Effect of Nanoclay Particles on the Performance of High-Density Polyethylene-Modified Asphalt Concrete Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Binder
2.1.2. Aggregate
2.1.3. Additives
2.2. Methods
2.2.1. NC Particles Characterization
2.2.2. Sample Preparation
2.2.3. Mixture Design and Preparation
2.2.4. Binder Evaluation Tests
- Physical characteristics of binders:
- Storage stability of binders:
- Chemical change investigation of binders:
- Microstructural investigation of binders:
2.2.5. Mixture Evaluation Tests
- Stiffness of mixtures:
- Moisture susceptibility of mixtures:
- Stripping susceptibility of mixtures:
- Rutting resistance of mixtures:
3. Experimental Results and Discussions
3.1. Binder Evaluation Results
3.1.1. Physical Characteristics
3.1.2. Storage Stability Results
3.1.3. Fourier Transform Infrared Spectroscopy (FTIR) Results
3.1.4. Scanning Electron Microscope (SEM) Results
3.2. Mixture Evaluation Results
3.2.1. Stiffness Results
3.2.2. Moisture Damage Resistance Results
3.2.3. Stripping Susceptibility Results
3.2.4. Rutting Resistance Results
3.3. Statistical Analysis of the Experimental Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar]
- Bala, N.; Kamaruddin, I. Physical and storage stability properties of linear low density polyethylene at optimum content. In Proceedings of the 3rd International Conference on Civil, Offshore and Environmental Engineering, ICCOEE 2016, Kuala Lumpur, Malaysia, 15–17 August 2016; p. 395. [Google Scholar]
- Jiang, Z.; Hu, C.; Easa, S.M.; Zheng, X.; Zhang, Y. Evaluation of physical, rheological, and structural properties of vulcanized EVA/SBS modified bitumen. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Sengoz, B.; Isikyakar, G. Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Constr. Build. Mater. 2008, 22, 1897–1905. [Google Scholar]
- Yusoff, N.I.M.; Mounier, D.; Marc-Stéphane, G.; Hainin, M.R.; Airey, G.D.; Di Benedetto, H. Modelling the rheological properties of bituminous binders using the 2S2P1D Model. Constr. Build. Mater. 2013, 38, 395–406. [Google Scholar]
- Rooholamini, H.; Imaninasab, R.; Vamegh, M. Experimental analysis of the influence of SBS/nanoclay addition on asphalt fatigue and thermal performance. Int. J. Pavem. Eng. 2019, 20, 628–637. [Google Scholar]
- Bala, N.; Napiah, M.; Kamaruddin, I. Effect of nanosilica particles on polypropylene polymer modified asphalt mixture performance. Case Stud. Constr. Mater. 2018, 8, 447–454. [Google Scholar]
- Moghadas Nejad, F.; Zarroodi, R.; Naderi, K. Effect of cross-linkers on the performance of polyethylene-modified asphalt binders. Proc. Institut. Civil Eng. Constr. Mater. 2017, 170, 186–193. [Google Scholar]
- Ameri, M.; Vamegh, M.; Rooholamini, H.; Haddadi, F. Investigating effects of nano/SBR polymer on rutting performance of binder and asphalt mixture. Adv. Mater. Sci. Eng. 2018, 2018, 5891963. [Google Scholar]
- Yao, H.; You, Z.; Li, L.; Lee, C.H.; Wingard, D.; Yap, Y.K.; Shi, X.; Goh, S.W. Rheological properties and chemical bonding of asphalt modified with nanosilica. J. Mater. Civil Eng. 2013, 25, 1619–1630. [Google Scholar]
- Singh, L.; Karade, S.; Bhattacharyya, S.; Yousuf, M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials—A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar]
- Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials—A review. Constr. Build. Mater. 2017, 143, 633–648. [Google Scholar]
- Abed, A.H.; Bahia, H.U. Enhancement of permanent deformation resistance of modified asphalt concrete mixtures with nano-high density polyethylene. Constr. Build. Mater. 2020, 236, 117604. [Google Scholar]
- Sun, L.; Xin, X.; Ren, J. Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Constr. Build. Mater. 2017, 133, 358–366. [Google Scholar]
