Triborheological Study under Physiological Conditions of PVA Hydrogel/HA Lubricant as Synthetic System for Soft Tissue Replacement
Abstract
:1. Impact Statement
2. Introduction
3. Materials and Methods
3.1. Preparation of PVA Hydrogels
3.2. Equilibrium Water Content Measurements
3.3. Mechanical Tests
3.4. Rheological and Friction Tests
3.5. Surface Analysis
3.6. Thermal Behavior
4. Results and Discussion
4.1. Surface Morphology and Water Content
4.2. Mechanical Tests
4.3. Rheological and Friction Tests
4.4. Thermal Behavior
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OMS. Prevención de Trastornos Musculoesqueléticos en el Lugar de Trabajo: Serie Protección de la Salud de los Trabajadores n 5; 2004. Available online: https://www.who.int/occupational_health/publications/muscdisorders/es/ (accessed on 1 February 2021).
- Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.-J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef]
- Clouet, J.; Vinatier, C.; Merceron, C.; Potvaucel, M.; Maugars, Y.; Weiss, P.; Grimandi, G.; Ghicheux, J. From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Descov. Today 2009, 14, 913–925. [Google Scholar] [CrossRef]
- Mahir, L.; Belhaj, K.; Zahi, S.; Zanmasso, H.; Lmidmani, F.; el Fatimi, A. Impact of knee osteoarthritis on the quality of life. Ann. Phys. Rehabil. Med. 2016, 59, 155–159. [Google Scholar] [CrossRef]
- Kumar, H.N.H.; Nagaraj, K.; Luthra, K.; Gupta, P.; Sapar, P.; Gupta, S.; Tyagi, A. Health-related quality of life among osteoarthritis patients attending primary care clinics of mangalore city. Int. J. Med. Public Health 2015, 5, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, M.; Jaggard, H.A.; Akhbari, U.; Vaghela, P.; Gupte, C.; Cann, P. The role of denatured synovial fluid proteins in the lubrication of artificial joints. Biotribology 2019, 17, 49–63. [Google Scholar] [CrossRef]
- Al-Shakarchi, I.; Coakley, G. Synovial fluid tests. Medicine 2018, 46, 166–169. [Google Scholar] [CrossRef]
- Horibata, S.; Yarimitsu, S.; Fujie, H. Effect of synovial fluid pressurization on the biphasic lubrication property of articular cartilage. Biotribology 2019, 19, 100098. [Google Scholar] [CrossRef]
- Fox, A.J.S.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Liao, I.-C.; Moutos, F.T.; Estes, B.T.; Zhao, X.; Guilak, F. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv. Funct. Mater. 2013, 23, 5833–5839. [Google Scholar] [CrossRef]
- Vinatier, C.; Mrugala, D.; Jorgensen, C.; Ghicheux, J.; Noel, D. Cartilage engineering: A crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009, 27, 307–314. [Google Scholar] [CrossRef]
- Fritz, J.; Janssen, P.; Gaissmaier, C.; Schewe, B.; Weise, K. Articular cartilage defects in the knee basics, therapies and results. Injury 2008, 39, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Grenier, S.; Bhargava, M.M.; Torzilli, P.A. An in vitro model for the pathological degradation of articular cartilage in osteoarthritis. J. Biomech. 2014, 47, 645–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henao-Murillo, L.; Ito, K.; van Donkelaar, C.C. Collagen damage location in articular cartilage differs if damage is caused by excessive loading magnitude or rate. Ann. Biomed. Eng. 2018, 46, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Pap, T.; Korb-pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis—Two unequal siblings. Nat. Rev. Rheumatol. 2015, 11, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Stender, M.E.; Carpenter, R.D.; Regueiro, R.A.; Ferguson, V.L. An evolutionary model of osteoarthritis including articular cartilage damage, and bone remodeling in a computational study. J. Biomech. 2016, 49, 3502–3508. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.; Rawle, R.; Wallace, C.; Brooks, E.; Adams, E.; Greenwood, M.; Olmer, M.; Lotz, M.; Bothner, B.; June, R. Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1174–1184. [Google Scholar] [CrossRef]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jordan, J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Loeser, R.F. Aging and osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 492–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.M.; Kim, K.; Kim, Y.H. Changes in range of motion, intradiscal pressure, and facet joint force after intervertebral disc and facet joint degeneration in the cervical spine. J. Mech. Sci. Technol. 2015, 29, 3031–3038. [Google Scholar] [CrossRef]
