Preparation, Characterization and Application of Amorphized Cellulose—A Review
Abstract
:1. Introduction
2. Characterization Methods of Original and Amorphized Celluloses
2.1. Wide-Angle X-ray Scattering (WAXS)
2.1.1. Determination of the Angular Positions of the Main Diffraction Peaks
2.1.2. Determination of Crystallinity and Amorphicity Degree
2.1.3. Determination of Crystallite Sizes
2.2. Method of CP/MAS 13C NMR
2.3. Sorption of Water Vapor
2.4. Heat of Wetting
3. Methods of Cellulose Amorphization
4. Characterization of Amorphized and Amorphous Cellulose
4.1. Structural and Physico-Chemical Characteristics of Amorphized Cellulose
4.2. Structural Features of Completely Amorphous Cellulose
5. Acidic Hydrolyzability and Enzymatic Digestibility
- Original chemical-grade cotton cellulose (ORC) having 98% α-fraction and DP = 2700
- Mercerized cellulose (MRC)
- Ammonia treated cellulose (AMC)
- Ball-milled cellulose (BMC)
- Cellulose materials treated with N/U-solvent at R = 5 and 10, which are completely amorphous cellulose samples (CAC)
6. Potential Applications of Amorphized Cellulose
7. Conclusions
Funding
Conflicts of Interest
Appendix A. Determination of Specific Gravity of Amorphous Cellulose
- Pure chemical-grade cotton cellulose (CC) of Hercules Inc. (97% α-cellulose, DP = 2700)
- Bleached Kraft chemical pulp (KP) of Weyerhaeuser (93% α-cellulose; DP = 1100)
- Mercerized KP (MKP) (99% α-cellulose, DP = 1800) was prepared using treatment of KP with 20% NaOH at 25 °C for 1 h followed by washing and drying
- Regenerated cellulose-rayon fibers (RF) of Rayonier Inc (DP = 370)
Sample | X | SG, g/cm3 |
---|---|---|
CC | 0.69 | 1.561 |
KP | 0.63 | 1.550 |
MKP | 0.53 | 1.532 |
RF | 0.38 | 1.507 |
Group | Vi (cm3/Mole) | N | N × Vi (cm3/Mole) |
---|---|---|---|
CH2 | 15.85 | 1 | 15.85 |
CH | 9.45 | 5 | 47.25 |
OH | 9.7 | 3 | 29.1 |
O | 10.0 | 2 | 20.0 |
Total Vm: | 112.2 |
References
- Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural polysaccharide nanomaterials: An overview of their immunological properties. Int. J. Mol. Sci. 2019, 20, 5092. [Google Scholar] [CrossRef] [Green Version]
- Khandelwal, M.; Windle, A. Hierarchical Organisation in the Most Abundant Biopolymer—Cellulose; MRS Proceedings; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Wahlström, N.; Edlund, U.; Pavia, H.; Toth, G.; Jaworski, A.; Pell, A.J.; Choong, F.X.; Shirani, H.; Nilsson, K.P.R.; Richter-Dahlfors, A. Cellulose from the green macroalgae Ulva lactuca: Isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose 2020, 27, 3707–3725. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, J. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 2014, 21, 3427–3441. [Google Scholar] [CrossRef]
- Keshk, S. Bacterial cellulose production and its industrial applications. J. Bioprocess. Biotech. 2015, 4, 2. [Google Scholar] [CrossRef]
- Sjöström, E. Wood Chemistry, Fundamentals and Applications; Academic Press: London, UK, 1993. [Google Scholar]
- Krässig, H.A. Cellulose, Structure, Accessibility and Reactivity; Gordon and Breach Science Publishers: Langhorne, PA, USA, 1993. [Google Scholar]
- Eliza, M.Y.; Shahruddin, M.; Noormaziah, J.; Wan Rosli, W.D. Carboxymethyl cellulose (CMC) from oil palm empty fruit bunch (OPEFB) in the new solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride (TBAF). J. Phys. Conf. Ser. 2015, 622, 012026. [Google Scholar] [CrossRef]
- Sugiyama, J.; Vuong, R.; Chanzy, H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 1991, 24, 4168–4175. [Google Scholar] [CrossRef]
- Zugenmaier, P. Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 2001, 26, 1341–1417. [Google Scholar] [CrossRef]