- Zhang, W.; Jia, Z.; Zhang, Y.; Hu, K.; Ding, L.; Wang, F. The effect of direct-to-plant styrene-butadiene-styrene block copolymer components on bitumen modification. Polymers 2019, 11, 140. [Google Scholar]
- Fang, C.; Yu, R.; Liu, S.; Li, Y. Nanomaterials applied in asphalt modification: A review. J. Mater. Sci. Technol. 2013, 29, 589–594. [Google Scholar]
- Polacco, G.; Kříž, P.; Filippi, S.; Stastna, J.; Biondi, D.; Zanzotto, L. Rheological properties of asphalt/SBS/clay blends. Eur. Polym. J. 2008, 44, 3512–3521. [Google Scholar]
- Khodary, F. Longer fatigue life for asphalt pavement using (SBS@ clay) nanocomposite. Int. J. Curr. Eng. Technol. 2015, 5, 949–954. [Google Scholar]
- Arabani, M.; Haghi, A.; Tanzadeh, R. Laboratory evaluation of nano clay composite effects on mechanical properties of aged asphalt mixture. Polym. Res. J. 2014, 8, 263. [Google Scholar]
- Merusi, F.; Giuliani, F.; Polacco, G. Linear viscoelastic behaviour of asphalt binders modified with polymer/clay nanocomposites. Proc. Soc. Behav. Sci. 2012, 53, 335–345. [Google Scholar]
- Golestani, B.; Nam, B.H.; Nejad, F.M.; Fallah, S. Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Constr. Build. Mater. 2015, 91, 32–38. [Google Scholar]
- Leng, Z.; Tan, Z.; Yu, H.; Guo, J. Improvement of storage stability of SBS-modified asphalt with nanoclay using a new mixing method. Road Mater. Pavem. Design 2019, 20, 1601–1614. [Google Scholar]
- Mousavinezhad, S.; Shafabakhsh, G.; Ani, O.J. Nano-clay and styrene-butadiene-styrene modified bitumen for improvement of rutting performance in asphalt mixtures containing steel slag aggregates. Constr. Build. Mater. 2019, 226, 793–801. [Google Scholar]
- Ameli, A.; Babagoli, R.; Khabooshani, M.; AliAsgari, R.; Jalali, F. Permanent deformation performance of binders and stone mastic asphalt mixtures modified by SBS/montmorillonite nanocomposite. Constr. Build. Mater. 2020, 239, 117700. [Google Scholar]
- Galooyak, S.S.; Dabir, B.; Nazarbeygi, A.E.; Moeini, A. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites. Constr. Build. Mater. 2010, 24, 300–307. [Google Scholar]
- Galooyak, S.S.; Dabir, B.; Nazarbeygi, A.; Moeini, A.; Berahman, B. The effect of nanoclay on rheological properties and storage stability of SBS-modified bitumen. Petrol. Sci. Technol. 2011, 29, 850–859. [Google Scholar]
- Liu, S.; Zhou, S.B.; Xu, Y. Evaluation of cracking properties of SBS-modified binders containing organic montmorillonite. Constr. Build. Mater. 2018, 175, 196–205. [Google Scholar]
- Ren, Z.; Zhu, Y.; Wu, Q.; Zhu, M.; Guo, F.; Yu, H.; Yu, J. Enhanced storage stability of different polymer modified asphalt binders through nano-montmorillonite modification. Nanomaterials 2020, 10, 641. [Google Scholar]
- Amini, B.; Rajabbolookat, M.J.; Abdi, A.; Salehfard, R. Investigating the influence of using nano-composites on storage stability of modified bitumen and moisture damage of HMA. Petrol. Sci. Technol. 2017, 35, 800–805. [Google Scholar]
- Zapién-Castillo, S.; Rivera-Armenta, J.L.; Chávez-Cinco, M.Y.; Salazar-Cruz, B.A.; Mendoza-Martínez, A.M. Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite. Constr. Build. Mater. 2016, 106, 349–356. [Google Scholar]
- Azarhoosh, A.; Koohmishi, M. Investigation of the rutting potential of asphalt binder and mixture modified by styrene-ethylene/propylene-styrene nanocomposite. Constr. Build. Mater. 2020, 255, 119363. [Google Scholar]
- Siddig, E.A.; Feng, C.P.; Ming, L.Y. Effects of ethylene vinyl acetate and nanoclay additions on high-temperature performance of asphalt binders. Constr. Build. Mater. 2018, 169, 276–282. [Google Scholar]
- Ghaempour, A.; Tavakoli, A.; Aghjeh, M.R.; Roodbari, M.M. Morphology, Microstructure and Physico-Mechanical Properties of Pasargad Bitumen, Modified by Ethylene-Vinyl Acetate Copolymer (EVA) and Nanoclay. J. Polym. Sci. Tech. 2015, 28, 290–299. [Google Scholar]
- Yusoff, N.I.M.; Breem, A.A.S.; Alattug, H.N.; Hamim, A.; Ahmad, J. The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Constr. Build. Mater. 2014, 72, 139–147. [Google Scholar]
- Ghasemi, M.; Marandi, S.M.; Tahmooresi, M.; Kamali, J.; Taherzade, R. Modification of stone matrix asphalt with nano-SiO2. J. Basic Appl. Sci. Res. 2012, 2, 1338–1344. [Google Scholar]
- Goli, A.; Ziari, H.; Amini, A. Influence of carbon nanotubes on performance properties and storage stability of SBS modified asphalt binders. J. Mater. Civil Eng. 2017, 29, 04017070. [Google Scholar]
- Shafabakhsh, G.; Aliakbari Bidokhti, M.; Divandari, H. Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature. Road Mater. Pavem. Design 2020, 1–15. [Google Scholar] [CrossRef]
- Ghanoon, S.A.; Tanzadeh, J.; Mirsepahi, M. Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder. Constr. Build. Mater. 2020, 238, 117592. [Google Scholar]
- Mirsepahi, M.; Tanzadeh, J.; Ghanoon, S.A. Laboratory evaluation of dynamic performance and viscosity improvement in modified bitumen by combining nanomaterials and polymer. Constr. Build. Mater. 2020, 233, 117183. [Google Scholar]
- Mansourian, A.; Goahri, A.R.; Khosrowshahi, F.K. Performance evaluation of asphalt binder modified with EVA/HDPE/nanoclay based on linear and non-linear viscoelastic behaviors. Constr. Build. Mater. 2019, 208, 554–563. [Google Scholar]
- Golestani, B.; Nejad, F.M.; Galooyak, S.S. Performance evaluation of linear and nonlinear nanocomposite modified asphalts. Constr. Build. Mater. 2012, 35, 197–203. [Google Scholar]
- Jamshidi, A.; Hasan, M.R.M.; Yao, H.; You, Z.; Hamzah, M.O. Characterization of the rate of change of rheological properties of nano-modified asphalt. Constr. Build. Mater. 2015, 98, 437–446. [Google Scholar]
- Zhai, R.; Ge, L.; Li, Y. The effect of nano-CaCO3/styrene–butadiene rubber (SBR) on fundamental characteristic of hot mix asphalt. Road Mater. Pavem. Design 2020, 21, 1006–1026. [Google Scholar]
- Shafabakhsh, G.; Rajabi, M. The fatigue behavior of SBS/nanosilica composite modified asphalt binder and mixture. Constr. Build. Mater. 2019, 229, 116796. [Google Scholar]
- Cheng, Y.; Han, H.; Fang, C.; Li, H.; Huang, Z.; Su, J. Preparation and properties of nano-CaCO3/waste polyethylene/styrene-butadiene-styrene block polymer-modified asphalt. Polym. Compos. 2020, 41, 614–623. [Google Scholar]
- Moussa, G.; Abdel-Raheem, A.; Abdel-Wahed, T. Investigating the moisture susceptibility of asphalt mixtures modified with high-density polyethylene. JES J. Eng. Sci. 2020, 48, 765–782. [Google Scholar]
- Housing and Building National Research Center. Egyptian Code of Practice for Urban and Rural Roads—Part 4. Road Material and Its Tests; Housing and Building National Research Center: Cairo, Egypt, 2018. [Google Scholar]
- Read, J.; Whiteoak, D. The Shell Bitumen Handbook; Thomas Telford: London, UK, 2003. [Google Scholar]
- Saboo, N.; Kumar, P. Optimum blending requirements for EVA modified binder. Transp. Res. Proc. 2016, 17, 98–106. [Google Scholar]
- Hossain, Z.; Zaman, M.; Saha, M.C.; Hawa, T. Evaluation of viscosity and rutting properties of nanoclay-modified asphalt binders. In Proceedings of the Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, Atlanta, GA, USA, 23–26 February 2014; pp. 3695–3702. [Google Scholar]
- Wang, P.; Zhai, F.; Dong, Z.-J.; Wang, L.-Z.; Liao, J.-P.; Li, G.-R. Micromorphology of asphalt modified by polymer and carbon nanotubes through molecular dynamics simulation and experiments: Role of strengthened interfacial interactions. Energy Fuels 2018, 32, 1179–1187. [Google Scholar]
- Enieb, M.; Diab, A. Characteristics of asphalt binder and mixture containing nanosilica. Int. J. Pavem. Res. Technol. 2017, 10, 148–157. [Google Scholar]
- Panda, M.; Mazumdar, M. Engineering properties of EVA-modified bitumen binder for paving mixes. J. Mater. Civil Eng. 1999, 11, 131–137. [Google Scholar]
- Tapkin, S. Improved asphalt aggregate mix properties by portland cement modification. In Proceedings of the Papers Submitted for Review at 2nd Eurasphalt and Eurobitume Congress, Barcelona, Spain, 20–22 September 2000. Book 2, Session 2. [Google Scholar]
- Tapkın, S.; Çevik, A.; Uşar, Ü. Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks. Expert Syst. Appl. 2010, 37, 4660–4670. [Google Scholar]
- Aksoy, A.; Iskender, E.; Kahraman, H.T. Application of the intuitive k-NN Estimator for prediction of the Marshall Test (ASTM D1559) results for asphalt mixtures. Constr. Build. Mater. 2012, 34, 561–569. [Google Scholar]
- Omar, H.A.; Yusoff, N.I.M.; Mubaraki, M.; Ceylan, H. Effects of moisture damage on asphalt mixtures. J. Traffic Trans. Eng. 2020, 7, 600–628. [Google Scholar]
- Jimenez, R. Testing for Debonding of Asphalt from Aggregates; Arizona Highway Department: Phoenix, AZ, USA, 1973. [Google Scholar]
- Wen, H.; Bhusal, S.; Li, X. Double punch test: Simple performance test to evaluate the fatigue and rutting potential of asphalt concrete. J. Mater. Civil Eng. 2013, 25, 645–652. [Google Scholar]
- Hamzah, M.O.; Jaya, R.P.; Prasetijo, J.; Azizi, K. Effects of temperature and binder type on the dynamic creep of asphaltic concrete incorporating geometrically cubical aggregates subjected to ageing. Modern Appl. Sci. 2009, 3, 3–14. [Google Scholar]
- Al-Omari, A.A.; Khasawneh, M.A.; Al-Rousan, T.M.; Al-Theeb, S.F. Static creep of modified superpave asphalt concrete mixtures using crumb tire rubber, microcrystalline synthetic wax, and nano-silica. Int. J. Pavem. Eng. 2019, 1–12. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Soltani, M.; Karim, M.R. Experimental characterization of rutting performance of polyethylene tereph-thalate modified asphalt mixtures under static and dynamic loads. Constr. Build. Mater. 2014, 65, 487–494. [Google Scholar]
- Larsen, D.O.; Alessandrini, J.L.; Bosch, A.; Cortizo, M.S. Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing. Constr. Build. Mater. 2009, 23, 2769–2774. [Google Scholar]
- Yao, H.; Dai, Q.; You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087. [Google Scholar]
- Yao, H.; You, Z.; Li, L.; Goh, S.W.; Lee, C.H.; Yap, Y.K.; Shi, X. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Constr. Build. Mater. 2013, 38, 327–337. [Google Scholar]
- Hınıslıoğlu, S.; Ağar, E. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Mater. Lett. 2004, 58, 267–271. [Google Scholar]
- Likitlersuang, S.; Chompoorat, T. Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures. Int. J. Pavem. Res. Technol. 2016, 9, 337–344. [Google Scholar]
- Walubita, L.F.; Faruk, A.N.; Fuentes, L.; Prakoso, A.; Dessouky, S.; Naik, B.; Nyamuhokya, T. Using the Simple Punching Shear Test (SPST) for evaluating the HMA shear properties and predicting field rutting performance. Constr. Build. Mater. 2019, 224, 920–929. [Google Scholar]
- Tam, W.O.; Solaimanian, M.; Kennedy, T.W. Development and use of static creep test to evaluate rut resistance of superpave mixes. Work 2000, 1250, 1–84. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar]
- Dunn, O.J. Multiple comparisons among means. J. Am. Stat. Assoc. 1961, 56, 52–64. [Google Scholar]
- GraphPad. Prism Version 9.0.0 for Windows; GraphPad Software: San Diego, CA, USA, 2020; Available online: https://www.graphpad.com/scientific-software/prism/ (accessed on 20 January 2021).
Nanomaterial Content (%) | Polymer Content (%) | Binder Type | Binder/AC Mixture Performance | Ref. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | S | V | D | ST | MS | ITS | TSR | R | SM | F | Mr | TS | ||||
(0–3.25%) OMMT | 5% SBS | 85/100 | ↘ | ↗ | ↗ | ↗ | ↗ | ↗ | ↘ | [25] | ||||||
(0–2%) SiO2 | 5% SBS | 60/70 | ↘ | ↗ | → | ↗ | ↗ | ↗ | ↗ | [35] | ||||||
(0–4%) NS | (5–7%) SBS | PG-76 | ↗ | ↗ | [5] | |||||||||||
1.5% (SBS/OMMT = 100/25) | PG 58-10 | ↘ | ↗ | ↑ | ↘ | ↗ | ↗ | ↗ | ↗ | ↗ | ↘ | [21] | ||||
(3–6%) (SEBS/MMNC = 100/10) | AC-20 | ↘ | ↗ | ↗ | ↗ | [30] | ||||||||||
(2–6%) (6/4, 7/3 SBR/NC) | 60/70 | ↗ | ↗ | ↗ | [29] | |||||||||||
(2–6%) NC | (2–6%) SBS | 60/70 | ↑ | ↗ | ↑ | ↓ | [6] | |||||||||
(0–1%) SiO2 | (3–5%) SBR + (1–3%) PE | AH-70 | ↗ | ↑ | ↘ | ↗ | [14] | |||||||||
(0–3%) CNT | 6% SBS | PG 58-16 | ↗ | ↗ | [36] | |||||||||||
3% OMMT | (1–5%) SBS | PG 64-22 | ↗ | → | [27] | |||||||||||
(1–4%) NS | 4% PP | 80/100 | ↗ | ↗ | ↗ | [7] | ||||||||||
(1–7%) NC | (1–7%) EVA | AH-70 | ↓ | ↗ | ↑ | ↗ | ↘ | [32] | ||||||||
(3–7%) CaCO3 | 4% SBR | 60/80 | ↗ | → | ↗ | [43] | ||||||||||
(0.5–2%) (NC/HDPE/EVA = 5/10/85) | PG 64-22 | ↘ | ↗ | ↗ | ↗ | [40] | ||||||||||
(0.5–5%) NC | (1–10%) SBS | 60/70 | ↘ | ↗ | ↗ | ↘ | ↗ | ↗ | ↘ | [23] | ||||||
(4–8%) NS | 5% SBS | 60/70 | ↘ | ↗ | ↑ | [44] | ||||||||||
(0–3%) Nano-CaCO3 | (2–10%) (WPE/SBS = 40/60) | 10.1 dmm | ↘ | → | ↘ | → | [45] | |||||||||
2%NC | 4% SBS | 60/70 | ↘ | → | ↗ | ↗ | → | → | [22] | |||||||
(2–6%) (SEPS/OMMT = 100/25) | 60/70 | ↘ | ↗ | ↑ | ↗ | ↗ | ↘ | [21] | ||||||||
(4–6%) NC + (4–6%) Nano Lime | 3% SBS | PG 64-22 | ↗ | ↗ | ↘ | [38] | ||||||||||
(0–6%) NC + (0–6%) NanoLime | 3% SBS | PG 64-22 | ↗ | ↑ | [39] | |||||||||||
(0.6–3%) Nano-Al2O3 | (3–5%) SBS | 60/70 | ↗ | ↗ | ↗ | [37] | ||||||||||
3% MMT | 6% SBS or 7% SBR | 60/70 | ↘ | ↗ | ↗ | ↗ | → | → | [28] | |||||||
(0–5%) MMT | 5% SBS | 60/70 | ↘ | ↗ | ↗ | ↘ | ↗ | ↗ | ↗ | ↘ | [24] |
Test | Standard | Value |
---|---|---|
Penetration (100 g, 25 °C, 5 s), dmm | ASTM D5 | 62 |
Ductility (25 °C, 5 cm/min), cm | ASTM D113 | 100 |
Softening Point, °C | ASTM D36 | 45.4 |
Rotational viscosity at 135 °C, C.st | ASTM D 2170 | 376 |
Flash point, °C | ASTM D92 | 250 |
Density at 15 °C, g/cm3 | ASTM D70 | 1.01 |
Penetration index (PI) | −1.95 |
Property | Standard | Value |
---|---|---|
Density, g/cm³ | ASTM D4883 | 0.956 |
Melt Index (190 °C/2.16 kg), g/10 min | ASTM D1238 | 20 |
Peak Melting Temperature, °C | ASTM D3418 | 130 |
Tensile Stress at Yield, MPa | ISO 527-2/1A/50 | 23 |
Tensile Strain at Yield, % | ISO 527-2/1A/50 | 10 |
