; Liu, P.; Pilkauskas, P. The World Banana Economy 1985–2002; Food and Agriculture Organization of United Nations: Rome, Italy, 2003. [Google Scholar]
- Zuluaga, R.; Rios, A.; Mauricio, A.; Casas, A.; Ramırez, M.; Kerguel, H.; Ganán, P. Aprovechamiento de losresiduos fibrosos de la Agroindustria bananera. In Proceedings of the VII Jornadas de Investigación, Medellín, Colombia, 5–8 May 2003; Universidad Pontifucia Bolivariana: Medellín, Colombia, 2003; pp. 267–276. [Google Scholar]
- Ramesh, M. Hemp, Jute, Banana, Kenaf, Ramie, Sisal Fibers; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Suparno, O. Upaya potensi dan masa depan serat alam indonesia sebagai bahan baku aneka industri. J. Teknol. Ind. Pertan. 2020, 30, 221–227. [Google Scholar]
- Gupta, U.S.; Dhamarikar, M.; Dharkar, A.; Tiwari, S.; Namdeo, R. Study on the effects of fibre volume percentage on banana-reinforced epoxy composite by finite element method. Adv. Compos. Hybrid Mater. 2020, 3, 530–540. [Google Scholar] [CrossRef]
- Nurnasari, E.; Nurindah. Karakteristik kimia serat buah, serat batang, dan serat daun. Bul. Tanam. Tembakau Serat Miny. Ind. 2017, 9, 64–72. [Google Scholar] [CrossRef]
- Suliyanthini, D. Ilmu Tekstil; Rajawali Perss: Jakarta, Indonesia, 2016. [Google Scholar]
- Nebangka, M.; Sumayku, B.R.A.; Pongoh, J. Potensi pengembangan pisang abaka (Musa textilis Nee) di Pulau Karakelang. COCOS 2020, 1, 1–11. [Google Scholar]
- Jawaid, M.; Asim, M.; Paridah, T.; Nasir, M. Processing, Properties and Applications; Springer Nature Pte. Ltd.: Singapore, 2020. [Google Scholar]
- Hadiyati, S.; Indriyani, N.L.P. Petunjuk Teknis Budidaya Nanas; Balai Penelitian Buah Tropika: Solok, Indonesia, 2008. [Google Scholar]
- Setyawan, P.D.; Sari, N.H.; Putra, D.G.P. Pengaruh orientasi dan fraksi volume serat daun nanas (Ananas comosus) terhadap kekuatan putus komposit polyester tak jenuh (UP). J. Din. Tek. Mesin 2012, 2, 31–32. [Google Scholar]
- Pandit, P.; Pandey, R.; Singha, K.; Shrivastava, S.; Gupta, V.; Jose, S. Pineapple Leaf Fibre: Cultivation and Production. In Pineapple Leaf Fibers, Green Energy and Technology; Mohammad, J., Mohammad, A., Paridah, M.T., Mohammed, N., Eds.; Springer Nature Pte. Ltd.: Singapore, 2020. [Google Scholar]
- Zakikhani, P.; Zahari, R.; Sultan, M.T.H.; Majid, D.L. Extraction and Preparation of Bamboo Fibre-Reinforced Composites. Mater. Des. 2014, 63, 820–828. [Google Scholar] [CrossRef]
- Wang, G.; Chen, F. Development of bamboo fiber-based composites. In Advanced High Strength Natural Fibre Composites in Construction; Elsevier Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Lobovikov, M.; Paudel, S.; Piazza, M.; Ren, H.; Wu, J. World Bamboo Resources: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment; Non Wood Forest Products; Food and Agricultural Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Kant, P. Should Bamboos and Palms Be Included in Cdm Forestry Projects? IGREC Working Paper: New Delhi, India, 2010. [Google Scholar]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Gratani, L.; Crescente, M.F.; Fabrini, L.G.; Digiulio, E. Growth pattern and photosynthetic activity of different bamboo species growing in the botanical garden of Rome. Flora-Morphol. Distrib. Funct. Ecol. Plants 2008, 203, 77–84. [Google Scholar] [CrossRef]
- Damayanti, R.; Jasni; Sulastiningsih, I.M.; Djarwanto; Suprapti, S.; Pari, G.; Basri, E.; Komarayati, S.; Abdurahman. Atlas Bambu Indonesia 1; IPB Press: Bogor, Indonesia, 2019. [Google Scholar]
- Dransfield, S.; Widjaja, E.A. Plant Resources of South-East Asia No.7 Bamboos; Backhuys Publishers: Leiden, The Netherlands, 1995. [Google Scholar]
- Fatriasari, W.; Hermiati, E. Analisis morfologi serat dan sifat fisis-kimia pada enam jenis bambu sebagai bahan baku pulp dan kertas. J. Ilmu Dan Teknol. Has. Hutan 2008, 67–72, 2. [Google Scholar]
- Yueping, W.; Ge, W.; Haitao, C.; Genlin, T.; Zheng, L.; Feng, X.Q.; Xiangqi, Z.; Xiaojun, H.; Xushan, G. Structures of bamboo fibre for textiles. Text. Res. J. 2010, 80, 334–343. [Google Scholar] [CrossRef]
- Subyakto. Teknologi pengendalian berbasis ekologi dalam mendukung pengembangan kapas. J. Litbang Pertan. 2011, 30, 81–86. [Google Scholar]
- Ditjenbun. Komoditas Kapas di Indonesia 2011–2013; Direktorat Jenderal Perkebunan, Kementerian Pertanian RI: Jakarta, Indonesia, 2013.
