Development of Antibacterial Protective Coatings Active against MSSA and MRSA on Biodegradable Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chromatographic Characterization
2.2. Preparation of Biodegradable Polymers as Carriers for Antimicrobial Coating
2.3. Spectroscopical and Microscopical Characterization
2.4. Antimicrobial Effects against Stafilococus Aureus, Including MRSA and MSSA
3. Results
3.1. The Results of Chromatographic Characterization
3.2. The Results of Preparation of Biodegradable Polymers as Carriers for Antimicrobial Coating
3.3. The Results of Spectroscopical and Microscopical Characterization
3.4. The Results of Antimicrobial Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance Global Report on Surveillance 2014. Available online: https//www.who.int/drugresistance/documents/surveillancereport/en/ (accessed on 15 January 2020).
- Van Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Cardo, Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. Morbid. Morta. Week. Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Rahman Bhuiyan, M.A.; Wang, L.; Shaid, A.; Shanks, R.A.; Ding, J. Advances and applications of chemical protective clothing system. J. Ind. Text. 2019, 49, 97–138. [Google Scholar] [CrossRef]
- Schneider-Lindner, V.; Brassard, P.; Suissa, S. Mortality after infection with methicillin-resistant Staphylococcus aureus (MRSA) diagnosed in the community. BMC Med. 2008, 6, 2. [Google Scholar]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef]
- Pandey, S.; De Klerk, C.; Kim, J.; Kang, M.; Fosso-Kankeu, E. Eco Friendly Approach for Synthesis, Characterization and Biological Activities of Milk Protein Stabilized Silver Nanoparticles. Polymers 2020, 12, 1418. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Ramontja, J. Sodium alginate stabilized silver nanoparticles–silica nanohybrid and their antibacterial characteristics. Int. J. Biol. Macromol. 2016, 93A, 712–723. [Google Scholar] [CrossRef]
- Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative Antimicrobial Approach Nano-Antimicrobial Materials. Complement. Altern. Med. 2015, 2015, 246012. [Google Scholar] [CrossRef] [Green Version]
- Dizaj, S.M.; Lotpoura, F.; Barzegar-Jalali, M.; Zarrintana, M.H.; Adibkiab, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Emami-Karvani, Z.; Chehrazi, P. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res. 2011, 5, 1368–1373. [Google Scholar]
- Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Rastin, H.; Ormsby, R.T.; Atkins, G.J.; Losic, D. 3D Bioprinting of Methylcellulose/Gelatin-Methacryloyl (MC/GelMA) Bioink with High Shape Integrity. ACS Appl. Bio Mater. 2020, 3, 1815–1826. [Google Scholar] [CrossRef]
- Peak, C.V.; Singh, K.A.; Adlouni, M.; Chen, J.; Gaharwar, A.K. Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration. Adv. Health Mat. 2019, 8, 1801553. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, J.; Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Aberasturi, D.J.; Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoud, M. Erratum: Antibacterial properties of nanoparticles. Tr. Biotech. 2012, 30, 499–511. [Google Scholar]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Varner, K.; U.S. Environmental Protection Agency, Office of Research and Development. Scientific, Technical, Research, Engineering and Modeling Support—Final Report: State of the Science Literature Review: Everything Nanosilver and More; EPA/600/R-10/084; U.S. Environmental Protection Agency: Philadelphia, PA, USA, 2010; pp. 15–18.
- Rastin, H.; Zhang, B.; Bi, J.; Hassan, K.; Tung, T.T.; Losic, D. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. J. Mater. Chem. B 2020, 8, 5862–5876. [Google Scholar] [CrossRef]
- Rastin, H.; Zhang, B.; Mazinani, A.; Hassan, K.; Bi, J.; Tung, T.T.; Losic, D. 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks. Nanoscale 2020, 12, 16069–16080. [Google Scholar] [CrossRef]
- Abramova, A.V.; Abramova, V.O.; Bayazitova, V.M.; Voitova, Y.; Straumal, E.A.; Lermontov, S.A.; Cherdyntseva, T.A.; Braeutigam, P.; Weiße, M.; Günther, K. A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrason. Sonochem. 2020, 60, 104788. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, F.; Majid Montazer, S. In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrason. Sonochem. 2014, 21, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Behzadnia, A.; Montazer, M.; MahmoudiRad, M. In situ photo sonosynthesis and characterize nonmetal/metal dual doped honeycomb-like ZnO nanocomposites on wool fabric. Ultrason. Sonochem. 2015, 27, 200–209. [Google Scholar] [CrossRef]
