Application of Failure Criteria on Plywood under Bending
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plywood Processing
2.2. Determination of Principal Mechanical Properties of Plywood Building Material (i.e., Veneer Sheets)
2.2.1. Tensile Strength
2.2.2. Compressive Strength
2.2.3. Shear Strength
2.2.4. Modulus of Elasticity
2.2.5. Shear Modulus
2.3. Plywood Failure Bending Forces Determination
2.4. Finite Element Modelling
2.5. Statistical Evaluation of Data
3. Results
3.1. Principle Mechanical Properties of Plywood Building Material (Veneer Sheets)
3.2. Failure of Four-Point Plywood Bending Specimens
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kollmann, F.F.P.; Côte, W.A. Principles of Wood Science and Technology. Solid Wood; Springer: Berlin, Germany, 1975; p. 592. [Google Scholar]
- Merhar, M. Determination of Elastic Properties of Beech Plywood by Analytical, Experimental and Numerical Methods. Forests 2020, 11, 1221. [Google Scholar] [CrossRef]
- Kallakas, H.; Rohumaa, A.; Vahermets, H.; Kers, J. Effect of different hardwood species and lay-up schemes on the mechanical properties of plywood. Forests 2020, 11, 649. [Google Scholar] [CrossRef]
- Bal, B.C. Some physical and mechanical properties of reinforced laminated veneer lumber. Constr. Build. Mater. 2014, 68, 120–126. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Wei, X.; Smith, L.M.; Wang, G.; Chen, F.M. Evaluation of Uniformity of Bamboo Bundle Veneer and Bamboo Bundle Laminated Veneer Lumber (BLVL). Forests 2019, 10, 921. [Google Scholar] [CrossRef] [Green Version]
- Mohammadabadi, M.; Jarvis, J.; Yadama, V.; Cofer, W. Predictive models for elastic bending behavior of a wood composite sandwich panel. Forests 2020, 11, 624. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Sun, Y.; Geng, Y.; Fan, J.; Dai, X.; He, Z.; Dong, X.; Dong, Y.; Li, Y. Preparation of wood-based panel composites with poplar veneer as the surface layer modified by in-situ polymerization of active monomers. Forests 2020, 11, 893. [Google Scholar] [CrossRef]
- Jakob, M.; Stemmer, G.; Czabany, I.; Müller, U.; Gindl-Altmutter, W. Preparation of High Strength Plywood from Partially Delignified Densified Wood. Polymers 2020, 12, 1796. [Google Scholar] [CrossRef] [PubMed]
- Král, P.; Klímek, P.; Mishra, P.K.; Rademacher, P.; Wimmer, R. Preparation and characterization of cork layered composite plywood boards. BioResources 2014, 9, 1977–1985. [Google Scholar] [CrossRef] [Green Version]
- Salca, E.A.; Bekhta, P.; Seblii, Y. The effect of veneer densification temperature and wood species on the plywood properties made from alternate layers of densified and non-densified veneers. Forests 2020, 11, 700. [Google Scholar] [CrossRef]
- Merhar, M. Determination of dynamic and static modulus of elasticity of beech plywood. Les/Wood 2020, 69. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J.; Bekhta, N. Effect of Veneer-Drying Temperature on Selected Properties and Formaldehyde Emission of Birch Plywood. Polymers 2020, 12, 593. [Google Scholar] [CrossRef] [Green Version]
- Jorda, J.; Kain, G.; Barbu, M.-C.; Petutschnigg, A.; Král, P. Influence of Adhesive Systems on the Mechanical and Physical Properties of Flax Fiber Reinforced Beech Plywood. Polymers 2021, 13, 3086. [Google Scholar] [CrossRef] [PubMed]
- Réh, R.; Krišťák, Ľ.; Sedliačik, J.; Bekhta, P.; Božiková, M.; Kunecová, D.; Vozárová, V.; Tudor, E.M.; Antov, P.; Savov, V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers 2021, 13, 511. [Google Scholar] [CrossRef] [PubMed]
- Bekhta, P.; Sedliačik, J.; Bekhta, N. Effects of Selected Parameters on the Bonding Quality and Temperature Evolution Inside Plywood During Pressing. Polymers 2020, 12, 1035. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, H. Influence of the specimen depth to length ratio and lamination construction on Young’s modulus and in-plane shear modulus of plywood measured by flexural vibration. BioResources 2012, 7, 1337–1351. [Google Scholar]
- Wilczyński, M.; Warmbier, K. Elastic moduli of veneers in pine and beech plywood. Drewno 2012, 188, 47–56. [Google Scholar]