- Sumartini, S.; Sulistyowati, E.; Mulyani, S.; Abdurrakhman. Skrining galur kapas (Gossypium hirsutum L.) toleran terhadap kekeringan PEG-6000 pada fase kecambaH. J. Littri 2013, 19, 139–146. [Google Scholar] [CrossRef]
- Ditjenbun. Statistik Perkebunan Indonesia Komoditas Kapas; Direktorat Jenderal Perkebunan, Kementerian Pertanian RI: Jakarta, Indonesia, 2015.
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Berger, J. Fibre Crops: Their Cultivation and Manuring; Centre d’Etude de I’Azote: Zurich, Switzerland, 1969. [Google Scholar]
- Suratman, W.; Murdoko; Darwis, S.N. Tinjauan kemungkinan pengembangan rami di Indonesia. In Proceedings of the Seminar Nasional Rami, Malang, Indonesia, 1993. [Google Scholar]
- Eichhorn, S.J.; Baillie, C.A.; Zafeiropoulos, N.; Mwaikambo, L.Y.; Ansell, M.P.; Dufresne, A.; Entwistle, K.M.; Herrera-Franco, P.J.; Escamilla, G.C.; Groom, L.; et al. Review: Current international research into cellulosic fibres and composites. J. Mater. Sci. 2001, 36, 2107–2131. [Google Scholar] [CrossRef]
- Soeroto, H. Cultur Technik Boehmeria nivea L. Gaud.; Balai Besar Penyelidikan Pertanian, 1956. [Google Scholar]
- Setyo-Budi, U.; Hartati, R.S.; Purwanti, R.D. Biologi Tanaman Rami (Boehmeria nivea L. Gaud); Monograf Balittas Rami: Malang, Indonesia, 2005. [Google Scholar]
- Sumantri, R.H.L. Haramay (Ramie), Penanaman, Pemeliharaan dan Kegunaan. 1984. Available online: http://scholar.unand.ac.id/37471/4/DAFTAR%20PUSTAKA.pdf (accessed on 4 November 2021).
- Brink, M.; Escobin, R. Plant Resources of South-East Asia; Backhuys Publisher: Leiden, The Netherlands, 2003. [Google Scholar]
- Santoso, B. Peluang pengembangan Agave sebagai sumber serat alam. Perspektif 2009, 8, 84–95. [Google Scholar]
- Mukherjee, P.S.; Satyanarayana, K.G. Structure and properties of some vegetable fibres. J. Mater. Sci. 1986, 21, 51–56. [Google Scholar] [CrossRef]
- Sanjaygowda, M.; Rangappa, S.M.; Juwaid, M.; Shivana, P.; Basavegowda, Y.; Saba, N. Potential of Natural/Synthetic Hybrid Composites for Aerospace Applications; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Duxford, UK, 2018. [Google Scholar]
- Amin, M.; Samsudi, R. Pemanfaatan limbah serat sabut kelapa sebagai bahan pembuat helm pengendara kendaraan roda dua. Pros. Semin. Nas. Int. 2010, 3, 314–318. [Google Scholar]
- Sapuan, S.M.; Ismail, H.; Zainudin, E.S. Natural fiber reinforced vinyl ester and vinyl polymer composite. In Development, Characterization and Applications; Woodhead Publishing: Duxford, UK, 2018. [Google Scholar]
- van Dam, J.E.G.; van den Oever, M.J.A.; Teunissen, W.; Keijsers, E.R.P.; Peralta, A.G. Process for production of high density/high performance binderless boards from whole coconut husk: Part 1: Lignin as intrinsic thermosetting binder resin. Ind. Crop. Prod. 2004, 19, 207–216. [Google Scholar] [CrossRef]
- Elseify, L.A.; Midani, M.; Shihata, L.A.; El-mously, H. Review on cellulosic fibers extracted from date palms (Phoenix dactylifera, L.) and their applications. Cellulose 2019, 26, 2209–2232. [Google Scholar] [CrossRef]
- Thampan, P.K. Handbook on Coconut Palm; Oxford and IBH Publishing Co.: New Delhi, India, 1991. [Google Scholar]
- Heyne, K. Tumbuhan Berguna Indonesia, I; Koperasi Karyawan Departemen Kehutanan: Jakarta, Indonesia, 1987. [Google Scholar]
- Puwanto, A.W. Sansevieria Trifasciata Flora Cantik Penyerap Racun; Kanisius: Yogyakarta, Indonesia, 2006. [Google Scholar]
- Rosanti, D. Pengaruh pupuk majemuk dalam merangsang pertumbuhan tunas pada stek daun Sansevieria trifasciata. J. Sainmatika 2011, 8. [Google Scholar] [CrossRef]
- Trubus, T. Sansevieria; PT Trubus Swadaya, 2008; Available online: http://digilib.unimus.ac.id/files//disk1/156/jtptunimus-gdl-alfianrizk-7783-5-daftarp-a.pdf (accessed on 4 November 2021).
