Poly(ionic liquid) Based Composite Electrolytes for Lithium Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymerisation Equipment
2.3. Preparation of the PIL-Based Electrolyte Membranes
- -
- Preparation of a mixture with the IL-monomers and all additives
- -
- Application of the monomer slurry onto an electrode foil for cell tests or an aluminum foil for electrochemical impedance spectroscopy (EIS)
- -
- Polymerization of the monomers under UV radiation
2.4. Preparation of the Monomer Mixture
2.5. Processing of the Monomer Mixtures to Electrolyte Membranes
2.6. Measurements
3. Results and Discussion
3.1. Influence of Additional Ionic Liquid and Cross-Linker on the Membrane Properties
3.2. Investigation of EC/MPPyrr-TFSI Mixtures as Liquid Electrolyte
3.3. Polymerization on Electrode Foils
3.4. Cell Cycling
- NMC against metallic lithium; voltage range: 3.0–4.3 V
- LFP against LTO; voltage range: 1.0–2.5 V
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chombo, P.V.; Laoonual, Y. A review of safety strategies of a Li-ion battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar] [CrossRef] [Green Version]
- Ohno, H. Functional Design of Ionic Liquids. Bull. Chem. Soc. Jpn. 2006, 79, 1665–1680. [Google Scholar] [CrossRef]
- Ohno, H. Molten salt type polymer electrolytes. Electrochim. Acta 2001, 46, 1407–1411. [Google Scholar] [CrossRef]
- Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2009, 194, 601–609. [Google Scholar] [CrossRef]
- Ohno, H.; Ito, K. Room-Temperature Molten Salt Polymers as a Matrix for Fast Ion Conduction. Chem. Lett. 1998, 27, 751–752. [Google Scholar] [CrossRef]
- Löwe, R.; Hanemann, T.; Hofmann, A. Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes. Molecules 2019, 24, 324. [Google Scholar] [CrossRef] [Green Version]
- Löwe, R.; Hanemann, T.; Zinkevich, T.; Hofmann, A. Structure–Property Relationship of Polymerized Ionic Liquids for Solid-State Electrolyte Membranes. Polymers 2021, 13, 792. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Shaplov, A.; Marcilla, R.; Mecerreyes, D. Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s. Electrochim. Acta 2015, 175, 18–34. [Google Scholar] [CrossRef]
- Tian, X.; Yang, P.; Yi, Y.; Liu, P.; Wang, T.; Shu, C.; Qu, L.; Tang, W.; Zhang, Y.; Li, M.; et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries. J. Power Sources 2020, 450, 227629. [Google Scholar] [CrossRef]
- Lombardo, L.; Brutti, S.; Navarra, M.A.; Panero, S.; Reale, P. Mixtures of ionic liquid—Alkylcarbonates as electrolytes for safe lithium-ion batteries. J. Power Sources 2013, 227, 8–14. [Google Scholar] [CrossRef]
- Hofmann, A.; Schulz, M.; Hanemann, T. Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim. Acta 2013, 89, 823–831. [Google Scholar] [CrossRef]
- Appetecchi, G.; Passerini, S. PEO-carbon composite lithium polymer electrolyte. Electrochim. Acta 2000, 45, 2139–2145. [Google Scholar] [CrossRef]
- Przyluski, J. Increasing the conductivity of polymer solid electrolytes: A review. Solid State Ion. 1989, 36, 165–169. [Google Scholar] [CrossRef]