- Avilés, F.; Couoh-Solis, F.; Carlsson, L.A.; Hernández-Pérez, A.; May-Pat, A. Experimental determination of torsion and shear properties of sandwich panels and laminated composites by the plate twist test. Compos. Struct. 2011, 93, 1923–1928. [Google Scholar] [CrossRef]
- Yoshihara, H. Edgewise shear modulus of plywood measured by square-plate twist and beam flexure methods. Constr. Build. Mater. 2009, 23, 3537–3545. [Google Scholar] [CrossRef]
- Aicher, S.; Klöck, W. Linear versus quadratic failure criteria for inplane loaded wood based panels. Otto-Graf Journal 2001, 12, 187–200. [Google Scholar]
- Cabrero, J.M.; Gebremedhin, K.G. Evaluation of failure criteria in wood members. In Proceedings of the 11th World Conference on Timber Engineering 2010, Trentino, Italy, 20–24 June 2010; pp. 1274–1280. [Google Scholar]
- Mascia, N.T.; Simoni, R.A. Analysis of failure criteria applied to wood. Engineering Failure Analysis 2013, 35, 703–712. [Google Scholar] [CrossRef]
- van der Put, T.A.C.M. The tensorpolynomial failure criterion for wood. Delft Wood Sci. Found. Publ. Ser. 2005, 2, 31. [Google Scholar]
- Puck, A.; Schürmann, H. Failure analysis of FRP laminates by means of physically based phenomenological models. In Failure Criteria in Fibre-Reinforced-Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2004; pp. 264–297. [Google Scholar] [CrossRef]
- Puck, A.; Kopp, J.; Knops, M. Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos. Sci. Technol. 2002, 62, 371–378. [Google Scholar] [CrossRef]
- Chybiński, M.; Polus, Ł. Experimental and numerical investigations of laminated veneer lumber panels. Arch. Civ. Eng. 2021, 67, 351–372. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, T.; Zhang, X.; Jia, P.; Suo, Y.; Zhao, S. A reliable fracture angle determination algorithm for extended puck’s 3d inter-fiber failure criterion for unidirectional composites. Materials 2021, 14, 6325. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Huang, T.; Zhang, X.; Suo, Y.; Jia, P.; Zhao, S. Multiscale analysis of mechanical properties of 3d orthogonal woven composites with randomly distributed voids. Materials 2021, 14, 5247. [Google Scholar] [CrossRef]
- Song, C.; Jin, X. Fracture angle prediction for matrix failure of carbon-fiber-reinforced polymer using energy method. Compos. Sci. Technol. 2021, 211. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, W.; Yu, Z.; Liu, J.; Wei, X. A new three-dimensional progressive damage model for fiber-reinforced polymer laminates and its applications to large open-hole panels. Compos. Sci. Technol. 2019, 182. [Google Scholar] [CrossRef]
- Sun, Q.; Zhou, G.; Meng, Z.; Guo, H.; Chen, Z.; Liu, H.; Kang, H.; Keten, S.; Su, X. Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model. Compos. Sci. Technol. 2019, 172, 81–95. [Google Scholar] [CrossRef]
- Imtiaz, H.; Liu, B. An efficient and accurate framework to determine the failure surface/envelop in composite lamina. Compos. Sci. Technol. 2021, 201, 108475. [Google Scholar] [CrossRef]
- Li, N.; Ju, C. Mode-Independent and Mode-Interactive Failure Criteria for Unidirectional Composites Based on Strain Energy Density. Polymers 2020, 12, 2813. [Google Scholar] [CrossRef]
- Khan, M.S.; Abdul-Latif, A.; Koloor, S.S.R.; Petrů, M.; Tamin, M.N. Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings. Polymers 2021, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Pramreiter, M.; Bodner, S.C.; Keckes, J.; Stadlmann, A.; Feist, F.; Baumann, G.; Maawad, E.; Müller, U. Predicting strength of Finnish birch veneers based on three different failure criteria. Holzforschung 2021, 75, 847–856. [Google Scholar] [CrossRef]
- Yoshihara, H. Failure conditions of solid wood on off-axis compression testing. Holzforschung 2019, 73, 251–258. [Google Scholar] [CrossRef]
- Akter, S.T.; Bader, T.K. Experimental assessment of failure criteria for the interaction of normal stress perpendicular to the grain with rolling shear stress in Norway spruce clear wood. Eur. J. of Wood Wood Prod. 2020, 78, 1105–1123. [Google Scholar] [CrossRef]
- EN 408; Timber structures—Structural timber and glued laminated timber—Determination of some physical and mechanical properties. BSI: Brussels, Belgium, 2010.