- Huda, Z.M. Ampuhnya Si Penyedot Polutan. Available online: http://www.gogreenschool.com (accessed on 4 November 2021).
- Agromedia, R. Tip Jitu Merawat Tanaman Hias Popular; PT Agromedia Pustaka: Jakarta, Indonesia, 2010. [Google Scholar]
- Franz, J.B. Tangkis Renggutan Gas Polutan. Available online: http://agriculturesupercamp.wordpress.com (accessed on 4 November 2021).
- Hakim, L.; Widyorini, R.; Nugroho, W.D.; Prayitno, T.A. Anatomical, chemical, and mechanical properties of fibrovascular bundles of Salacca (Snake Fruit) frond. BioResources 2019, 14, 7943–7957. [Google Scholar]
- Philip, D.; Kaleena, P.K.; Valivittan, K.; Kumar, G. Phytochemical screening and amtimicrobial activity of (Sansevieria roxburghiana schult). J. Middle-East J. Sci. Res. 2011, 10, 512–518. [Google Scholar]
- Rikara, D. Menjilati Polusi Dengan Lidah Mertua. Available online: http://id.wordpress.com/tag/tanaman-hias/ (accessed on 4 November 2021).
- Chand, N.; Fahim, M. Jute reinforced polymer composites. In Tribology of Natural Fiber Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2008; pp. 108–128. [Google Scholar]
- Bismarck, A.; Mishra, S.; Lampke, T. Plant Fibers as Reinforcement for Green Composites: Natural Fibers, Biopolymers, and Biocomposite; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal, and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Sudjindro. Arah pengembangan kenaf di Indonesia menyongsong bangkitnya serat alam dunia 2009. War. Penelit. Pengemb. Tanam. Ind. 2008, 14, 20–22. [Google Scholar]
- Sudjindro; Marjani; Heliyanto, B.; Sunardi, D. Galur harapan kenaf adaptif di lahan Bonorowo Kabupaten Lamongan. J. Penelit. Tanam. Ind. 2001, 7, 31–34. [Google Scholar] [CrossRef]
- Sudjindro; Marjani; Heliyanto, B.; Purwati, R.D. Uji Daya Hasil Galur-Galur Kenaf (Hibiscus cannabinus L.). In Proceedings of the Simposium V Peripi, 8–9 September 1998. [Google Scholar]
- Sudjindro; Marjani. Pemuliaan tanaman kenaf (Hibiscus cannabinus L.). In Monograf Kenaf; 2009. [Google Scholar]
- Sudjindro. Prospek serat alam untuk bahan baku kertas uang. Perspektif 2011, 10, 92–104. [Google Scholar]
- Luong, T.-H.; Dang, T.-N.; Ngoc, O.P.; Thi, D.-T.; Nguyen, T.-H.; Toi, V.V.; Duong, H.T.; Son, H. Investigation of the silk fiber extraction process from the vietnam natural bombyx mori silkworm cocoon. In Proceedings of the 5th International Conference on Biomedical Engineering in Vietnam, Ho Chi Minh City, Vietnam, 16–18 June 2014; pp. 325–328. [Google Scholar]
- Kearns, V.; Maclntosh, A.C.; Crawford, A.; Hatton, P.V. Silk-based biomaterials for tissue engineering. Top. Tissue Eng. 2008, 4, 1–19. [Google Scholar]
- Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmon, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wang, B. Biodegradation of silk biomaterials. Int. J. Mol. Sci. 2009, 10, 1514–1524. [Google Scholar]
- Wang, Y.; Kim, H.-J.; Vunjak-Novakovic, G.; Kaplan, D.L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006, 27, 6064–6082. [Google Scholar] [CrossRef]
- Hakimi, O.; Vollart, F.V.; Carr, A.J. Evaluation of silk as a scaffold for musculoskeletal regeneration—The path from the laboratory to clinical trials. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Mandal, B.B.; Kundu, S.C. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 2009, 30, 2956–2965. [Google Scholar] [CrossRef] [PubMed]
- Babu, K.M. Silk: Processing, Properties and Application. In The Textile Institute Book Series; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Coderch, L.; de la Maza, A.; Soriano, C.; Erra, P.; Parra, J.L. Chromatographic characterization of internal polar lipids from wool. J. Am. Oil Chem. Soc. 1995, 72, 715–720. [Google Scholar] [CrossRef]
- Schaefer, H.; Redelmeier, T.E. Skin Barrier: Principles in percutaneous penetration. Arch. Dermatol. 1997, 133, 924. [Google Scholar] [CrossRef]
- Gelse, K.; Poschlb, E.; Aigner, T. Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [Green Version]
- Suparno, O.; Prasetyo, N.B. Isolation of collagen from chicken feet with hydroextraction method and its physico-chemical characterisation. In Proceedings of the ICDALC 2018, Bogor, Indonesia, 20–21 September 2018; pp. 1–11. [Google Scholar]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Aberoumand, A. Comparative study between different methods of collagen extraction from fish and its properties. World Appl. Sci. J. 2012, 16, 316–319. [Google Scholar]
