A Versatile Equilibrium Method for the Synthesis of High-Strength, Ladder-like Polyphenylsilsesquioxanes with Finely Tunable Molecular Parameters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Monomer Concentration Effect
2.3. Reaction Time Effect
2.4. Temperature Effect
2.5. Water Effect
2.6. Isolation and Study of L-PPSQ Structure
2.7. NMR and IR Spectroscopy
2.8. Powder X-ray Diffraction Analysis (PXRD)
2.9. Viscosity Measurements
3. Exploration of L-PPSQ Properties
3.1. Thermal Characteristics
3.2. Physical and Mechanical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baney, R.H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Silsesquioxanes. Chem. Rev. 1995, 95, 1409–1430. [Google Scholar] [CrossRef]
- Pankratova, L.N.; Bugaenko, L.T.; Revina, A.A. Effect of aromatic protectors on the radiolysis of polyorganosiloxanes. High. Energy Chem. 2000, 34, 16–22. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Wu, L. Preparation of poly(phenylsilsesquioxane) (PPSQ) particles with ladder structure and the thermal stability of PP/PPSQ composites. Polym. Adv. Technol. 2011, 22, 2151–2156. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Wu, L. Preparation of Nano Poly(phenylsilsesquioxane) Spheres(nano-PPSQ) and Study of the Thermal Stability and Crystallization Behavior of PP/Nano-PPSQ Composites. J. Appl. Polym. Sci. 2011, 121, 995–1003. [Google Scholar] [CrossRef]
- Tikhonov, N.A.; Pankratova, L.N.; Polyanina, D.A.; Kuteinikova, L.I. Effect of irradiation on thermal transitions in the siloxane block copolymer BCP 20: 5. High. Energy Chem. 2012, 46, 91–94. [Google Scholar] [CrossRef]
- Kang, D.W.; Kim, S.T.; Kim, Y.M. Preparation and Characteristics of Polyphenylsilsesquioxane-b-Polyurethane Copolymer as a Dielectric Material. J. Inorg. Organomet. Polym. 2003, 13, 157–170. [Google Scholar] [CrossRef]
- Chaikun, A.M.; Venediktova, M.A.; Bryk, Y.A. Development of the Compounding of Rubber Extremely High Heat Resistance with Temperature Range of Exploitation from the −60 to +500 °C. Proc. VIAM 2019, 1, 21–30. [Google Scholar] [CrossRef]
- Minas’yan, R.M.; Polivanov, A.N.; Minas’yan, O.I. Ways to Improving the Thermal Stability of Organosilicon Elastomeric Materials. Polym. Sci. Ser. D 2016, 9, 40–42. [Google Scholar] [CrossRef]
- Loh, T.C.; Ng, C.M.; Kumar, R.N.; Ismail, H.; Ahmad, Z. Improvement of Thermal Ageing and Transparency of Methacrylate Based Poly(Siloxane-Silsesquioxane) for Optoelectronic Application. J. Appl. Polym. Sci. 2017, 134, 45285. [Google Scholar] [CrossRef]
- Li, Z.; Kong, J.; Wang, F.; He, C. Polyhedral Oligomeric Silsesquioxanes (POSSs): An Important Building Block for Organic Optoelectronic Materials. J. Mater. Chem. C 2017, 5, 5283–5298. [Google Scholar] [CrossRef]
- Temnikov, M.N.; Muzafarov, A.M. Polyphenylsilsesquioxanes. New structures–new properties. RSC Adv. 2020, 10, 43129–43152. [Google Scholar] [CrossRef]