- ASTM D143; Standard Test Methods for Small Clear Specimens of Timber. Intertek: Philadelphia, PA, USA, 2000.
- Yoshihara, H. Shear properties of wood measured by the asymmetric four-point bending test of notched specimen. Holzforschung 2009, 63, 211–216. [Google Scholar] [CrossRef]
- Bachtiar, E.V.; Rüggeberg, M.; Hering, S.; Kaliske, M.; Niemz, P. Estimating shear properties of walnut wood: A combined experimental and theoretical approach. Mater. Struct./Mater. et Constr. 2017, 50. [Google Scholar] [CrossRef]
- Li, S.G.; Sitnikova, E.; Liang, Y.N.; Kaddour, A.S. The Tsai-Wu failure criterion rationalised in the context of UD composites. Compos. Part a-Appl. Sci. Manuf. 2017, 102, 207–217. [Google Scholar] [CrossRef]
- Chen, X.; Sun, X.; Chen, P.; Wang, B.; Gu, J.; Wang, W.; Chai, Y.; Zhao, Y. Rationalized improvement of Tsai–Wu failure criterion considering different failure modes of composite materials. Compos. Struct. 2021, 256. [Google Scholar] [CrossRef]
- Ozyhar, T.; Hering, S.; Niemz, P. Moisture-dependent elastic and strength anisotropy of European beech wood in tension. J. Mater. Sci. 2012, 47, 6141–6150. [Google Scholar] [CrossRef]
- Hering, S.; Keunecke, D.; Niemz, P. Moisture-dependent orthotropic elasticity of beech wood. Wood Sci. Technol. 2012, 46, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Aicher, S.; Ohnesorge, D. Shear strength of glued laminated timber made from European beech timber. Eur. Journal Wood Wood Prod. 2011, 69, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Aicher, S.; Christian, Z.; Hirsch, M. Rolling shear modulus and strength of beech wood laminations. Holzforschung 2016, 70, 773–781. [Google Scholar] [CrossRef]
- Mascia, N.T.; Nicolas, E.A. Evaluation of Tsai-Wu criterion and Hankinson’s formula for a Brazilian wood species by comparison with experimental off-axis strength tests. Wood Mater. Sci. Eng. 2012, 7, 49–58. [Google Scholar] [CrossRef]
- Mascia, N.T.; Nicolas, E.A.; Todeschini, R. Comparison between tsai-wu failure criterion and hankinson’s formula for tension in wood. Wood Res. 2011, 56, 499–510. [Google Scholar]
Ply no. | 11 Layers | 7 Layers | 3 Layers | |||
---|---|---|---|---|---|---|
11E (°) | 11A (°) | 11P (°) | 7A (°) | 7P (°) | 3P (°) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 30 | 90 | 45 | 90 | 90 |
3 | 0 | −30 | 0 | −45 | 0 | 0 |
4 | 0 | 60 | 90 | 90 | 90 | - |
5 | 0 | −60 | 0 | −45 | 0 | - |
6 | 0 | 90 | 90 | 45 | 90 | - |
7 | 0 | −60 | 0 | 0 | 0 | - |
8 | 0 | 60 | 90 | - | - | - |
9 | 0 | −30 | 0 | - | - | - |
10 | 0 | 30 | 90 | - | - | - |
11 | 0 | 0 | 0 | - | - | - |
Specimen | Compression (MPa) | Tension (MPa) | Shear (MPa) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