- Sari, N.H.; Pruncu, C.I.; Sapuan, S.M.; Ilyas, R.A.; Catur, A.D.; Suteja, S.; Sutaryono, Y.A.; Pullen, G. The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym. Test. 2020, 91, 106751. [Google Scholar] [CrossRef]
- Vinod, A.; Vijay, R.; Singaravelu, D.L. ThermoMechanical characterization of Calotropis gigantea stem powder-filled jute fiber-reinforced epoxy composites. J. Nat. Fibers 2018, 15, 648–657. [Google Scholar] [CrossRef]
- Jothibasu, S.; Mohanamurugan, S.; Vijay, R.; Lenin Singaravelu, D.; Vinod, A.; Sanjay, M.R. Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. J. Ind. Text. 2018, 49, 1036–1060. [Google Scholar] [CrossRef]
- Vijay, R.; Lenin Singaravelu, D.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Khan, A.; Parameswaranpillai, J. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int. J. Biol. Macromol. 2019, 125, 99–108. [Google Scholar] [CrossRef]
- Munawar, S.S.; Umemura, K.; Kawai, S. Manufacture of oriented board using mild steam treatment of plant fiber bundles. J. Wood Sci. 2008, 54, 369–376. [Google Scholar] [CrossRef]
- Chen, H.; Miao, M.; Ding, X. Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 2013–2019. [Google Scholar] [CrossRef]
- Okubo, K.; Fujii, T.; Yamamoto, Y. Development of bamboo-based polymer composites and their mechanical properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 377–383. [Google Scholar] [CrossRef]
- Deka, H.; Misra, M.; Mohanty, A. Renewable resource based “all green composites” from kenaf biofiber and poly(furfuryl alcohol) bioresin. Ind. Crop. Prod. 2013, 41, 94–101. [Google Scholar] [CrossRef]
- de Farias, J.G.; Cavalcante, R.C.; Canabarro, B.R.; Viana, H.M.; Scholz, S.; Simão, R.A. Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydr. Polym. 2017, 165, 429–436. [Google Scholar] [CrossRef]
- Yousif, B.F.; Shalwan, A.; Chin, C.W.; Ming, K.C. Flexural properties of treated and untreated kenaf/epoxy composites. Mater. Des. 2012, 40, 378–385. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Huang, L.; Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016, 112, 168–182. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Hajiha, H.; Sain, M.; Mei, L.H. Modification and Characterization of Hemp and Sisal Fibers. J. Nat. Fibers 2014, 11, 144–168. [Google Scholar] [CrossRef]
- George, M.; Mussone, P.G.; Bressler, D.C. Surface and thermal characterization of natural fibres treated with enzymes. Ind. Crop. Prod. 2014, 53, 365–373. [Google Scholar] [CrossRef]
- Poyyamozhi, V.S.; Kadirvel, R. The value of banana stalk as a feed for goats. Anim. Feed Sci. Technol. 1986, 15, 95–100. [Google Scholar] [CrossRef]
- Viswanathan, K.; Kadirvel, R.; Chandrasekaran, D. Nutritive value of banana stalk (Musa cavendishi) as a feed for sheep. Anim. Feed Sci. Technol. 1989, 22, 327–332. [Google Scholar] [CrossRef]
- Chiena, E. Estudio del ensilado del raquis de banana (Musa acuminata Colla, subgrupo ‘Cavendish’) para la alimentaci óndel ganado caprino en las Islas Canarias. Rev. Fac. Agron. 1999, 16, 291–305. [Google Scholar]
- Pothan, L.A.; Thomas, S. Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites. Compos. Sci. Technol. 2003, 63, 1231–1240. [Google Scholar] [CrossRef]
- Pothan, L.A.; Thomas, S.; Groeninckx, G. The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1260–1269. [Google Scholar] [CrossRef]
- Vinod, A.; Vijay, R.; Singaravelu, D.L.; Sanjay, M.R.; Siengchin, S.; Moure, M.M. Characterization of untreated and alkali treated natural fibers extracted from the stem of Catharanthus roseus. Mater. Res. Express 2019, 6, 085406. [Google Scholar] [CrossRef]
- Idicula, M.; Boudenne, A.; Umadevi, L.; Ibos, L.; Candau, Y.; Thomas, S. Thermophysical properties of natural fibre reinforced polyester composites. Compos. Sci. Technol. 2006, 66, 2719–2725. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; ElayaPerumal, A.; Alavudeen, A.; Thiruchitrambalam, M. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater. Des. 2011, 32, 4017–4021. [Google Scholar] [CrossRef]
- Quintana, G.; Velásquez, J.; Betancourt, S.; Gañán, P. Binderless fiberboard from steam exploded banana bunch. Ind. Crop. Prod. 2009, 29, 60–66. [Google Scholar] [CrossRef]
- Mohapatra, D.; Mishra, S.; Sutar, N. Banana and its by-product utilisation: An overview. J. Sci. Ind. Res. 2010, 69, 323–329. [Google Scholar]