- Gellhorn, A.C.; Katz, J.N.; Suri, P. Osteoarthritis of the spine: The facet joints. Nat. Rev. Rheumatol. 2013, 9, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Seguro Social, I.M. Abordaje Diagnóstico del Dolor de Cuello en la Población Adulta en el Primer Nivel de Atención; IMSS: Mexico City, Mexico, 2013. [Google Scholar]
- Manchikanti, L.; Boswell, M.V.; Singh, V.; Pampati, V.; Damron, K.S.; Beyer, C.D. Prevalence of facet joint pain in chronic spinal pain of cervical, thoracic, and lumbar regions. BMC Musculoskelet. Disord. 2004, 5, 15. [Google Scholar] [CrossRef]
- Murphy, N.J.; Eyles, J.P.; Hunter, D.J. Hip osteoarthritis: Etiopathogenesis and implications for management. Adv. Ther. 2016, 33, 1921–1946. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.M.; Brock, T.M.; Heil, K.; Holmes, R.; Weusten, A. A review on the management of hip and knee osteoarthritis. Int. J. Chronic Dis. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Vincent, T.L.; Watt, F.E. Osteoarthritis. Medicine 2017, 46, 187–195. [Google Scholar] [CrossRef]
- Conaghan, P.G.; Dickson, J.; Grant, R.L. Care and management of osteoarthritis in adults: Summary of nice guidance. BMJ 2008, 336, 502–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffat, K.L.; Goon, K.; Moutos, F.T.; Estes, B.T.; Oswald, S.J.; Zhao, X.; Guilak, F. Composite cellularized structures created from an interpenetrating polymer network hydrogel reinforced by a 3d woven scaffold. Macromol. Biosci. 2018, 18, 1800140. [Google Scholar] [CrossRef]
- Fisher, M.B.; Mauck, R.L. Tissue engineering and regenerative medicine: Recent innovations and the transition to translation. Tissue Eng. Part B Rev. 2013, 19, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coburna, J.M.; Gibsonb, M.; Monagleb, S.; Pattersonb, Z.; Elisseeff, J.H. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc. Natl. Acad. Sci. USA 2012, 109, 10012–10017. [Google Scholar] [CrossRef] [Green Version]
- Lysaght, M.J.; Jaklenec, A.; Deweerd, E. Great expectations: Private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng. Part A 2008, 14, 305–315. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Calo, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Kuoa, C.K.; Lia, W.-J.; Maucka, R.L.; Tuan, R.S. Cartilage tissue engineering: Its potential and uses. Curr. Opin. Rheumatol. 2006, 18, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X. Designing toughness and strength for soft materials. Proc. Natl. Acad. Sci. USA 2017, 114, 8138–8140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Yuk, H.; Zhang, T.; Parada, G.A.; Koo, H.; Yu, C.; Zhao, X. Stretchable hydrogel electronics and devices. Adv. Mater. 2016, 28, 4497–4505. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tang, T.-C.; Tham, E.; Yuk, H.; Lin, S.; Lu, T.K.; Zhao, X. Stretchable living materials and devices with hydrogel—Elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. USA 2017, 114, 2200–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osada, Y. Polymer gels as artificial soft tissue. Polym. Sci. Ser. C 2017, 59, 3–10. [Google Scholar] [CrossRef]
- Murakami, T.; Yarimitsu, S.; Nakashima, K.; Sakai, N.; Yamaguchi, T.; Sawae, Y.; Suzuki, A. Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: A review. Proc. IMechE Part H J. Eng. Med. 2015, 229, 864–878. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, S.; Feng, W. Pva hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 2011, 4, 1228–1233. [Google Scholar] [CrossRef]