- Ahmadizadegan, H.; Esmaielzadeha, S.; Ranjbara, M.; Marzban, Z.; Ghavas, F. Synthesis and characterization of polyester bionanocomposite membrane with ultrasonic irradiation process for gas permeation and antibacterial activity. Ultrason. Sonochem. 2018, 41, 538–550. [Google Scholar] [CrossRef]
- Ghayempour, S.; Montazer, M. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason. Sonochem. 2017, 34, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Ansari, A.H.; Hameedullah, M.; Ahmad, E.; Husain, F.M.; Zia, Q.; Baig, U.; Zaheer, M.R.; Alam, M.M.; Khan, A.M.; et al. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Nat. Sci. Rep. 2016, 6, 27689. [Google Scholar] [CrossRef]
- Barata, C.; Varo, I.; Navarro, J.C.; Arun, S.; Porte, C. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Toxicol. Pharmacol. 2005, 140, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fan, D.; Wang, L.; Shi, L.; Ding, J.; Chen, Y.; Shen, S. Effects of ZnO, CuO, Au, and TiO2 nanoparticles on Daphnia magna and early life stages of zebrafish Danio rerio. Env. Protect. Eng. 2014, 40, 139–1491. [Google Scholar]
- Seabra, A.B.; Durán, N. Nanotoxicology of Metal Oxide Nanoparticles. Metals 2015, 5, 934–975. [Google Scholar] [CrossRef]
- Wang, N.; Magdassi, S.; Madnler, D.; Long, Y. Simple sol-gel process and one-step annealing of vanadium dioxide thin films: Synthesis and thermochromic properties. Thin Solid Film. 2013, 534, 594–598. [Google Scholar] [CrossRef]
- Yadav, A.; Prasad, V.; Kathe, A.A.; Raj, S.; Yadav, D.; Sundaramoorthy, C.; Vigneshwaran, N. Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull. Mater. Sci. 2006, 29, 641–645. [Google Scholar] [CrossRef]
- Vigneshwaran, N.; Kumar, S.; Kathe, A.A.; Varadarajan, P.V.; Prasad, V. Functional finishing of cotton fabrics using zinc oxide soluble starch nanocomposites. Nanotechnology 2006, 17, 5087–5095. [Google Scholar] [CrossRef]
- Wang, R.Y.; Zhang, W.; Zhang, L.Y.; Hua, T.; Tang, G.; Peng, X.Q.; Hao, M.H.; Zuo, Q.T. Adsorption characteristics of Cu(II) and Zn(II) by nano-alumina material synthesized by the sol-gel method in batch mode. Environ. Sci Pollut Res. Int. 2019, 26, 1595–1605. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe; European Pharmacopoeia Commission. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2005; pp. 188–191. [Google Scholar]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID). EUCAST Discussion Document E.Def.5.1. Clin. Microbiol. Infect. 2003, 9, 1–7. [Google Scholar]
- Peran, J.; Ercegović Ražić, S.; Kosalec, I.; Ziberi, F. Antimicrobial Effectiveness of Cellulose based Fabrics treated with Silver Nitrate Solution using Plasma Processes. Tekstilec 2017, 60, 247–253. [Google Scholar] [CrossRef]
- Yan, N.; Zhu, Z.; Jin, L.; Guo, W.; Gan, Y.; Hu, S. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2015, 16, 6079–6087. [Google Scholar] [CrossRef]
- Yan, N.; Zhu, Z.; He, D.; Jin, L.; Zheng, H.; Hu, S. Simultaneous Determination of Size and Quantification of Gold Nanoparticles by Direct Coupling Thin layer Chromatography with Catalyzed Luminol Chemiluminescence. Sci. Rep. 2016, 6, 24577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elci, S.G.; Yan, B.; Kim, S.T.; Saha, K.; Jiang, Y.; Klemmer, G.A.; Moyano, D.F.; Tonga, G.Y.; Rotello, V.M.; Vachet, R.W. Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Analyst 2016, 21, 2418–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezić, I.; Ćurković, L.; Ujević, M. Simple methods for characterization of metals in historical textile threads. Talanta 2010, 82, 237–244. [Google Scholar] [CrossRef]
- Rezić, I.; Špehar, M.; Jakovljević, S. Characterization of Ag and Au nanolayers on Cu alloys by TLC, SEM-EDS, and ICP-OES. Mater. Corr. 2017, 68, 560–565. [Google Scholar] [CrossRef]
- Hodoroaba, V.D.; Motzkus, C.; Macé, T.; Vaslin-Reimann, S. Performance of high-resolution SEM/EDX systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles. Microsc Microanal. 2014, 20, 602–612. [Google Scholar] [CrossRef]
- Reza Mahdavi, S.; Talesh, T.A. The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrason. Sonochem. 2017, 39, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Pokrovac, I. Available online: https://repozitorij.pharma.unizg.hr/islandora/object/pharma:1100/datastream/PDF/download (accessed on 10 January 2021).