- Bello, K.; Sarojini, B.K.; Narayana, B.; Rao, A.; Byrappa, K. A study on adsorption behavior of newly synthesized banana pseudo-stem derived superabsorbent hydrogels for cationic and anionic dye removal from effluents. Carbohydr. Polym. 2018, 181, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, M.R.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar] [CrossRef]
- Jordan, W.; Chester, P. Improving the properties of banana fiber reinforced polymeric composites by treating the fibers. Procedia Eng. 2017, 200, 283–289. [Google Scholar] [CrossRef]
- Ray, D.; Nayak, L.; Ammayappan, L.; Shambhu, V.; Nag, D. Energy conservation drives for efficient extraction and utilization of banana fibre. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 296–310. [Google Scholar]
- Bertella, S.; Luterbacher, J.S. Lignin functionalization for the production of novel materials. Trends Chem. 2020, 2, 440–453. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Navaneethakrishnan, P.; Shankar, S.; Rajasekar, R. Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Compos. Interfaces 2013, 20, 575–593. [Google Scholar] [CrossRef]
- Arthanarieswaran, V.P.; Kumaravel, A.; Saravanakumar, S.S. Physico-chemical properties of alkali-treated Acacia leucophloea fibers. Int. J. Polym. Anal. Charact. 2015, 20, 704–713. [Google Scholar] [CrossRef]
- Indran, S.; Raj, R.E.; Daniel, B.S.S.; Saravanakumar, S.S. Cellulose powder treatment on Cissus quadrangularis stem fiber-reinforcement in unsaturated polyester matrix composites. J. Reinf. Plast. Compos. 2015, 35, 212–227. [Google Scholar] [CrossRef]
- Jayaramudu, J.; Maity, A.; Sadiku, E.R.; Guduri, B.R.; Varada Rajulu, A.; Ramana, C.V.V.; Li, R. Structure and properties of new natural cellulose fabrics from Cordia dichotoma. Carbohydr. Polym. 2011, 86, 1623–1629. [Google Scholar] [CrossRef]
- Kommula, V.P.; Reddy, K.O.; Shukla, M.; Marwala, T.; Reddy, E.V.S.; Rajulu, A.V. Extraction, modification, and characterization of natural ligno-cellulosic fiber strands from napier grass. Int. J. Polym. Anal. Charact. 2016, 21, 18–28. [Google Scholar] [CrossRef]
- Saravanakumar, S.S.; Kumaravel, A.; Nagarajan, T.; Moorthy, I.G. Effect of chemical treatments on physicochemical properties of Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 2014, 19, 383–390. [Google Scholar] [CrossRef]
- Rashid, B.; Leman, Z.; Jawaid, M.; Ghazali, M.J.; Ishak, M.R. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: Effect of treatment. Cellulose 2016, 23, 2905–2916. [Google Scholar] [CrossRef]
- Rangappa, S.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Ozbakkaloglu, T. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym. Compos. 2021, 1–47. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/pc.26413 (accessed on 4 November 2021). [CrossRef]
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers—A review of potential eco-friendly applications to the construction industry. Sustain. Mater. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, T.; Quaiyyum, M.A.; Bashar, S.; Jahan, M.S. Anatomical, morphological and chemical characteristics of kaun straw (Seetaria-ltalika). Nord. Pulp Pap. Res. J. 2020, 35, 288–298. [Google Scholar] [CrossRef]
- Wan, J.; Wang, Y.; Xiao, Q. Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Bioresour. Technol. 2010, 101, 4577–4583. [Google Scholar] [CrossRef]
- Joseph, S.; Sreekala, M.S.; Oommen, Z.; Koshy, P.; Thomas, S. A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 2002, 62, 1857–1868. [Google Scholar] [CrossRef]
- Cesarino, I.R.G.; Bronzato, F.; Leao, A. Pineapple Leaf Fibers; Springer: Berlin, Germany, 2020. [Google Scholar]
- Vijay, R.; Vinod, A.; Lenin Singaravelu, D.; Sanjay, M.R.; Siengchin, S. Characterization of chemical treated and untreated natural fibers from Pennisetum orientale grass—A potential reinforcement for lightweight polymeric applications. Int. J. Lightweight Mater. Manuf. 2021, 4, 43–49. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Natural Fibers, Biopolymer and Biocomposites; CRC Press: London, UK, 2005. [Google Scholar]
- Fatriasari, W.; Hamzah, F.N.; Pratomo, B.I.; Fajriutami, T.; Ermawar, R.A.; Falah, F.; Laksana, R.P.B.; Ghozali, M.; Iswanto, A.H.; Hermiati, E.; et al. Optimizing the synthesis of lignin derivatives from Acacia mangium to improve the enzymatic hydrolysis of kraft pulp sorghum bagasse. Int. J. Renew. Energy Dev. 2020, 9, 227–235. [Google Scholar] [CrossRef]