Tensile Strain at Break, % | ISO 527-2/1A/50 | >100 |
Flexural Modulus, MPa | ISO 178 | 920 |
Notched Izod Impact Strength, kJ/m² | ISO 180/1A | 4.3 |
Property | Value |
---|---|
Physical state | Powder |
Colour | White |
Shape | Spherical |
Size, nm | <40 |
Compound name | Aluminium Silicate Hydroxide |
Chemical formula | Al2Si2O5(OH)4 |
Purity, % | >99 |
Specific gravity, g/cm³ | 2.6 |
Molecular Weight, g/mole | 258.2 |
Melting Point, °C | >1500 |
Marshall Parameter | Value | Specification 1 | |
---|---|---|---|
Min. | Max. | ||
Bulk density, t/m3 | 2.35 | - | - |
Stability, kg | 979.5 | 900 | - |
Flow, mm | 3.83 | 2 | 4 |
Air voids (AV), % | 4.32 | 3 | 5 |
Voids in mineral aggregates (VMA), % | 15.83 | 13 | - |
Voids filled with binder (VFB), % | 72.7 | 70 | - |
Optimum asphalt content (OAC), % | 5 | - | - |
Binder | Penetration (dmm) | Softening Point (°C) | Penetration Index | Rotational Viscosity at 135 °C (C.st) |
---|---|---|---|---|
Base | 62.0 | 45.4 | − 1.95 | 376.0 |
P | 38.7 | 60.0 | 0.41 | 1966.7 |
PC1 | 36.0 | 62.0 | 0.63 | 2239.3 |
PC2 | 30.0 | 65.0 | 0.78 | 2478.0 |
PC3 | 24.7 | 67.4 | 0.78 | 2587.0 |
PC4 | 22.3 | 69.0 | 0.84 | 2701.0 |
Band Position (cm−1) | Assignation |
---|---|
3441 | O–H stretching phenols |
2923, 2851 | C–H asymmetric stretching |
1736 | C=O stretching |
1621 | C=C stretching alkene |
1452 | C–H bending of -(CH2)n- |
1376 | C–H bending of CH3 |
721 | C–H bending aromatic |
AC Mixture | Stain Properties | Stiffness Modulus (Smax) | ||
---|---|---|---|---|
Maximum Stain (Ɛmax) | Permanent Stain (Ɛperm) | Elastic Strain (Ɛelas) | ||
Base | 0.0098 | 0.0062 | 0.0036 | 9.18 |
P | 0.0076 | 0.0057 | 0.0019 | 13.23 |
PC1 | 0.0089 | 0.0056 | 0.0033 | 11.27 |
PC2 | 0.0065 | 0.0050 | 0.0015 | 15.31 |
PC3 | 0.0060 | 0.0046 | 0.0014 | 16.5 |
PC4 | 0.0049 | 0.0034 | 0.0016 | 20.24 |
AC Mixture | Instantaneous Creep Compliance (J0) | Creep Compliance Parameters | |
---|---|---|---|
a | m | ||
Base | 0.0621 | 0.0010 | 0.4886 |
P | 0.0374 | 0.0009 | 0.4689 |
PC1 | 0.0413 | 0.0005 | 0.5673 |
PC2 | 0.0336 | 0.0013 | 0.4049 |
PC3 | 0.0269 | 0.0008 | 0.4616 |
PC4 | 0.0244 | 0.0006 | 0.4689 |
Kruskal–Wallis Test | ||||||
---|---|---|---|---|---|---|
p-value | 0.0067 | |||||
Exact or approximate p-value? | Approximate | |||||
p-value summary | ** | |||||
Do the medians vary significantly? (p < 0.1)? | Yes | |||||
Number of groups | 5 | |||||
Kruskal-Wallis statistic | 16.06 | |||||
Data summary | ||||||
Number of treatments (columns) | 5 | |||||
Number of values (total) | 15 | |||||