- Brown, J.F.; Vogt, L.H.; Katchman, A.; Eustance, J.W.; Kiser, K.M.; Krantz, K.W.; Vogt, L.H.; Katchman, A.; Eustance, J.W.; Kisser, K.M. Double chain polymers of phenylsilsesquioxane. J. Am. Chem. Soc. 1960, 82, 6194–6195. [Google Scholar] [CrossRef]
- Hedrick, J.L.; Hawker, C.J.; Miller, R.D.; Twieg, R.; Srinivasan, S.A.; Trollsås, M. Structure Control in Organic−Inorganic Hybrids Using Hyperbranched High-Temperature Polymers. Macromolecules 1997, 30, 7607–7610. [Google Scholar] [CrossRef]
- Gao, Q.; Qi, S.; Wu, Z.; Wu, D.; Yang, W. Synthesis and characterization of functional ladder-like polysilsesquioxane and their hybrid films with polyimide. Thin Solid Films 2011, 519, 6499–6507. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X.; Yang, R. Polycarbonate Composites Flame-Retarded by Polyphenylsilsesquioxane of Ladder Structure. J. Appl. Polym. Sci. 2012, 124, 4381–4388. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, G.; Wang, X.; Qi, S.; Wu, Z.; Wu, D. Polyimide/ladder-like polysilsesquioxane hybrid films: Mechanical performance, microstructure and phase separation behaviors. Compos. Part B Eng. 2014, 56, 808–814. [Google Scholar] [CrossRef]
- Awl, R.A.; Frankel, E.N.; Friedrich, J.P.; Swanson, C.L. Tricarbonylchromium-Complexed Phenylsiloxane Polymers as Stereoselective Hydrogenation Catalysts: Preparation and Properties. J. Polym. Sci. Part A Polym. Chem. 1980, 18, 2663–2676. [Google Scholar] [CrossRef]
- Jung, J.; Won, J.; Hwang, S.S. Highly selective composite membranes using ladder-like structured polysilsesquioxane for a non-aqueous redox flow battery. J. Memb. Sci. 2020, 595, 117520. [Google Scholar] [CrossRef]
- Unno, M.; Chang, S.; Matsumoto, H. Cis-trans-cis-Tetrabromotetramethylcyclotetrasiloxane: A Versatile Precursor of Ladder Silsesquioxanes. Chem. Soc. Jpn. 2005, 78, 1105–1109. [Google Scholar] [CrossRef]
- Andrianov, K.A.; Pavlova, S.A.; Tverdokhlebova, I.I.; Emelianov, V.N.; Larina, T.A.; Rabkina, A.Y. Sintez i Fiziko-Khimicheskiye Svoystva Polifenilsilseskvioksanov. Vysokomol. Soedin. Seriya A 1972, 14, 2246–2251. [Google Scholar]
- Tverdokhlebova, I.I.; Larina, T.A.; Rabkina, A.Y.; Mamayeva, I.I.; Zavin, B.G.; Pavlova, S.-S.A. Vliyaniye Strukturnykh Faktorov I Usloviy Sinteza Na Mekhanizm Obrazovaniya Polifenilsilseskvioksanov. Vysokomol. Soedin. Seriya B 1981, 23, 279–282. [Google Scholar]
- Zhang, Z.-X.; Hao, J.; Xie, P.; Zhang, X.; Han, C.C.; Zhang, R. A Well-Defined Ladder Polyphenylsilsesquioxane (Ph-LPSQ) Synthesized via a New Three-Step Approach: Monomer Self-Organization−Lyophilization—Surface-Confined Polycondensation. Chem. Mater. 2008, 20, 1322–1330. [Google Scholar] [CrossRef]
- Yang, X.; Cao, C.; Chen, Z.; Liu, J.; Luo, M.; Lai, G. Synthesis of ladder-like polyphenylsilsesquioxanes with fairly high regularity using 1,2-ethylenediamine as endo-template. Chin. J. Polym. Sci. 2015, 33, 1305–1312. [Google Scholar] [CrossRef]