- Solihat, N.; Sari, F.; Falah, F.; Ismayati, M.; Lubis, M.; Fatriasari, W.; Santoso, E.; Syafii, W. Lignin as an active biomaterial: A review. J. Sylva Lestari 2021, 9, 1–22. [Google Scholar] [CrossRef]
- Fatriasari, W.; Nurhamzah, F.; Raniya, R.; Laksana, R.; Anita, S.H.; Iswanto, A.H.; Hermiati, E. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. J. Korean Wood Sci. Technol. 2020, 48, 651–665. [Google Scholar]
- Falah, F.; Lubis, M.; Triastuti; Fatriasari, W.; Sari, F. Utilization of lignin from the waste of bioethanol production as a mortar additive. J. Sylva Lestari 2020, 8, 326–339. [Google Scholar] [CrossRef]
- Solihat, N.; Raniya, R.; Fajriutami, T.; Iswanto, A.; Fatriasari, W.; Fudholi, A. Design and performance of amphiphilic lignin derivatives in enzymatic hydrolysis of sweet sorghum bagasse for bioethanol production. BioResources 2021, 16, 5875–5889. [Google Scholar] [CrossRef]
- Zhang, J.; Song, H.; Lin, L.; Zhuang, J.; Pang, C.; Liu, S. Microfibrillated cellulose from bamboo pulp and its properties. Biomass Bioenergy 2012, 39, 78–83. [Google Scholar] [CrossRef]
- Shlieout, G.; Arnold, K.; Müller, G. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech 2002, 3, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Jonoobi, M.; Oksman Niska, K.; Harun, J.; Misra, M. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 2009, 4, 626–639. [Google Scholar]
- Granstrom, M. Cellulose Derivatives: Synthesis, Properties and Applications; University of Helsinki: Helsinki, Finland, 2009. [Google Scholar]
- Asrofi, M.; Abral, H.; Kasim, A.; Pratoto, A.; Mahardika, M.; Park, J.-W.; Kim, H.-J. Isolation of Nanocellulose from Water Hyacinth Fiber (WHF) Produced via Digester-Sonication and Its Characterization. Fibers Polym. 2018, 19, 1618–1625. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Puglia, D.; Biagiotti, J.; Kenny, J.M. A Review on Natural Fibre-Based Composites—Part II. J. Nat. Fibers 2005, 1, 23–65. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Yahaya, R.; Sapuan, S.M.; Jawaid, M.; Leman, Z.; Zainudin, E.S. Investigating ballistic impact properties of woven kenaf-aramid hybrid composites. Fibers Polym. 2016, 17, 275–281. [Google Scholar] [CrossRef]
- Miller, S.A. Natural fiber textile reinforced bio-based composites: Mechanical properties, creep, and environmental impacts. J. Clean. Prod. 2018, 198, 612–623. [Google Scholar] [CrossRef]
- Mahardika, M.; Abral, H.; Kasim, A.; Arief, S.; Hafizulhaq, F.; Asrofi, M. Properties of cellulose nanofiber/bengkoang starch bionanocomposites: Effect of fiber loading. LWT 2019, 116, 108554. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S.M.; Ishak, M.R.; Nuraini, A.A. A decision-making model for selecting the most appropriate natural fiber—Polypropylene-based composites for automotive applications. J. Compos. Mater. 2015, 50, 543–556. [Google Scholar] [CrossRef]
- Xia, C.; Yu, J.; Shi, S.Q.; Qiu, Y.; Cai, L.; Wu, H.F.; Ren, H.; Nie, X.; Zhang, H. Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance. Compos. Part B Eng. 2017, 114, 121–127. [Google Scholar] [CrossRef]
- Luz, F.S.D.; Garcia Filho, F.D.C.; Oliveira, M.S.; Nascimento, L.F.C.; Monteiro, S.N. Composites with Natural Fibers and Conventional Materials Applied in a Hard Armor: A Comparison. Polymers 2020, 12, 1920. [Google Scholar] [CrossRef]
- Murali Mohan, S.; Mahesh Gowda, E.; Shashidhar, M.P. Clinical evaluation of the fiber post and direct composite resin restoration for fixed single crowns on endodontically treated teeth. Med. J. Armed Forces India 2015, 71, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Anidha, S.; Latha, N.; Muthukkumar, M. Effect of polyaramid reinforced with sisal epoxy composites: Tensile, impact, flexural and morphological properties. J. Mater. Res. Technol. 2020, 9, 7947–7954. [Google Scholar] [CrossRef]
- Zhou, X.; Saini, H.; Kastiukas, G. Engineering properties of treated natural hemp fiber-reinforced concrete. Front. Built Environ. 2017, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Luzi, F.; Puglia, D.; Torre, L. Natural Fiber Biodegradable Composites and Nanocomposites: A Biomedical Application; Elsevier Ltd.: Kidlington, UK, 2019. [Google Scholar]
- Namvar, F.; Jawaid, M.; Md Tahir, P.; Mohamad, R.; Azizi, S.; Khodavandi, A.; Rahman, H.S.; Nayeri, M.D. Potential use of plant fibres and their composites for biomedical applications. BioResources 2014, 9, 5688–5706. [Google Scholar] [CrossRef]