- Wieczorek, W. Modifications of crystalline structure of peo polymer electrolytes with ceramic additives. Solid State Ion. 1989, 36, 255–257. [Google Scholar] [CrossRef]
- Capuano, F.; Croce, F.; Scrosati, B. Composite Polymer Electrolytes. J. Electrochem. Soc. 1991, 138, 1918–1922. [Google Scholar] [CrossRef]
- Borghini, M.C.; Mastragostino, M.; Passerini, S.; Scrosati, B. Electrochemical Properties of Polyethylene Oxide—Li[(CF3SO2)2N]-Gamma-LiAlO2 Composite Polymer Electrolytes. J. Electrochem. Soc. 1995, 142, 2118–2121. [Google Scholar] [CrossRef]
- Miao, R.; Liu, B.; Zhu, Z.; Liu, Y.; Li, J.; Wang, X.; Li, Q. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J. Power Sources 2008, 184, 420–426. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nat. Cell Biol. 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Lin, C.; Hung, C.; Venkateswarlu, M.; Hwang, B. Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J. Power Sources 2005, 146, 397–401. [Google Scholar] [CrossRef]
- Meng, N.; Zhu, X.; Lian, F. Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology 2021, 60, 14–36. [Google Scholar] [CrossRef]
- Lee, T.K.; Andersson, R.; Dzulkurnain, N.A.; Hernández, G.; Mindemark, J.; Brandell, D. Polyester-ZrO 2 Nanocomposite Electrolytes with High Li Transference Numbers for Ambient Temperature All-Solid-State Lithium Batteries. Batter. Supercaps 2021, 4, 653–662. [Google Scholar] [CrossRef]
- Wang, Z. Untersuchungen von Nanomaterialien als Elektrolytbestandteil für den Einsatz in Lithium-Ionen-Zellen. Master’s Thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2016. [Google Scholar]
- Ohno, H. Design of Ion Conductive Polymers Based on Ionic Liquids. Macromol. Symp. 2007, 249–250, 551–556. [Google Scholar] [CrossRef]
- Nakajima, H.; Ohno, H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymers 2005, 46, 11499–11504. [Google Scholar] [CrossRef]
- Washiro, S.; Yoshizawa-Fujita, M.; Nakajima, H.; Ohno, H. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymers 2004, 45, 1577–1582. [Google Scholar] [CrossRef]
- Bulut, S.; Eiden, P.; Beichel, W.; Slattery, J.M.; Beyersdorff, T.F.; Schubert, T.J.S.; Krossing, I. Temperature Dependence of the Viscosity and Conductivity of Mildly Functionalized and Non-Functionalized [Tf2N]−Ionic Liquids. ChemPhysChem 2011, 12, 2296–2310. [Google Scholar] [CrossRef]
- Koltzenburg, S.; Maskos, M.; Nuyken, O. Polymere: Synthese, Eigenschaften und Anwen-Dungen; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-34772-6. [Google Scholar]
- Kleiner, K.; Ehrenberg, H. Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems. Top. Curr. Chem. 2017, 375, 6709. [Google Scholar] [CrossRef]
- Korthauer, R. Lithium-Ion Batteries: Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-662-53069-6. [Google Scholar]
- An, S.J.; Li, J.; Du, Z.; Daniel, C.; Wood, D. Fast formation cycling for lithium ion batteries. J. Power Sources 2017, 342, 846–852. [Google Scholar] [CrossRef]
- Jow, T.R.; Xu, K.; Borodin, O.; Ue, M. (Eds.) Electrolytes for Lithium and Lithium-Ion Batteries; Springer: New York, NY, USA, 2014; ISBN 9781493903016. [Google Scholar]