- Yang, X.; Cao, C.; Chen, Z.; Liu, J.; Bassindale, A.R.; Lai, G. Preparation and characterization of a type of ladder-like poly(phenyl silsesquioxane) based hybrid star-shaped copolymer of ε-caprolactone. J. Appl. Polym. Sci. 2015, 132, 42335. [Google Scholar] [CrossRef]
- Choi, S.-S.; Lee, A.S.; Hwang, S.S.; Baek, K.-Y. Structural Control of Fully Condensed Polysilsesquioxanes: Ladderlike vs Cage Structured Polyphenylsilsesquioxanes. Macromolecules 2015, 48, 6063–6070. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, P.; Zhang, S.; Yan, T.; Xin, J.; Zhang, X. Ionic liquids and supercritical carbon dioxide: Green and alternative reaction media for chemical processes. Rev. Chem. Eng. 2016, 32, 587–609. [Google Scholar] [CrossRef]
- Ohashi, K. Supercritical fluids in analytical chemistry. Anal. Sci. 2006, 22, 1385. [Google Scholar]
- Pigaleva, M.A.; Elmanovich, I.V.; Temnikov, M.N.; Gallyamov, M.O.; Muzafarov, A.M. Organosilicon Compounds in Supercritical Carbon Dioxide: Synthesis, Polymerization, Modification, and Production of New Materials. Polym. Sci. Ser. B 2016, 58, 235–270. [Google Scholar] [CrossRef]
- Alekseev, E.S.; Alentiev, A.Y.; Belova, A.S.; Bogdan, V.I.; Bogdan, T.V.; Bystrova, A.V.; Gafarova, E.R.; Golubeva, E.N.; Grebenik, E.A.; Gromov, O.I.; et al. Supercritical fluids in chemistry. Russ. Chem. Rev. 2020, 89, 1337–1427. [Google Scholar] [CrossRef]
- Ershova, T.; Anisimov, A.; Krylov, F.; Polshchikova, N.; Temnikov, M.; Shchegolikhina, O.; Muzafarov, A. A new highly efficient method for the preparation of phenyl-containing siloxanes by condensation of phenylsilanols in liquid ammonia. Chem. Eng. Sci. 2022, 247, 116916. [Google Scholar] [CrossRef]
- Anisimov, A.A.; Polshchikova, N.V.; Vysochinskaya, Y.S.; Zader, P.A.; Nikiforova, G.G.; Peregudov, A.S.; Buzin, M.I.; Shchegolikhina, O.I.; Muzafarov, A.M. Condensation of all-cis-tetraphenylcyclotetrasiloxanetetraol in ammonia: New method for preparation of ladder-like polyphenylsilsesquioxanes. Mendeleev Commun. 2019, 29, 421–423. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Van Herle, J.; Maréchal, F.; Desideri, U. Techno-economic comparison of green ammonia production processes. Appl. Energy 2020, 259, 114135. [Google Scholar] [CrossRef]
- Samaroo, N.; Koylass, N.; Guo, M.; Ward, K. Achieving absolute sustainability across integrated industrial networks—A case study on the ammonia process. Green Chem. 2020, 22, 6547–6559. [Google Scholar] [CrossRef]
- Rafiqul, I.; Weber, C.; Lehmann, B.; Voss, A. Energy efficiency improvements in ammonia production—Perspectives and uncertainties. Energy 2005, 30, 2487–2504. [Google Scholar] [CrossRef]
- Desmoulins-Krawiec, S.; Aymonier, C.; Loppinet-Serani, A.; Weill, F.; Gorsse, S.; Etourneau, J.; Cansell, F. Synthesis of nanostructured materials in supercritical ammonia: Nitrides, metals and oxides. J. Mater. Chem. 2004, 14, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, H.J.; Chang, S. Synthetic uses of ammonia in transition-metal catalysis. Eur. J. Org. Chem. 2013, 3201–3213. [Google Scholar] [CrossRef]
- Brunner, G. Supercritical Fluids as Solvents and Reaction Media; Elsevier B.V.: Amsterdam, The Netherlands, 2004; pp. 39–60. [Google Scholar]
- Demortier, A.; Bard, A.J. Electrochemical Reactions of Organic Compounds in Liquid Ammonia. I. Reduction of Benzophenone. J. Am. Chem. Soc. 1973, 95, 3495–3500. [Google Scholar] [CrossRef]
- Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J.; Wu, A. Novel and Direct Transformation of Methyl Ketones or Carbinols to Primary Amides by Employing Aqueous Ammonia. Org. Lett. 2009, 11, 3810–3813. [Google Scholar] [CrossRef]
- Wrobel, A.M.; Uznanski, P. Hard silicon carbonitride thin-film coatings produced by remote hydrogen plasma chemical vapor deposition using aminosilane and silazane precursors. 1: Deposition mechanism, chemical structure, and surface morphology. Plasma Process. Polym. 2021, 18, 2000240. [Google Scholar] [CrossRef]
- Tverdokhlebova, I.I.; Larina, T.A. Vliyaniye usloviy sinteza na strukturu makromolekul polifenilsilseskvioksana. Russ. Chem. Rev. 1975, 44, 170–175. [Google Scholar] [CrossRef]
- Papkov, V.S.; Ilina, M.N.; Pertsova, N.V.; Makarova, N.N.; Zhdanov, A.A.; Andrianov, K.A.; Slonimskiy, G.L. Study of the polymerization of cagelike cyclic m-tolylsilsesquioxanes. Vysokomol. Soyedineniya Seriya A 1977, 19, 2551–2556. [Google Scholar]
- Mukbaniani, O.V.; Achelashvili, V.A.; Karchkhadze, M.G.; Tkeshelashvili, R.S.; Levin, V.Y.; Khananashvili, L.M. Ladder Polyphenyisilmanes with Single and Double Stranded Fragments in the Chain. Int. J. Polym. Mater. Polym. Biomater. 1992, 18, 129–141. [Google Scholar] [CrossRef]
- Kovář, J.; Mrkvičková-Vaculová, L.; Bohdanecký, M. A study of branching in polyphenylsilasesquioxane chains by hydrodynamic and light-scattering methods. Die Makromol. Chem. 1975, 176, 1829–1847. [Google Scholar] [CrossRef]
- Rabkina, A.Y.; Zavin, B.G.; Kuteinikova, L.I.; Dubovik, I.I.; Il’ina, M.N.; Gerasimov, M.V.; Papkov, V.S. Synthesis and investigation of polyphenyldimethylsiloxane block copolymers with bimodal chain length distribution of oligodimethylsiloxane blocks. Russ. Chem. Bull. 2000, 49, 1531–1535. [Google Scholar] [CrossRef]
- Bubnov, Y.N.; Kochetkov, K.A.A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences: 50 years. Chem. Heterocycl. Compd. 2004, 40, 1375–1379. [Google Scholar] [CrossRef]
