Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100-21. [Google Scholar] [CrossRef] [PubMed]
- Spencer, P.; Wang, Y.; Katz, J.L. Identification of collagen encapsulation at the dentin/adhesive interface. J. Adhes. Dent. 2004, 6, 91–95. [Google Scholar] [PubMed]
- Stape, T.H.S.; Tjäderhane, L.; Abuna, G.; Sinhoreti, M.A.C.; Martins, L.R.M.; Tezvergil-Mutluay, A. Optimization of the etch-and-rinse technique: New perspectives to improve resin–dentin bonding and hybrid layer integrity by reducing residual water using dimethyl sulfoxide pretreatments. Dent. Mater. 2018, 34, 967–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, J.M.C.; Anami, L.C.; Pereira, S.M.B.; de Melo, R.M.; Bottino, M.A.; de Miranda, L.M.; Souza, K.B.; Özcan, M.; Souza, R.O.A. Dentin/composite bond strength: Effect of aging and experimental unit. J. Adhes. Sci. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Frassetto, A.; Breschi, L.; Turco, G.; Marchesi, G.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Cadenaro, M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review. Dent. Mater. 2016, 32, e41–e53. [Google Scholar] [CrossRef]
- Cardoso, S.A.; Oliveira, H.L.; Münchow, E.A.; Carreño, N.L.; Gonini Junior, A.; Piva, E. Effect of shelf-life simulation on the bond strength of self-etch adhesive systems to dentin. Appl. Adhes. Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Betancourt, D.E.; Baldion, P.A.; Castellanos, J.E. