Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Poly(ethylene glycol)-Segmented Polyurethane Films and Coatings
2.3. Characterizations
2.3.1. Swelling Test
2.3.2. X-ray Diffraction (XRD)
2.3.3. Differential Scanning Calorimetry (DSC)
2.3.4. Fourier Transform Infrared
2.3.5. Atomic Force Microscope (AFM)
2.3.6. Water Contact Angle
2.3.7. Tensile Test
2.3.8. Marine Bacterial Test
3. Results and Discussion
3.1. Swelling in Seawater
3.2. Microstructure
3.3. Surface Hydrophily
3.4. Mechanical Property
3.5. Antibacterial Performance
3.6. Mechanism of Interaction between the Coating and Seawater
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lejars, M.; Margaillan, A.; Bressy, C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar] [CrossRef]
- Xie, L.; Hong, F.; Liu, J.; Zhang, G.; Wu, C. Intergrated design and study of marine antifouling polymer materials. Acta Polym. Sin. 2012, 12, 1–13. [Google Scholar] [CrossRef]
- Richards, C.; Briciu-Burghina, C.; Jacobs, M.R.; Barrett, A.; Regan, F.; Burghina, B. Assessment of Antifouling Potential of Novel Transparent Sol Gel Coatings for Application in the Marine Environment. Molecules 2019, 24, 2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R.J.K. Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 2006, 201, 3642–3652. [Google Scholar] [CrossRef] [Green Version]
- Grozea, C.M.; Walker, G.C. Approaches in designing non-toxic polymer surfaces to deter marine biofouling. Soft Matter 2009, 5, 4088–4100. [Google Scholar] [CrossRef]
- Rosenhahn, A.; Schilp, S.R.; Kreuzer, H.J.; Grunze, M. The role of “inert” surface chemistry in marine biofouling prevention. Phys. Chem. Chem. Phys. 2010, 12, 4275–4286. [Google Scholar] [CrossRef]
- Hong, F. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioact. Mater. 2019, 4, 189–195. [Google Scholar]
- Gao, Q.H.; Yu, L.M.; Zhao, J.; Sui, J. Preparation of Nanometer Cuprous Oxide and Its Application in Antifouling Coatings. Shanghai Coat. 2008, 46, 30–33. [Google Scholar]
- Zhang, Y.; Zhou, H.; Wang, R.H.; Wang, M.Q.; Jiang, Q.H.; Xu, J.Q.; Wang, H.J.; Li, Z.S.; Zhao, W. Recent Development and Research of Marine Antifouling Coatings. Shanghai Coat. 2020, 35, 21–25. [Google Scholar]
- Kavanagh, C.J.; Quinn, R.D.; Swain, G.W. Observations of Barnacle Detachment from Silicones using High-Speed Video. J. Adhes. 2005, 81, 843–868. [Google Scholar] [CrossRef]
- Stupak, M.E.; García, M.T.; Pérez, M.C. Non-toxic alternative compounds for marine antifouling paints. Int. Biodeterior. Biodegrad. 2003, 52, 49–52. [Google Scholar] [CrossRef]
- Hellio, C.; De La Broise, D.; Dufosse, L.; Le Gal, Y.; Bourgougnon, N. Inhibition of marine bacteria by extracts of macroalgae: Potential use for environmentally friendly antifouling paints. Mar. Environ. Res. 2001, 52, 231–247. [Google Scholar] [CrossRef]
- Luo, A.M.; Lin, C.G.; Wang, L.; Zhang, G.L. Micromorphology observation of shark skins and evaluation of antifouling ability. Mar. Environ. Sci. 2009, 28, 715–718. [Google Scholar]
- Raschi, W.; Tabit, C. Functional aspects of Placoid Scales: A review and update. Mar. Freshw. Res. 1992, 43, 123–147. [Google Scholar] [CrossRef]
- Schultz, M.P.; Swain, G.W. The Effect of Biofilms on Turbulent Boundary Layers. J. Fluids Eng. 1999, 121, 44–51. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.; Cooper, S. Phase separation in crystallizable multiblock poly(ether-ester) copolymers with poly(tetramethylene isophthalate) hard segments. Polymers 1994, 35, 4146–4155. [Google Scholar] [CrossRef]
- Liu, H.L.; Hu, Y. Microphase Separation and Structure Evolution of Complex Materials. J. Chem. Ind. Eng. 2003, 54, 440–447. [Google Scholar]