- Nowacka, M.; Kowalewska, A.; Makowski, T. Structural studies on ladder phenylsilsesquioxane oligomers formed by polycondensation of cyclotetrasiloxanetetraols. Polymer 2016, 87, 81–89. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Shen, Z.; Xie, P.; Zhang, R.; Yang, J.; Bai, F. Study of the steric tacticity of novel soluble ladderlike poly(phenylsilsesquioxane) prepared by stepwise coupling polymerization. Macromol. Chem. Phys. 2001, 202, 1581–1585. [Google Scholar] [CrossRef]
- Fang, Z.; Li, D.; Qin, A.; Yu, T. Solution properties of polyphenylsilsesquioxane. J. Polym. Sci. 1987, 5, 332–339. [Google Scholar]
- Bushin, S.V.; Tsvetkov, V.N.; Lysenko, E.B.; Emelianov, V.N. Konformatsionnyye Svoystva I Zhestkost Molekul Lestnichnogo Polifenilsiloksana V Rastvorakh Po Dannym Sedimentatsiono-Diffuzionnogo Analiza I Viskozimetrii. Vysokomol. Soedin. Seriya A 1981, 23, 2494–2503. [Google Scholar]
- Andrianov, K.A.; Bushin, S.V.; Vitovskaya, M.G.; Yemel’yanov, V.N.; Lavrenko, P.N.; Makarova, N.N.; Muzafarov, A.M.; Nikolayev, V.Y.; Kolbina, G.F.; Shtennikova, I.N.; et al. Synthesis and conformational characteristics of some ladder polyphenylsiloxanes. Polym. Sci. USSR 1977, 19, 536–543. [Google Scholar] [CrossRef]
- Fina, A.; Tabuani, D.; Carniato, F.; Frache, A.; Boccaleri, E.; Camino, G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim. Acta 2006, 440, 36–42. [Google Scholar] [CrossRef]
- Brown, J.F. Double chain polymers and nonrandom crosslinking. J. Polym. Sci. Part C Polym. Symp. 1963, 1, 83–97. [Google Scholar] [CrossRef]
Experiment | Monomer Concentration, wt% | Temperature, °C | Reaction Time, h | Mn, kDa | Mw, kDa | Mp, kDa | Mw/Mn |
---|---|---|---|---|---|---|---|
1 | 2 | 30 | 4 | 4.6 | 9.1 | 6.1 | 1.9 |
2 | 10 | 30 | 4 | 5.1 | 11.1 | 6.8 | 2.2 |
3 | 20 | 30 | 4 | 4.2 | 8.1 | 5.1 | 1.9 |
4 | 60 | 30 | 4 | 3.8 | 7.1 | 4.0 | 1.9 |
5 | 20 | 30 | 4 | 4.2 | 8.1 | 5.1 | 1.9 |
6 | 20 | 30 | 8 | 5.1 | 10.4 | 6.3 | 2.0 |
7 | 20 | 30 | 13 | 5.8 | 12.7 | 7.8 | 2.2 |
8 | 20 | 30 | 24 | 6.4 | 14.5 | 8.5 | 2.3 |
9 | 20 | 30 | 168 | 6.3 | 14.9 | 8.7 | 2.4 |
10 | 20 | 30 | 4 | 4.0 | 7.6 | 5.1 | 1.9 |
11 | - | 30 | 4 | 8.2 | 18.2 | 10.6 | 2.2 |
12 | - | 30 | 4 | 9.4 | 22.1 | 12.0 | 2.4 |
13 | 20 | 30 | 4 | 7.8 | 15.5 | 9.4 | 1.9 |
14 | 20 | 50 | 4 | 14.4 | 34.1 | 14.7 | 2.4 |
15 | 20 | 100 | 4 | 60.1 | 144.1 | 95.3 | 2.4 |
16 | 20 | 150 | 4 | 189.9 | 477.9 | 461.7 | 2.5 |
17 | 20 | 200 | 4 | 145.5 | 461.6 | 361.6 | 3.2 |
18 | 20 | 300 | 4 | 13.0 | 95.2 | 56.4 | 7.3 |
Experiment | Monomer Concentration, wt% | H2O Concentration, mmol% | Temperature, °C | Reaction Time, h | HMWF [a] | Mw/Mn | LMWF [b] | Mw/Mn | ||
---|---|---|---|---|---|---|---|---|---|---|
Mn, kDa | Mw, kDa | Mn, kDa | Mw, kDa | |||||||
19 | 20 | 3 × 10−2 | 150 | 4 | 51.4 | 134.1 | 2.6 | 0.8 | 2.0 | 2.6 |
20 | 20 | 15 × 10−2 | 150 | 4 | 72.3 | 120.7 | 1.7 | 2.2 | 8.6 | 3.8 |
21 | 20 | 30 × 10−2 | 150 | 4 | 95.5 | 150.0 | 1.6 | 1.2 | 2.9 | 2.5 |
Experiment | Monomer Concentration, wt% | H2O Concentration, mmol% | Temperature, °C | Reaction Time, h | Mn, kDa | Mw, kDa | Mp, kDa | Mw/Mn |