L | T | R | L | T | R | TL | TL [41] | RL | TR | |
1 | 66.9 | 11.5 | 11.5 | 89.9 | 3.9 | - | 9.2 | - | - | - |
2 | 63.6 | 11.3 | 11.0 | 115.1 | 3.8 | - | 9.9 | - | - | - |
3 | 65.6 | 11.4 | 10.9 | 95.3 | 3.4 | - | 8.7 | - | - | - |
4 | - | - | - | 94.2 | 3.7 | - | - | - | - | - |
5 | - | - | - | 99.2 | - | - | - | - | - | - |
6 | - | - | - | 83.1 | - | - | - | - | - | - |
7 | - | - | - | 100.7 | - | - | - | - | - | - |
Avg | 65.4 | 11.4 | 11.1 | 96.8 | 3.7 | 3.7 | 9.3 | 10.9 | 9.3 | 1.6 |
Std. dev. | 1.7 | 0.1 | 0.3 | 10.0 | 0.2 | - | 0.6 | - | - | - |
COV (%) | 2.6 | 0.9 | 2.6 | 10.3 | 5.7 | - | 6.7 | - | - | - |
Specimen | Experiment | Kollman [1] | Experiment | Equation 14 | |||
---|---|---|---|---|---|---|---|
EL | ET | ER | GTL | GTL | GRL | GRT | |
1 | 14,578 | 991 | - | 586 | - | - | - |
2 | 14,597 | 992 | - | 590 | - | - | - |
3 | 14,578 | 968 | - | 604 | - | - | - |
Avg | 14,584 | 984 | 2380 | 593 | 619 | 1464 | 388 |
St. dev. | 11 | 14 | - | 9 | - | - | - |
COV (%) | 0.08 | 1.38 | - | 1.59 | - | - | - |
Ply no. | Ply Orientation (°) | Tsai-Wu | Tsai-Hill | Hoffman | Puck | Max Stress | Hashin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FOS | FOS | FOS | FOS | Failure | FOS | Failure | FOS | Failure | ||||||||
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | |||||
1 | 0 | 1.45 | 1.46 | 1.46 | 1.47 | 1.33 | 1.35 | 1.54 | 1.55 | f | 1.54 | 1.55 | 1c | 1.54 | 1.55 | f |
2 | 30 | 2.61 | 2.69 | 2.71 | 2.79 | 2.58 | 2.69 | 3.14 | 3.24 | mA | 3.56 | 3.77 | 1c | 3.56 | 3.77 | f |
3 | −30 | 3.09 | 3.17 | 3.21 | 3.30 | 3.02 | 3.11 | 3.66 | 3.79 | mA | 3.88 | 4.10 | 1c | 3.88 | 4.10 | f |
4 | 60 | 10.1 | 10.4 | 6.56 | 6.60 | 8.30 | 8.36 | 7.93 | 8.14 | - | 7.93 | 8.22 | - | 6.91 | 7.04 | - |
5 | −60 | 15.9 | 16.2 | 11.0 | 11.2 | 13.9 | 14.1 | 12.4 | 12.7 | - | 12.4 | 12.6 | - | 11.0 | 11.2 | - |
6 | 90 | 16.3 | 16.7 | 15.8 | 16.1 | 13.9 | 14.1 | 18.7 | 19.1 | - | 22.3 | 22.9 | - | 22.3 | 22.9 | - |
7 | −60 | 7.55 | 7.74 | 8.04 | 8.30 | 7.02 | 7.26 | 8.88 | 8.97 | - | 12.4 | 12.6 | - | 8.89 | 8.98 | - |
8 | 60 | 4.25 | 4.35 | 4.43 | 4.57 | 3.87 | 3.98 | 5.10 | 5.22 | - | 6.60 | 6.97 | - | 5.13 | 5.24 | - |
9 | −30 | 4.59 | 4.63 | 4.10 | 4.15 | 4.44 | 4.50 | 4.80 | 4.87 | - | 5.66 | 5.81 | - | 4.11 | 4.16 | - |
10 | 30 | 3.52 | 3.58 | 3.29 | 3.34 | 3.52 | 3.53 | 3.86 | 3.91 | mB | 4.14 | 4.20 | - | 3.30 | 3.34 | f |
11 | 0 | 2.91 | 2.94 | 2.26 | 2.26 | 2.49 | 2.50 | 2.30 | 2.31 | f | 2.30 | 2.31 | 1t | 2.30 | 2.31 | f |
Ply No. | Ply Orientation (°) | Tsai-Wu | Tsai-Hill | Hoffman | Puck | Max Stress | Hashin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FOS | FOS | FOS | FOS | Failure | FOS | Failure | FOS | Failure | ||||||||