- Zugenmaier, P. Crystalline Cellulose and Cellulose Derivatives: Characterization and Structures; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ioelovich, M. Models of supramolecular structure and properties of cellulose. J. Polym. Sci. Ser. A 2016, 58, 925–943. [Google Scholar] [CrossRef]
- Ioelovich, M. Cellulose: Nanostructured Natural Polymer; LAP: Saarbrücken, Germany, 2015. [Google Scholar]
- Ioelovich, M. Accessibility and crystallinity of cellulose. Bioresources 2009, 4, 1168–1177. [Google Scholar]
- Hall, M.; Bansal, P.; Lee, J.H.; Realff, M.J.; Bommarius, A.S. Cellulose crystallinity—A key predictor of the enzymatic hydrolysis rate. FEBS J. 2010, 277, 1571–1582. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunin, Y.B.; Grunin, L.Y.; Schiraya, V.Y.; Ivanova, M.S.; Masas, D.S. Cellulose–water system’s state analysis by proton nuclear magnetic resonance and sorption measurements. Bioresour. Bioprocess. 2020, 7, 41–52. [Google Scholar] [CrossRef]
- Maier, G.; Zipper, P.; Stubičar, M.; Schurz, J. Amorphization of different cellulose samples by ball milling. Cellul. Chem. Technol. 2005, 39, 167–177. [Google Scholar]
- Glas, D.; Paesen, R.; Depuydt, D.; Binnemans, K.; Ameloot, M.; De Vos, D.E.; Ameloot, R. Cellulose amorphization by swelling in ionic liquid/water mixtures: A combined macroscopic and second-harmonic microscopy study. ChemSushem 2015, 8, 82–86. [Google Scholar] [CrossRef]
- Burger, D.; Winter, A.; Subbiahdoss, G.; Oberlerchner, J.T.; Beaumont, M.; Tamada, Y.; Rosenau, T. Partial amorphization of cellulose through Zinc Chloride treatment: A facile and sustainable pathway to functional cellulose nanofibers with flame-retardant and catalytic properties. ACS Sustain. Chem. Eng. 2020, 8, 13576–13582. [Google Scholar] [CrossRef]
- Paajanen, A.; Rinta-Paavola, A.; Vaari, J. High-temperature decomposition of amorphous and crystalline cellulose: Reactive molecular simulations. Cellulose 2021, 28, 8987–9005. [Google Scholar] [CrossRef]
- Ioelovich, M. Adjustment of hydrophobic properties of cellulose materials. Polymers 2021, 13, 1241. [Google Scholar] [CrossRef]
- Rongpipi, S.; Ye, D.; Gomez, E.D.; Gomez, E.W. Progress and opportunities in the characterization of cellulose—An important regulator of cell wall growth and mechanics. Front. Plant Sci. 2019, 9, 1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momzakova, K.S.; Shinkarev, A.A.; Deberdeev, M.R.; Valishina, Z.T.; Berlin, A.A.; Deberdeev, R.Y. Comparative X-ray structural analysis of cotton celluloses and herbaceous plants. Chem. Plant Mater. 2021, 3, 61–71. [Google Scholar] [CrossRef]
- Singh, K. Advanced X-ray Techniques in Research and Industries; IOS Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Danilchenko, S.N.; Kukharenko, O.G.; Moseke, C.; Protsenko, I.Y.; Sukhodub, L.F.; Sulkio-Cleff, B.J.C.R. Determination of bone mineral crystallite size and lattice strain from diffraction line broadening. Res. Technol. Crystallogr. 2002, 37, 1234–1240. [Google Scholar] [CrossRef]
- Ioelovich, M. Practical WAXS method for determination of distortions and sizes of cellulose crystallites. SITA 2018, 20, 8–15. [Google Scholar]
- Wang, S.; Sun, Y.; Shu, K.; Jiang, D.; Ma, W. Structural characterization of coal components of late Permian coals from southern China by X-ray diffraction and Raman spectroscopy. J. Biochem. Anal. Stud. 2016, 2, 1–5. [Google Scholar]
- Mariedahl, D.; Perakis, F.; Späh, A.; Pathak, H.; Kim, K.H.; Camisasca, G.; Schlesinger, D.; Benmore, C.; Pettersson, L.G.M.; Nilsson, A.; et al. X-ray scattering and O−O pair-distribution functions of amorphous ices. J. Phys. Chem. B 2018, 122, 7616–7624. [Google Scholar] [CrossRef] [Green Version]