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Health Mater. 2018, 7, 1701503. [Google Scholar] [CrossRef] [PubMed]
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 2011, 24, 135–141. [Google Scholar] [CrossRef]
- Mirzajani, F.; Ghassempour, A.; Aliahmadi, A.; Esmaeili, M.A. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res. Microbiol 2011, 162, 542–549. [Google Scholar] [CrossRef]
- Grigor’eva, A.; Saranina, I.; Tikunova, N.; Safonov, A.; Timoshenko, N.; Rebrov, A.; Ryabchikova, E. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. Biometals 2013, 26, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Martinaga Pintarić, L.; Somogy Škoc, M.; Ljoljić Bilić, V.; Pokrovac, I.; Kosalec, I.; Rezić, I. Synthesis, Modification and Characterization of Antimicrobial Textile Surface Containing ZnO Nanoparticles. Polymers 2020, 12, 1210. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [Green Version]
- Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, N.; Zbořil, R. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B 2006, 110, 16248–16253. [Google Scholar] [CrossRef]
- Ansari, M.; Khan, H.; Khan, A.; Sultan, A.; Azam, A. Characterization of clinical strains of MSSA, MRSA and MRSE isolated from skin and soft tissue infections and the antibacterial activity of ZnO nanoparticles. World J. Microb. Biot. 2012, 28, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
Nanoparticles | Size (nm) | Concentration * | Z. I./mm (Mean ± SD) |
---|---|---|---|
Pt | 4 | 225 ppm | 12 ± 2 |
250 ppm | 11 ± 2 | ||
12.5–100 ppm | 0 ± 0 | ||
Ag | 10 | 20 ppm | 10 ± 1 |
40 | 20 ppm | 10 ± 1 | |
ZnO | 100 | 21% | 37 ± 2 [42,47] |
10.5% | 15 ± 2 [42,47] | ||
TiO2 | 100 | 33% | 0 ± 0 |
Al2O3 | 100 | 20% | 0 ± 0 |
Y2O3 | 100 | 10% | 0 ± 0 |
5% | 0 ± 0 | ||
ZrO2 | 100 | 5% | 0 ± 0 |
Gentamicin suphate (positive control) | 10.0 µg/mL | 18 ± 2 |
Nanoparticle (Size) | MIC (ppm) | MBC (ppm) |
---|---|---|
Mean ± SD | ||
Pt (4 nm) | 0.06 ± 0.04 | 0.20 ± 0.17 |
Ag (10 nm) | 0.09 ± 0.07 | 0.31 ± 0.27 |
Ag (40 nm) | 0.02 ± 0.02 | 1.04 ± 1.26 |
ZnO (100 nm) | 0.03 ± 0.00 [42,47] | 0.14 ± 0.06 [42,47] |
TiO2 (100 nm) | 40.28 ± 0.00 | 80.57 ± 0.00 |
Y2O3 (100 nm) | <12.21 | 12.21 ± 0.00 |
ZrO2 (100 nm) | <0.06 | >12,500.00 |
Gentamicin sulphate (positive control) | 0.63 ± 0.00 µg/mL |
Nanoparticle (Size) | MIC (ppm) | MBC (ppm) |
---|---|---|
Mean ± SD | ||
Ag (10 nm) | 0.47 ± 0.27 | 2.50 ± 0.00 |
ZnO (100 nm) | 3.28 ± 0.55 | 3.28 ± 1.89 |
TiO2 (100 nm) | 20.14 ± 0.00 | 93.00 ± 61.53 |
Gentamicin sulphate (positive control) | 1.00 ± 0.40 µg/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezić, I.; Majdak, M.; Ljoljić Bilić, V.; Pokrovac, I.; Martinaga, L.; Somogyi Škoc, M.; Kosalec, I. Development of Antibacterial Protective Coatings Active against MSSA and MRSA on Biodegradable Polymers. Polymers 2021, 13, 659. https://doi.org/10.3390/polym13040659
Rezić I, Majdak M, Ljoljić Bilić V, Pokrovac I, Martinaga L, Somogyi Škoc M, Kosalec I. Development of Antibacterial Protective Coatings Active against MSSA and MRSA on Biodegradable Polymers. Polymers. 2021; 13(4):659. https://doi.org/10.3390/polym13040659
Chicago/Turabian StyleRezić, Iva, Mislav Majdak, Vanja Ljoljić Bilić, Ivan Pokrovac, Lela Martinaga, Maja Somogyi Škoc, and Ivan Kosalec. 2021. "Development of Antibacterial Protective Coatings Active against MSSA and MRSA on Biodegradable Polymers" Polymers 13, no. 4: 659. https://doi.org/10.3390/polym13040659
APA StyleRezić, I., Majdak, M., Ljoljić Bilić, V., Pokrovac, I., Martinaga, L., Somogyi Škoc, M., & Kosalec, I. (2021). Development of Antibacterial Protective Coatings Active against MSSA and MRSA on Biodegradable Polymers. Polymers, 13(4), 659. https://doi.org/10.3390/polym13040659