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | |||||
1 | −45 | 1.93 | 2.01 | 1.84 | 1.89 | 2.11 | 2.18 | 2.12 | 2.25 | mC | 2.33 | 2.65 | 12 | 1.73 | 1.78 | m |
2 | −15 | 1.22 | 1.27 | 1.21 | 1.27 | 1.37 | 1.51 | 1.27 | 1.41 | f | 1.27 | 1.41 | 1c | 1.27 | 1.41 | f |
3 | −75 | 4.44 | 5.28 | 3.21 | 3.36 | 3.44 | 3.74 | 3.54 | 3.97 | mC | 3.54 | 4.05 | 2c | 3.53 | 3.88 | m |
4 | 15 | 1.71 | 1.87 | 1.68 | 1.85 | 1.89 | 2.02 | 1.68 | 1.85 | f | 1.68 | 1.85 | 1c | 1.68 | 1.85 | f |
5 | −105 | 6.79 | 9.64 | 6.56 | 7.58 | 7.51 | 8.83 | 7.71 | 8.70 | - | 9.01 | 10.7 | - | 6.21 | 7.15 | - |
6 | 45 | 9.44 | 11.1 | 10.6 | 12.8 | 10.9 | 12.7 | 11.5 | 14.6 | - | 11.5 | 16.7 | - | 11.5 | 14.9 | - |
7 | −105 | 2.95 | 3.25 | 3.08 | 3.29 | 3.08 | 3.18 | 3.08 | 3.31 | mA | 3.28 | 3.47 | 2t | 3.08 | 3.31 | m |
8 | 15 | 1.91 | 2.24 | 2.26 | 2.58 | 2.14 | 2.45 | 2.50 | 2.75 | f | 2.50 | 2.75 | 1t | 2.50 | 2.73 | f |
9 | −75 | 1.15 | 1.29 | 1.12 | 1.25 | 1.07 | 1.18 | 1.15 | 1.31 | mA | 1.15 | 1.32 | 2t | 1.15 | 1.31 | m |
10 | −15 | 1.06 | 1.25 | 1.24 | 1.46 | 1.23 | 1.41 | 1.44 | 1.68 | mA | 1.77 | 2.02 | 1t | 1.53 | 1.72 | f |
11 | −45 | 0.80 | 0.95 | 0.82 | 1.01 | 0.82 | 1.01 | 0.82 | 1.02 | mA | 0.87 | 1.13 | 2t | 0.82 | 1.02 | m |
axy (Tsai-Wu)/p (Puck) | 11A | 11P | 7A | 7P | 3P | |
---|---|---|---|---|---|---|
Tsai Wu | −1 | 0.431 | 0.358 | 0.060 | 0.024 | 0.696 |
−0.7 | 0.456 | 0.364 | 0.081 | 0.016 | 0.680 | |
−0.3 | 0.487 | 0.371 | 0.109 | 0.005 | 0.659 | |
0 | 0.508 | 0.367 | 0.132 | −0.008 | 0.643 | |
0.3 | 0.530 | 0.362 | 0.133 | −0.039 | 0.626 | |
0.6 | 0.547 | 0.339 | 0.128 | −0.086 | 0.609 | |
1 | 0.551 | 0.282 | 0.122 | −0.165 | 0.587 | |
Puck | 0.5 | 0.627 | 0.371 | 0.318 | −0.087 | 0.625 |
0.3 | 0.631 | 0.394 | 0.329 | −0.067 | 0.627 | |
0.15 | 0.634 | 0.409 | 0.334 | −0.057 | 0.627 | |
0.01 | 0.636 | 0.421 | 0.338 | −0.053 | 0.628 | |
max stress | 0.674 | 0.538 | 0.405 | 0.052 | 0.644 | |
Tsai Hill | 0.600 | 0.361 | 0.242 | −0.133 | 0.585 | |
Hoffmann | 0.503 | 0.369 | 0.126 | −0.002 | 0.648 | |
Hashin | 0.636 | 0.422 | 0.347 | −0.042 | 0.628 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merhar, M. Application of Failure Criteria on Plywood under Bending. Polymers 2021, 13, 4449. https://doi.org/10.3390/polym13244449
Merhar M. Application of Failure Criteria on Plywood under Bending. Polymers. 2021; 13(24):4449. https://doi.org/10.3390/polym13244449
Chicago/Turabian StyleMerhar, Miran. 2021. "Application of Failure Criteria on Plywood under Bending" Polymers 13, no. 24: 4449. https://doi.org/10.3390/polym13244449
APA StyleMerhar, M. (2021). Application of Failure Criteria on Plywood under Bending. Polymers, 13(24), 4449. https://doi.org/10.3390/polym13244449