- Atalla, R.H.; Vanderhart, D.L. The role of solid-state 13C NMR spectroscopy in studies of the nature of native cellulose. Solid State Nucl. Magn. Reson. 1999, 15, 1–19. [Google Scholar] [CrossRef]
- Zuckerstätter, G.; Schild, G.; Wollboldt, P.; Röder, T.; Weber, H.K.; Sixta, H. The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzing. Ber. 2009, 87, 38–46. [Google Scholar]
- Ioelovich, M.; Leykin, A. Study of sorption properties of cellulose and its derivatives. Bioresources 2011, 6, 178–195. [Google Scholar] [CrossRef]
- Wadső, I.; Goldberg, R. Standards in isothermal microcalorimetry. Pure Appl. Chem. 2001, 73, 1625–1639. [Google Scholar] [CrossRef]
- Kuznetsov, B.N.; Yatsenkova, O.V.; Chudina, A.I.; Skripnikov, A.M.; Kozlova, S.A.; Garyntseva, N.V.; Chesnokov, N.V. Effect of mechanical and chemical activation microcrystalline cellulose on its structure and reactivity in hydrolysis with solid acid catalyst. J. Sib. Fed. Univ. Chem. 2014, 7, 122–133. [Google Scholar]
- Ago, M.; Endo, T.; Hirotsu, T. Crystalline transformation of native cellulose from cellulose I to cellulose II polymorph by a ball-milling method with a specific amount of water. Cellulose 2004, 11, 163–167. [Google Scholar] [CrossRef]
- Halonen, H.; Larsson, P.T.; Iversen, T. Mercerized cellulose biocomposites: A study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties. Cellulose 2013, 20, 57–65. [Google Scholar] [CrossRef]
- Mittal, A.; Katahira, R.; Himmel, M.E.; Johnson, D.K. Effects of alkaline or liquid ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility. Biotechnol. Biofuels 2011, 4, 41–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wu, T.; Wang, X.; Cheng, X.; Chen, N.; Li, D. Effect of ethylenediamine treatment on cellulose nanofibers and the formation of high-strength hydrogels. Bioresources 2019, 14, 1141–1156. [Google Scholar]
- Anantharam, P.D.; Sasidhar, V.; Constange, A.S. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 2006, 95, 904–910. [Google Scholar]
- Roseneau, T.; Potthast, A.; Sixta, H.; Kosma, P. The chemistry of side reactions and by-product formation in the system NMMO/cellulose (Lyocell process). Prog. Polym. Sci. 2001, 26, 1763–1837. [Google Scholar] [CrossRef]
- Schroder, L.R.; Gentile, V.M.; Attala, R.H. Non-Degradative Preparation of Amorphous Cellulose; IPC Technical Paper Series, No 152; The Institute of Paper Chemistry: Appleton, WI, USA, 1985. [Google Scholar]
- Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous cellulose—Structure and characterization. Cellul. Chem. Technol. 2011, 45, 13–21. [Google Scholar]
- Zhang, C.; Liu, R.; Xiang, J.; Kang, H.; Liu, Z.; Huang, Y. Dissolution mechanism of cellulose in N,N-Dimethylacetamide/Lithium Chloride: Revisiting through molecular interactions. J. Phys. Chem. B 2014, 118, 9507–9514. [Google Scholar] [CrossRef]
- Zhang, Y.H.P.; Cui, J.; Lynd, L.R.; Kuang, L.R. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 2006, 7, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Egal, M.; Budtova, T.; Navard, P. The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 2008, 15, 361–370. [Google Scholar] [CrossRef]
- Duchemin, B.; Le Corre, D.; Leray, N.; Dufresne, A.; Staiger, M.P. All-cellulose composites based on microfibrillated cellulose and filter paper via a NaOH-Urea solvent system. Cellulose 2016, 23, 593–609. [Google Scholar] [CrossRef]
- Ioelovich, M. Optimal method for production of amorphous cellulose with increased enzymatic digestibility. Org. Polym. Mater. Res. 2019, 1, 22–26. [Google Scholar] [CrossRef]
- Togawa, E.; Kondo, T. Unique structural characteristics of nematic ordered cellulose—Stability in water and its facile transformation. J. Polym. Sci. B 2007, 45, 2850–2859. [Google Scholar] [CrossRef]