- Zhang, J.; Yang, J.; Yang, L.; Lu, H.; Liu, H.; Zheng, B. Exploring the redox decomposition of ethylene carbonate–propylene carbonate in Li-ion batteries. Mater. Adv. 2021, 2, 1747–1751. [Google Scholar] [CrossRef]
- Xing, L.; Zheng, X.; Schroeder, M.; Alvarado, J.; Cresce, A.V.W.; Xu, K.; Li, Q.; Li, W. Deciphering the Ethylene Carbonate–Propylene Carbonate Mystery in Li-Ion Batteries. Acc. Chem. Res. 2018, 51, 282–289. [Google Scholar] [CrossRef]
- Pistoia, G.; De Rossi, M.; Scrosati, B. Study of the Behavior of Ethylene Carbonate as a Nonaqueous Battery Solvent. J. Electrochem. Soc. 1970, 117, 500–502. [Google Scholar] [CrossRef]
- Betz, J.; Bieker, G.; Meister, P.; Placke, T.; Winter, M.; Schmuch, R. Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Adv. Energy Mater. 2019, 9, 1803170. [Google Scholar] [CrossRef]
PIL: P[C2NA,22]TFSI | ||||
---|---|---|---|---|
Liquid Electrolyte: | LiTFSI Content: | |||
45 wt% MPPyrr-TFSI | 20 mol% | |||
Sample | bis-TMPTA | σ [S·cm−1] at 25 °C | σ [S·cm−1] at 60 °C | Tg [°C] |
PIL_6_1 | 0.0 mol% | 1.1·10−4 | 5.7·10−4 | −52 |
PIL_6_5 | 2.5 mol% | 8.7·10−5 | 6.5·10−4 | −58 |
PIL_6_3 | 5.0 mol% | 6.3·10−5 | 3.7·10−4 | −59 |
PIL_6_2 | 10.0 mol% | 6.7·10−5 | 3.8·10−4 | −59 |
PIL: P[C8NA,22]TFSI | ||||
Liquid electrolyte: | LiTFSI content: | |||
45 wt% MPPyrr-TFSI | 20 mol% | |||
Sample | bis-TMPTA | σ [S·cm−1] at 25 °C | σ [S·cm−1] at 60 °C | Tg [°C] |
- | 0.0 mol% | - | - | - |
PIL_6_7 | 2.5 mol% | 1.3·10−4 | 7.2·10−4 | −61 |
PIL_6_8 | 5.0 mol% | 1.2·10−4 | 6.9·10−4 | −70 |
PIL_6_9 | 10.0 mol% | 9.6·10−5 | 5.4·10−4 | −66 |
Sample | PIL | Ratio MPPyrr-TFSI:EC | Amount MPPyrr- TFSI (wt %) | Amount EC (wt %) | Tg (°C) | σ at 25 °C (S·cm−1) | σ at 60 °C (S·cm−1) | 7Li-D298K (m2·s−1) |
---|---|---|---|---|---|---|---|---|
PIL_6_5 | P[C2NA,22]TFSI | 100:0 | 45 | 0 | −58 | 8.7·10−5 | 6.5·10−4 | 2.6·10−13 |
PIL_7_1 | P[C8NA,22]TFSI | 100:0 | 45 | 0 | −61 | 1.3·10−4 | 7.7·10−4 | 5.0·10−13 |
PIL_7_2 | P[C8NA,22]TFSI | 75:25 | 33.75 | 11.25 | −57 | 1.3·10−4 | 6.7·10−4 | 2.3·10−12 2.4·10−11 |
PIL_7_4 | P[C8NA,22]TFSI | 50:50 | 22,5 | 22.5 | −60 | 1.7·10−4 | 7.9·10−4 | 2.1·10−12 4.7·10−11 |
PIL_7_5 | P[C8NA,22]TFSI | 25:75 | 11.25 | 33.75 | 5 * | 1.3·10−6 | 2.9·10−5 | 9.8·10−12 1.8·10−10 |
PIL_7_6 | P[C8NA,22]TFSI | 0:100 | 45 | 0 | 19 * | 5.8·10−9 | 7.5·10−7 | 9.9·10−12 1.7·10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Löwe, R.; Hanemann, T.; Zinkevich, T.; Hofmann, A. Poly(ionic liquid) Based Composite Electrolytes for Lithium Ion Batteries. Polymers 2021, 13, 4469. https://doi.org/10.3390/polym13244469
Löwe R, Hanemann T, Zinkevich T, Hofmann A. Poly(ionic liquid) Based Composite Electrolytes for Lithium Ion Batteries. Polymers. 2021; 13(24):4469. https://doi.org/10.3390/polym13244469
Chicago/Turabian StyleLöwe, Robert, Thomas Hanemann, Tatiana Zinkevich, and Andreas Hofmann. 2021. "Poly(ionic liquid) Based Composite Electrolytes for Lithium Ion Batteries" Polymers 13, no. 24: 4469. https://doi.org/10.3390/polym13244469
APA StyleLöwe, R., Hanemann, T., Zinkevich, T., & Hofmann, A. (2021). Poly(ionic liquid) Based Composite Electrolytes for Lithium Ion Batteries. Polymers, 13(24), 4469. https://doi.org/10.3390/polym13244469