- Ahad, N.; Rozali, F.; Hanif, N.; Rosli, N. Oils and water absorption behavior of natural fibers filled TPU composites for biomedical applications. J. Eng. Res. Educ. 2018, 10, 16–21. [Google Scholar]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulma, A.; Skórkowska-Telichowska, K.; Kostyn, K.; Szatkowski, M.; Skała, J.; Drulis-Kawa, Z.; Preisner, M.; Żuk, M.; Szperlik, J.; Wang, Y.F.; et al. New flax producing bioplastic fibers for medical purposes. Ind. Crop. Prod. 2015, 68, 80–89. [Google Scholar] [CrossRef]
- Song, J.; Chen, Z.; Liu, Z.; Yi, Y.; Tsigkou, O.; Li, J.; Li, Y. Controllable release of vascular endothelial growth factor (VEGF) by wheel spinning alginate/silk fibroin fibers for wound healing. Mater. Des. 2021, 212, 110231. [Google Scholar] [CrossRef]
- Cherian, B.M.; Leão, A.L.; de Souza, S.F.; Thomas, S.; Pothan, L.A.; Kottaisamy, M. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 2010, 81, 720–725. [Google Scholar] [CrossRef]
- Giri, J.; Adhikari, R.; Campus, T. A brief review on extraction of nanocellulose and its application. Nepal J. Online 2013, 9, 81–87. [Google Scholar] [CrossRef]
- Alharbi, M.A.H.; Hirai, S.; Tuan, H.A.; Akioka, S.; Shoji, W. Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves. Polym. Test. 2020, 84, 106384. [Google Scholar] [CrossRef]
- Daunton, C.; Kothari, S. A history of materials and practices for wound management. Wound Manag. 2012, 20, 174–186. [Google Scholar]
- Asim, M.; Saba, N.; Jawaid, M.; Nasir, M. 12-Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. In Sustainable Composites for Aerospace Applications; Jawaid, M., Thariq, M., Eds.; Woodhead Publishing: Kidlington, UK, 2018; pp. 253–268. [Google Scholar]
- Potluri, R. Natural Fiber-Based Hybrid Bio-composites: Processing, Characterization, and Applications. In Green Composites: Processing, Characterisation and Applications for Textiles; Muthu, S.S., Ed.; Springer: Singapore, 2019; pp. 1–46. [Google Scholar]
- Arockiam, N.J.; Jawaid, M.; Saba, N. 6-Sustainable bio composites for aircraft components. In Sustainable Composites for Aerospace Applications; Elsevier: Selangor, Malaysia, 2018; pp. 109–123. [Google Scholar]
- Asrofi, M.; Sapuan, S.M.; Ilyas, R.A.; Ramesh, M. Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type). Mater. Today Proc. 2021, 46, 1626–1630. [Google Scholar] [CrossRef]
- Baltazar-Y-Jimenez, A.; Sain, M. Natural Fibres for Automotive Applications; Woodhead Publishing Limited: New Delhi, India, 2012. [Google Scholar]
- Moudood, A.; Rahman, A.; Khanlou, H.M.; Hall, W.; Öchsner, A.; Francucci, G. Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites. Compos. Part B Eng. 2019, 171, 284–293. [Google Scholar] [CrossRef]
- Fuentes, C.A.; Ting, K.W.; Dupont-Gillain, C.; Steensma, M.; Talma, A.G.; Zuijderduin, R.; Van Vuure, A.W. Effect of humidity during manufacturing on the interfacial strength of non-pre-dried flax fibre/unsaturated polyester composites. Compos. Part A Appl. Sci. Manuf. 2016, 84, 209–215. [Google Scholar] [CrossRef] [Green Version]
- George, M.; Mussone, P.G.; Alemaskin, K.; Chae, M.; Wolodko, J.; Bressler, D.C. Enzymatically treated natural fibres as reinforcing agents for biocomposite material: Mechanical, thermal, and moisture absorption characterization. J. Mater. Sci. 2016, 51, 2677–2686. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef] [Green Version]
- Rohit, K.; Dixit, S. A Review—Future aspect of natural fiber reinforced composite. Polym. Renew. Resour. 2016, 7, 43–59. [Google Scholar] [CrossRef]
- Mahesha, G.T.; Satish, S.B.; Vijaya, K.M.; Bhat, K.S. Preparation of unidirectional Grewia serrulata fiber-reinforced polyester composites and evaluation of tensile and flexural properties. J. Nat. Fibers 2016, 13, 547–554. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018, 133, 112–121. [Google Scholar] [CrossRef]
- Yang, X.; Wang, K.; Tian, G.; Liu, X.E.; Yang, S. Evaluation of chemical treatments to tensile properties of cellulosic bamboo fibers. Eur. J. Wood Wood Prod. 2018, 76, 1303–1310. [Google Scholar] [CrossRef]
- Shih, Y.-F. Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater. Sci. Eng. A 2007, 445, 289–295. [Google Scholar] [CrossRef]
- Kemenperin. Kemenperin: Kemenperin Akselerasi Penggunaan Serat Alam Jadi Bahan Baku Industri. Available online: https://kemenperin.go.id/artikel/22183/ (accessed on 4 November 2021).