- Ioelovich, M. Peculiarities of cellulose nanoparticles. TAPPI J. 2014, 13, 45–52. [Google Scholar] [CrossRef]
- Ioelovich, M. Waste-free technologies for production of nanocrystalline cellulose and its composites. Adv. Environ. Waste Manag. Recycl. 2020, 3, 128–132. [Google Scholar]
- Lipatov, Y.S.; Shilov, V.V.; Gomza, Y.P.; Kruglak, N.E. X-ray Methods for Studying of Polymer Systems; Science: Kiev, Ukraine, 1982. [Google Scholar]
- Kuzmina, L.G.; Konstantinov, I.I.; Churakov, A.V.; Lermontova, E.K. X-ray structure and DSC of mesomorphous 4-n-butyloxyphenyl-4′-methacryloyloxybenzoate. Mol. Cryst. Liq. Cryst. 2020, 708, 92–97. [Google Scholar] [CrossRef]
- Hutomo, G.S.; Rahim, A.; Kadir, S. The Effect of sulfuric and hydrochloric acid on cellulose degradation from pod husk cacao. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 89–95. [Google Scholar]
- Ioelovich, M. Isophase and phase transitions of cellulose: A short review. SITA 2016, 18, 14–34. [Google Scholar]
- Kang, A.; Lee, T.S. Converting sugars to biofuels: Ethanol and beyond. Bioengineering 2015, 2, 184–203. [Google Scholar] [CrossRef] [Green Version]
- Muratova, E.I.; Susina, O.V.; Shunaeva, O.B. Biotechnology of Organic Acids and Proteins; University Press: Tambov, Russia, 2007. [Google Scholar]
- Bekatorou, A.; Psarianos, C.; Koutinas, A.A. Production of food grade yeasts. Food Technol. Biotechnol. 2006, 44, 407–415. [Google Scholar]
- Anderson, C.; Longton, J.; Maddix, C.; Scammell, G.W.; Solomons, G.L. The Growth of Microfungi on Carbohydrates. In Single Cell Protein; MIT Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Junker, B.H.; Mann, Z.; Seeley, A.; Zhang, J.; Greasham, R. Use of glucose feeding to produce concentrated yeast cells. Appl. Biochem. Biotechnol. 2002, 97, 63–78. [Google Scholar] [CrossRef]
- Molina-Ramírez, C.; Castro, M.; Osorio, M.; Torres-Taborda, M.; Gómez, B.; Zuluaga, R.; Gómez, C.; Gañán, P.; Rojas, O.J.; Castro, C. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter Medellinensis. Materials 2017, 10, 639. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.S.K.; Ghai, R.; Kalia, V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Aggor, F.S.; Awad, A.M.; El-Aref, A.T. An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr. Polym. 2013, 91, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, F.L.; Graham, A.T. Modern Superabsorbent Polymer Technology; Wiley-VCH: New York, NY, USA, 1998. [Google Scholar]
- Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T.J.; Xu, F. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 2013, 23, 660–672. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Raju, K.M.; Raju, M.P. Synthesis of novel superabsorbing copolymers for agricultural and horticultural applications. Polym. Int. 2001, 50, 946–951. [Google Scholar] [CrossRef]
- Shaviv, A. Advances in controlled release of fertilizers. Adv. Agron. 2001, 71, 1–49. [Google Scholar]
- Davidson, D.W.; Verma, M.S.; Gu, F.X. Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. SpringerPlus 2013, 2, 318. [Google Scholar] [CrossRef] [Green Version]
- Demitri, C.; Scalera, F.; Madaghiele, M.; Sannino, A.; Maffezzoli, A. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int. J. Polym. Sci. 2013, 2013, 435073. [Google Scholar] [CrossRef]