- Li, F.; Su, Y.; Wang, J.; Wu, G.; Wang, C. Influence of dynamic load on friction behavior of human articular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage. J. Mater. Sci. Mater. Med. 2010, 21, 147–154. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Wang, A.; Guo, F. The effects of surface mechanical deformation and bovine serum albumin on the tribological properties of polyvinyl alcohol hydrogel as an artificial cartilage. Adv. Mater. Sci. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Sardinha, V.; Lima, L.; Belangero, W.; Zavaglia, C.; Bavaresco, V.; Gomes, J. Tribological characterization of polyvinyl alcohol hydrogel as substitute of articular cartilage. Wear 2013, 301, 218–225. [Google Scholar] [CrossRef]
- McNary, M.; Athanasiou, K.; Reddi, A. Engineering lubrication in articular cartilage. Tissue Eng. Part B Rev. 2012, 18, 88–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seror, J.; Zhu, L.; Goldberg, R.; Day, A.J.; Klein, J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 2015, 6, 6497. [Google Scholar] [CrossRef]
- Corvelli, M.; Che, B.; Saeui, C.; Singha, A.; Elisseeff, J. Biodynamic performance of hyaluronic acid versus synovial fluid of the knee in osteoarthritis. Methods 2015, 84, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Corvelli, M.; Unterman, A.S.; Wepasnick, K.A.; McDonnell, P.; Elisseeff, J.H. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat. Mater. 2014, 13, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Swann, D.A.; Radin, E.L.; Nazimiec, M.; Weisser, P.A.; Curran, N.; Lewinnek, G. Role of hyaluronic acid in joint lubrication. Ann. Rheum. Dis. 1974, 33, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Wang, A.; Wang, C. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage. Eng. Nano Eng. Approaches Med. Devices 2016, 27, 87–95. [Google Scholar] [CrossRef]
- Wan, W.; Bannerman, A.D.; Yang, L.; Mak, H. Poly (vinyl alcohol) cryogels for biomedical applications. Adv. Polym. Sci. 2014, 263, 283–321. [Google Scholar] [CrossRef]
- Hibbeler, R.C. Mecca de Materiales; Educaci, P., Ed.; Pearson: Mexico City, Mexico, 2011; ISBN 139786073205597. [Google Scholar]
- Gupta, S.; Sinha, S.; Sinha, A. Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels. Colloids Surf. B Biointerfaces 2010, 78, 115–119. [Google Scholar] [CrossRef]
- Dodero, A.; Williams, R.; Gagliardi, S.; Vicini, S.; Alloisio, M.; Castellano, M. A micro-rheological and rheological study of biopolymers solutions: Hyaluronic acid. Carbohydr. Polym. 2019, 203, 249–355. [Google Scholar] [CrossRef]
- Jiang, H.; Zuo, Y.; Zhang, L.; Li, J.; Zhang, A.; Li, Y.; Yang, X. Property-based design: Optimization and characterizationof polyvinyl alcohol (pva) hydrogel and pva-matrix composite for artificial cornea. J. Mater. Sci. Mater. Med. 2014, 25, 941–952. [Google Scholar] [CrossRef]
- Huange, M.; Cai, D.; Liu, Y.; Sun, J.; Wang, J. Investigation of a-pva/s-pva hydrogels prepared by freezing-thawing method. Fibers Polym. 2012, 13, 955–962. [Google Scholar] [CrossRef]
- Marrella, A.; Lagazzo, A.; Dellacasa, E.; Pasquini, C.; Finocchio, E. 3d porous gelatin/pva hydrogel as meniscus substitute using alginate microparticles as porogens. Polymers 2018, 10, 380. [Google Scholar] [CrossRef] [Green Version]
- Bercea, M.; Morariu, S.; Teodorescu, M. Rheological investigation of poly (vinyl alcohol)/poly(n-vinyl pyrrolidone) mixture in aqueous solution solution and hydrogel state. J. Polym. Res. 2016, 23, 142–151. [Google Scholar] [CrossRef]
- Moore, D. Articular Cartilage. 2018. Available online: https://www.orthobullets.com/basic-science/9017/articular-cartilage (accessed on 1 February 2021).
- Wang, M.; Peng, Z. Wear in human knees. Biosurface Biotribol. 2015, 1, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, D.; Yang, W.; Song, Y. Compressive mechanical properties and microstructure of pva-ha hydrogels for cartilage repair. RSC Adv. 2016, 6, 20166–20172. [Google Scholar] [CrossRef]
- Mackley, M. Part IIb Chemical Engineering Tripos. Rheology and Processing. UK. 2011. Available online: http://www.malcolmmackley.com/wp-content/uploads/2012/11/Rheology-lectures-2011-section1_.pdf (accessed on 1 February 2021).