- Sukardan, D.M.; Natawijaya, D.; Prettyanti, P.; Cahyadi; Novarini, E. Characterization of the fiber from biduri (Calotropis gigantea) and the identification of it’s utilization possibility as a textile fiber. Arena Tekst. 2016, 31, 51–62. [Google Scholar]
- Sana, A.W.; Noerati, N.; Sugiyana, D.; Sukardan, D.M. The application of biduri natural fiber (Calotropis gigantea) as an insulative filler material in winter jacket. Arena Tekst. 2020, 35, 1–12. [Google Scholar]
- Shanmugam, V.; Mensah, R.A.; Försth, M.; Sas, G.; Restás, Á.; Addy, C.; Xu, Q.; Jiang, L.; Neisiany, R.E.; Singha, S.; et al. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021, 5, 100138. [Google Scholar] [CrossRef]
- Martina, R.A.; Oskam, I.F. Practical guidelines for designing recycling, collaborative, and scalable business models: A case study of reusing textile fibers into biocomposite products. J. Clean. Prod. 2021, 318, 128542. [Google Scholar] [CrossRef]
- Khayyam, H.; Naebe, M.; Milani, A.S.; Fakhrhoseini, S.M.; Date, A.; Shabani, B.; Atkiss, S.; Ramakrishna, S.; Fox, B.; Jazar, R.N. Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning. Energy 2021, 225, 120113. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Mendoza, J.M.F.; Aznar-Sánchez, J.A.; Gallego-Schmid, A. Circular economy implementation in the agricultural sector: Definition, strategies and indicators. Resour. Conserv. Recycl. 2021, 170, 105618. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y.; et al. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 109876. [Google Scholar] [CrossRef]
- Ruamsook, K.; Thomchick, E. Market opportunity for lignocellulosic biomass. NewBio 2014, 1–108. Available online: https://farm-energy.extension.org/wp-content/uploads/2019/04/Biomass-Market-Opportunity_Final-2014_0.pdf (accessed on 4 November 2021).
- Pratiwi, R.; Rahayu, D.; Barliana, M.I. Pemanfaatan selulosa dari limbah jerami padi (Oryza sativa) sebagai bahan bioplastik. Indones. J. Pharm. Sci. Technol. 2016, 3, 83–91. [Google Scholar] [CrossRef]
Introducing Methods | Advantages | Disadvantages | References |
---|---|---|---|
Dew retting |
|
| [15,136] |
Water retting |
|
| [17,137,138,139,140,141,142,143] |
Mechanical extraction |
|
| [15,134,141] |
Chemical treatment |
|
| [17,137,138,139,140,141,142] |
Specific Area Application of Fiber Composite | Source of Fiber | References |
---|---|---|
| Pineapple, rambutan and banana skin | [177] |
| Flax and flaxseed oil | [178] |
| Flax | [179] |
| Cotton | [179] |
| Bombyx mori silk | [180] |
| Pineapple leaf | [181,182] |
| - | [176] |
| - | [20,21,22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimah, A.; Ridho, M.R.; Munawar, S.S.; Ismadi; Amin, Y.; Damayanti, R.; Lubis, M.A.R.; Wulandari, A.P.; Nurindah; Iswanto, A.H.; et al. A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects. Polymers 2021, 13, 4280. https://doi.org/10.3390/polym13244280
Karimah A, Ridho MR, Munawar SS, Ismadi, Amin Y, Damayanti R, Lubis MAR, Wulandari AP, Nurindah, Iswanto AH, et al. A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects. Polymers. 2021; 13(24):4280. https://doi.org/10.3390/polym13244280
Chicago/Turabian StyleKarimah, Azizatul, Muhammad Rasyidur Ridho, Sasa Sofyan Munawar, Ismadi, Yusup Amin, Ratih Damayanti, Muhammad Adly Rahandi Lubis, Asri Peni Wulandari, Nurindah, Apri Heri Iswanto, and et al. 2021. "A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects" Polymers 13, no. 24: 4280. https://doi.org/10.3390/polym13244280
APA StyleKarimah, A., Ridho, M. R., Munawar, S. S., Ismadi, Amin, Y., Damayanti, R., Lubis, M. A. R., Wulandari, A. P., Nurindah, Iswanto, A. H., Fudholi, A., Asrofi, M., Saedah, E., Sari, N. H., Pratama, B. R., Fatriasari, W., Nawawi, D. S., Rangappa, S. M., & Siengchin, S. (2021). A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects. Polymers, 13(24), 4280. https://doi.org/10.3390/polym13244280