- Song, Z.; Liu, J.; Bai, Y.; Wei, J.; Li, D.; Wang, Q.; Chen, Z.; Kanungo, D.P.; Qian, W. Laboratory and field experiments on the effect of vinyl acetate polymer-reinforced soil. Appl. Sci. 2019, 9, 208. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wu, Q.; Sun, X.; Yue, Y.; Tubana, B.; Yang, R.; Cheng, H.N. Novel alginate-cellulose nanofiber-poly(vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals. Int. J. Biol. Macromol. 2021, 172, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Ioelovich, M. Utilization of paper waste to manufacture of hydrogels. Adv. Environ. Waste Manag. Recycl. 2021, 4, 52–55. [Google Scholar]
- Ioelovich, M. Chapter 9—Nanocellulose: Fabrication, Structure, Properties and Application in the Area of Care and Cure. In Fabrication and Self-Assembly of Nanobiomaterials: Applications of Nanobiomaterials; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Witte, M.B.; Barbul, A. Arginine physiology and its implication for wound healing. Wound Repair Regen. 2003, 11, 419–423. [Google Scholar] [CrossRef]
- Stechmiller, J.K. Arginine supplementation and wound healing. Nutr. Clin. Pract. 2005, 20, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Filatov, V.N.; Ioelovich, M.; Medusheva, E.O.; Kulagina, A.S.; Riltsev, V.B.; Belov, A.A. Production of Nanoparticles of Cellulose for Medicine Materials; Dipak: Moscow, Russia, 2013. [Google Scholar]
- Ioelovich, M.; Leykin, A.; Figovsky, O. Study of cellulose paracrystallinity. Bioresources 2010, 5, 1393–1407. [Google Scholar]
- Ioelovich, M. Physicochemical methods for determination of cellulose crystallinity. ChemXpress 2016, 9, 245–251. [Google Scholar]
- Van Krevelen, D.W. Properties of Polymers: Correlations with Chemical Structure; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
CA | Miller’s Indices | 2θ°hkl | d, nm |
---|---|---|---|
CIβ | 1–10 | 14.5–14.7 | 0.6 |
110 | 16.0–16.4 | 0.54 | |
200 | 22.4–22.6 | 0.393 | |
004 | 34.4–34.8 | 0.259 | |
CII | 1–10 | 12.0–12.2 | 0.73 |
110 | 19.8–20.2 | 0.443 | |
200 | 21.8–22.2 | 0.4 | |
004 | 34.4–34.8 | 0.258 | |
CIII | 1–10 | 11.8–12.0 | 0.743 |
110 & 200 | 19.8–21.2 | 0.423 | |
004 | 34.4–34.8 | 0.258 | |
CIV | 1–10 & 110 | 15.5–16.0 | 0.57 |
200 | 22.0–22.4 | 0.4 | |
004 | 34.4–34.8 | 0.259 |
Feature | Value |
---|---|
Phase state | Amorphous |
Average diameter of nanoparticles, nm | cca 100 |
Average DP | 70 |
Content of sulfonic groups, meq/kg | 210 |
Content of reducing groups, meq/kg | 84 |
Amorphization Method | * AL | CrI | X | Y | Dcr, nm |
---|---|---|---|---|---|
Initial sample | CI | 0.66 | 0.7 | 0.3 | 8.3 |
Ball-grinding | CI | 0.3 | 0.32 | 0.68 | 3.6 |
Treatment with liquid NH3 | CIII | 0.34 | 0.36 | 0.64 | 4.1 |
Mercerization | CII | 0.51 | 0.54 | 0.46 | 5.5 |
Treatment with N/U solvent at | |||||
R = 3 | CII | 0.23 | 0.26 | 0.74 | 3.4 |
R = 5 | - | 0 | 0 | 1 | 0 |
R = 10 | - | 0 | 0 | 1 | 0 |
Amorphization Methods | Y | S at α = 0.7 | Q, J/g |
---|---|---|---|
Initial sample | 0.30 | 0.08 | 50 |
Ball-grinding | 0.68 | 0.16 | 106 |
Treatment with liquid NH3 | 0.64 | 0.15 | 100 |
Mercerization | 0.46 | 0.12 | 77 |
Treatment with N/U solvent at | |||
R = 3 | 0.74 | 0.19 | 123 |
R = 5 | 1.0 | 0.24 | 166 |
R = 10 | 1.0 | 0.25 | 167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioelovich, M. Preparation, Characterization and Application of Amorphized Cellulose—A Review. Polymers 2021, 13, 4313. https://doi.org/10.3390/polym13244313
Ioelovich M. Preparation, Characterization and Application of Amorphized Cellulose—A Review. Polymers. 2021; 13(24):4313. https://doi.org/10.3390/polym13244313
Chicago/Turabian StyleIoelovich, Michael. 2021. "Preparation, Characterization and Application of Amorphized Cellulose—A Review" Polymers 13, no. 24: 4313. https://doi.org/10.3390/polym13244313
APA StyleIoelovich, M. (2021). Preparation, Characterization and Application of Amorphized Cellulose—A Review. Polymers, 13(24), 4313. https://doi.org/10.3390/polym13244313