Number of families | 1 | |||||
Number of comparisons per family | 4 | |||||
Alpha | 0.1 | |||||
Dunn’s multiple comparisons test | Mean rank difference | Significant? | Summary | Adjusted p Value | B-? | |
P (C) vs. PC1 | −2.333 | No | Ns | <0.9999 | A | PC1 |
P (C) vs. PC2 | −6.333 | No | Ns | 0.73 | C | PC2 |
P (C) vs. PC3 | −11.67 | Yes | * | 0.04 | D | PC3 |
P (C) vs. PC4 | −8 | No | Ns | 0.33 | E | PC4 |
Test details | Mean rank 1 | Mean rank 2 | Mean rank diff. | n1 | n2 | Z |
P (C) vs. PC1 | 5.333 | 7.667 | −2.333 | 3 | 3 | 0.5353 |
P (C) vs. PC2 | 5.333 | 11.67 | −6.333 | 3 | 3 | 1.453 |
P (C) vs. PC3 | 5.333 | 17 | −11.67 | 3 | 3 | 2.677 |
P (C) vs. PC4 | 5.333 | 13.33 | −8 | 3 | 3 | 1.835 |
Test Details | Binder Performance Characteristics | ||||
---|---|---|---|---|---|
Pen | SP | PI | RV | SPdiff | |
P vs. PC1 | >0.99 | >0.99 | >0.99 | >0.99 | >0.99 |
P vs. PC2 | 0.84 | >0.99 | 0.77 | 0.84 | 0.19 |
P vs. PC3 | 0.19 | 0.18 | 0.07 | 0.19 | 0.06 |
P vs. PC4 | 0.03 | 0.08 | 0.05 | 0.03 | 0.02 |
Test Details | AC-Modified Mixture Performance Characteristics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MQ | CS Dry | CS Immersed | IRS | Ɛmax | Ɛperm | Ɛelas | Smax | a | b | ||
P vs. PC1 | >0.99 | >0.99 | >0.99 | >0.99 | >0.99 | >0.99 | >0.99 | >0.99 | >0.99 | 0.30 | 0.19 |
P vs. PC2 | 0.84 | >0.99 | 0.73 | 0.39 | >0.99 | >0.99 | >0.99 | 0.76 | >0.99 | >0.99 | >0.99 |
P vs. PC3 | 0.09 | 0.06 | 0.04 | 0.05 | 0.07 | 0.84 | 0.32 | 0.26 | 0.83 | >0.99 | >0.99 |
P vs. PC4 | 0.03 | 0.53 | 0.33 | 0.63 | 0.09 | 0.19 | 0.05 | 0.09 | 0.17 | >0.99 | >0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, G.S.; Abdel-Raheem, A.; Abdel-Wahed, T. Effect of Nanoclay Particles on the Performance of High-Density Polyethylene-Modified Asphalt Concrete Mixture. Polymers 2021, 13, 434. https://doi.org/10.3390/polym13030434
Moussa GS, Abdel-Raheem A, Abdel-Wahed T. Effect of Nanoclay Particles on the Performance of High-Density Polyethylene-Modified Asphalt Concrete Mixture. Polymers. 2021; 13(3):434. https://doi.org/10.3390/polym13030434
Chicago/Turabian StyleMoussa, Ghada S., Ashraf Abdel-Raheem, and Talaat Abdel-Wahed. 2021. "Effect of Nanoclay Particles on the Performance of High-Density Polyethylene-Modified Asphalt Concrete Mixture" Polymers 13, no. 3: 434. https://doi.org/10.3390/polym13030434
APA StyleMoussa, G. S., Abdel-Raheem, A., & Abdel-Wahed, T. (2021). Effect of Nanoclay Particles on the Performance of High-Density Polyethylene-Modified Asphalt Concrete Mixture. Polymers, 13(3), 434. https://doi.org/10.3390/polym13030434