- Kerstetter, J.L.; Gramlich, W.M. Nanometer-scale Self-assembly of Amphiphilic Copolymers to Control and Prevent Bio-fouling. J. Mat. Chem. B 2014, 2, 8043–8052. [Google Scholar] [CrossRef] [PubMed]
- Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. A Survey of Structure Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir 2001, 17, 5605–5620. [Google Scholar] [CrossRef]
- Dahanayake, J.; Mitchell-Koch, K.R. Entropy connects water structure and dynamics in protein hydration layer. Phys. Chem. Chem. Phys. 2018, 20, 14765–14777. [Google Scholar] [CrossRef]
- Jeon, S.; Andrade, J.D. Protein—surface interactions in the presence of polyethylene oxide. J. Colloid Interface Sci. 1991, 142, 159–166. [Google Scholar] [CrossRef]
- Shin, E.J.; Choi, S.M. Advances in Waterborne Polyurethane-Based Biomaterials for Biomedical Applications. Adv. Exp. Med. Biol. 2018, 1077, 251–283. [Google Scholar] [CrossRef]
- Francolini, I.; Silvestro, I.; Di Lisio, V.; Martinelli, A.; Piozzi, A. Synthesis, Characterization, and Bacterial Fouling-Resistance Properties of Polyethylene Glycol-Grafted Polyurethane Elastomers. Int. J. Mol. Sci. 2019, 20, 1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isabel, J.; Leendert, V.D.V.; Rolf, V.B.; Gijsbertus, D.W.; Esteves, A. Hydrophilic Self-Replenishing Coatings with Long-Term Water Stability for Anti-Fouling Applications. Coatings 2018, 8, 184–198. [Google Scholar]
- Holberg, S.; Losada, R.; Blaikie, F.H.; Hansen, H.H.; Soreau, S.; Onderwater, R.C. Hydrophilic silicone coatings as fouling release: Simple synthesis, comparison to commercial, marine coatings and application on fresh water-cooled heat exchangers. Mater. Today Commun. 2020, 22, 100750. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, S.; Yang, J. Aza-Michael Addition Chemistry for Tuning the Phase Separation of PDMS/PEG Blend Coatings and Their Anti-Fouling Potentials. Macromol. Chem. Phys. 2020, 221, 1–12. [Google Scholar] [CrossRef]
- Luo, J.B.; Wang, P.; Li, J.H.; Xie, X.Y.; Fan, C.R.; He, C.S.; Zhong, Y.P. Synthesis and Characterization of PEG-segmented Pol-yurethane. J. Biomedical. Eng. 2006, 1, 125–128. [Google Scholar]
- Zhang, Y.; Qi, Y.; Zhang, Z. Synthesis of PPG-TDI-BDO polyurethane and the influence of hard segment content on its structure and antifouling properties. Prog. Org. Coat. 2016, 97, 115–121. [Google Scholar] [CrossRef]
- Zhao, X.B.; Du, L.; Zhang, X.P. Polyurethane elastomers and microphase separation. Polym. Mater. Sci. Eng. 2002, 18, 16–20. [Google Scholar]
- Madra, H.; Tantekin-Ersolmaz, S.B.; Güner, F.S. Monitoring of oil-based polyurethane synthesis by FTIR-ATR. Polym. Test. 2009, 28, 773–779. [Google Scholar] [CrossRef]
- Baier, R.E. Surface behaviour of biomaterials: The theta surface for biocompatibility. J. Mater. Sci. Mater. Med. 2006, 17, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
Crystallinity Degree (%) | PEG0 | PEG25 | PEG50 | PEG75 | PEG100 |
---|---|---|---|---|---|
Unimmersed | 63.38 | 65.53 | 68.11 | 73.07 | 79.19 |
Immersed | 5.65 | 5.66 | 5.25 | 8.03 | 2.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Qi, Y.; Zhou, Y.; Sun, X.; Zhang, Z. Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers 2021, 13, 573. https://doi.org/10.3390/polym13040573
Li K, Qi Y, Zhou Y, Sun X, Zhang Z. Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers. 2021; 13(4):573. https://doi.org/10.3390/polym13040573
Chicago/Turabian StyleLi, Kejiao, Yuhong Qi, Yingju Zhou, Xiaoyu Sun, and Zhanping Zhang. 2021. "Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater" Polymers 13, no. 4: 573. https://doi.org/10.3390/polym13040573
APA StyleLi, K., Qi, Y., Zhou, Y., Sun, X., & Zhang, Z. (2021). Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers, 13(4), 573. https://doi.org/10.3390/polym13040573