- Ambrosio, L.; Borzacchiello, A.; Netti, P.A.; Nicolais, L. Rheological study on hyaluronic acid and its derivative solutions. J. Macromol. Sci. Part A Pure Appl. Chem. 2007, 36, 991–1000. [Google Scholar] [CrossRef]
- Falcone, S.J.; Palmeri, D.M.; Berg, R.A. Rheological and cohesive properties of hyaluronic acid. J. Biomed. Mater. Res. Part A 2006, 76, 721–728. [Google Scholar] [CrossRef]
- Braithwaite, G.J.C.; Daley, M.J.; Toledo-Velasquez, D. Rheological and molecular weight comparisons of approved hyaluronic acid products—Preliminary standards for establishing class III medical device equivalence. J. Biomater. Sci. 2016, 27, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Xiong, D.; Gao, F. Viscoelastic behavior of nano-hydroxyapatite reinforced poly (vinyl alcohol) gel biocomposite as an articular cartilage. J. Mater. Sci. Mater. Med. 2007, 19, 1963–1969. [Google Scholar] [CrossRef]
- Chan, M.; Neu, C.; Duraine, G.; Komvopoulos, K.; Reddi, A. Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage. Osteoarthr. Cartil. 2010, 18, 956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Oka, M.; Ikeuchi, K.; Shimizu, K.; Yamamuro, T.; Okumura, H.; Kotoura, Y. Low wear rate of uhmwpe against zirconia ceramic (y-psz) incomparison to alumina ceramic and sus 316l alloy. J. Biomed. Mater. Res. Part A 1991, 25, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Caligaris, M.; Ateshian, G. Effect of sustained internal fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. 2008, 16, 1220–1227. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Xiong, D.S.; Li, J.L. The friction properties of polyvinyl alcohol/graphene oxide hydrogels as cartilage replacement. Key Eng. Mater. 2017, 739, 152–156. [Google Scholar] [CrossRef]
- Park, R.K.; Nicoll, S.; Ateshian, G. Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 2003, 36, 1785–1796. [Google Scholar] [CrossRef]
- Shi, Y.; Xiong, D. Microstructure and friction properties of pva/pvp hydrogels for articular cartilage repair as function of polymerization degree and polymer concentration. Wear 2013, 305, 280–285. [Google Scholar] [CrossRef]
- Pan, Y.; Xiong, D.; Chen, X. Friction characteristics of poly (vinyl alcohol) hydrogel as an articular cartilage biomaterial. Key Eng. Mater. 2007, 330, 1297–1300. [Google Scholar] [CrossRef]
- Kobayashi, M.; Hyu, H.S. Development and evaluation of polyvinyl alcohol-hydrogels as an artificial articular cartilage for orthopedic implants. Materials 2010, 3, 2753–2771. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, R.; Auriemma, F.; Gaillet, C.; de Rosa, C.; Laupretre, F. Investigation of the crystallinity of freeze/thaw poly (vinyl alcohol) hydrogels by different techniques. Macromolecules 2004, 37, 9510–9516. [Google Scholar] [CrossRef]
- Peppas, A.N.; Hassan, M.C. Structure and morphology of freeze/thawed pva hydrogels. Macromolecules 2000, 33, 2472–2479. [Google Scholar] [CrossRef]
Test | Wh (g) | Ws (g) | EWCM (%) |
---|---|---|---|
1 | 1.48 | 0.23 | 84.46 |
2 | 1.72 | 0.26 | 84.88 |
3 | 1.73 | 0.26 | 84.97 |
4 | 1.91 | 0.31 | 83.77 |
5 | 2.45 | 0.42 | 82.86 |
6 | 2.54 | 0.44 | 82.68 |
7 | 2.70 | 0.49 | 81.85 |
8 | 3.11 | 0.59 | 81.03 |
9 | 3.32 | 0.50 | 84.94 |
10 | 3.38 | 0.64 | 81.07 |
11 | 3.45 | 0.67 | 80.58 |
12 | 3.62 | 0.56 | 84.53 |
13 | 3.72 | 0.63 | 83.06 |
14 | 4.32 | 0.79 | 81.50 |
15 | 4.73 | 0.82 | 82.66 |
Average | 82.99 | ||
Standard Deviation | 1.50 |
Sample Weight (mg) | Tm (°C) | ΔHm (J/g) | Xc (%) |
---|---|---|---|
2.1 | 231.83 | 13.92 | 10.04 |
3.4 | 232.79 | 9.78 | 7.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque-Ossa, L.C.; Ruiz-Pulido, G.; Medina, D.I. Triborheological Study under Physiological Conditions of PVA Hydrogel/HA Lubricant as Synthetic System for Soft Tissue Replacement. Polymers 2021, 13, 746. https://doi.org/10.3390/polym13050746
Duque-Ossa LC, Ruiz-Pulido G, Medina DI. Triborheological Study under Physiological Conditions of PVA Hydrogel/HA Lubricant as Synthetic System for Soft Tissue Replacement. Polymers. 2021; 13(5):746. https://doi.org/10.3390/polym13050746
Chicago/Turabian StyleDuque-Ossa, Laura C., Gustavo Ruiz-Pulido, and Dora I. Medina. 2021. "Triborheological Study under Physiological Conditions of PVA Hydrogel/HA Lubricant as Synthetic System for Soft Tissue Replacement" Polymers 13, no. 5: 746. https://doi.org/10.3390/polym13050746
APA StyleDuque-Ossa, L. C., Ruiz-Pulido, G., & Medina, D. I. (2021). Triborheological Study under Physiological Conditions of PVA Hydrogel/HA Lubricant as Synthetic System for Soft Tissue Replacement. Polymers, 13(5), 746. https://doi.org/10.3390/polym13050746