---|---|---|---|---|---|---|---|---|
22 | 20 | - | 150 | 4 | 102.7 | 283.2 | 276.5 | 2.8 |
23 | - | 30 × 10−2 | 150 | 4 | 54.4 | 136.1 | 110.2 | 2.5 |
21 | 20 | 30 × 10−2 | 150 | 4 | 1.2 | 2.9 | 1.5 | 2.45 |
24 | - | - | 150 | 4 | 16.9 | 61.7 | 46.8 | 3.6 |
Experiment | Monomer Concentration, wt% | Temperature, °C | Reaction Time, h | Mp, kDa | Mw, kDa | Mn, kDa | Mw/Mn | Wt OH, %w | WnmrOH, %w | Wt/W nmr |
---|---|---|---|---|---|---|---|---|---|---|
25 | 20 | 30 | 4 | 14.2 | 22.4 | 12.3 | 1.8 | 0.550 | 0.62 | 1.1 |
26 | 20 | 100 | 4 | 116.6 | 161.9 | 67.2 | 2.4 | 0.100 | 0.14 | 1.4 |
27 | 20 | 150 | 4 | 558.4 | 549.2 | 196.8 | 2.4 | 0.035 | 0.07 | 1.9 |
Experiment | d1, nm | d2, nm |
---|---|---|
25 | 12.2 | 4.5 |
26 | 12.3 | 4.4 |
27 | 12.2 | 4.5 |
Experiment | Mw, kDa | Mn, kDa | Mη, kDa | [η], dL/g |
---|---|---|---|---|
25 | 22.4 | 12.3 | 15.6 | 0.1 |
26 | 161.9 | 67.2 | 73.3 | 0.4 |
27 | 549.2 | 196.8 | 442.5 | 2.2 |
Experiment | Td5%,°C Air | Mres, wt% Air | Td5%, °C Argon | Mres, wt% Argon |
---|---|---|---|---|
25 | 527 | 52 | 464 | 75 |
26 | 536 | 54 | 557 | 85 |
27 | 537 | 56 | 587 | 87 |
Experiment | E, MPa | σ p, MPa | εp, % |
---|---|---|---|
26 | 1300 | 21 | 2 |
27 | 1700 | 44 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershova, T.O.; Anisimov, A.A.; Temnikov, M.N.; Novikov, M.A.; Buzin, M.I.; Nikiforova, G.G.; Dyuzhikova, Y.S.; Ushakov, I.E.; Shchegolikhina, O.I.; Muzafarov, A.M. A Versatile Equilibrium Method for the Synthesis of High-Strength, Ladder-like Polyphenylsilsesquioxanes with Finely Tunable Molecular Parameters. Polymers 2021, 13, 4452. https://doi.org/10.3390/polym13244452
Ershova TO, Anisimov AA, Temnikov MN, Novikov MA, Buzin MI, Nikiforova GG, Dyuzhikova YS, Ushakov IE, Shchegolikhina OI, Muzafarov AM. A Versatile Equilibrium Method for the Synthesis of High-Strength, Ladder-like Polyphenylsilsesquioxanes with Finely Tunable Molecular Parameters. Polymers. 2021; 13(24):4452. https://doi.org/10.3390/polym13244452
Chicago/Turabian StyleErshova, Tatyana O., Anton A. Anisimov, Maxim N. Temnikov, Maxim A. Novikov, Mikhail I. Buzin, Galina G. Nikiforova, Yulia S. Dyuzhikova, Ivan E. Ushakov, Olga I. Shchegolikhina, and Aziz M. Muzafarov. 2021. "A Versatile Equilibrium Method for the Synthesis of High-Strength, Ladder-like Polyphenylsilsesquioxanes with Finely Tunable Molecular Parameters" Polymers 13, no. 24: 4452. https://doi.org/10.3390/polym13244452
APA StyleErshova, T. O., Anisimov, A. A., Temnikov, M. N., Novikov, M. A., Buzin, M. I., Nikiforova, G. G., Dyuzhikova, Y. S., Ushakov, I. E., Shchegolikhina, O. I., & Muzafarov, A. M. (2021). A Versatile Equilibrium Method for the Synthesis of High-Strength, Ladder-like Polyphenylsilsesquioxanes with Finely Tunable Molecular Parameters. Polymers, 13(24), 4452. https://doi.org/10.3390/polym13244452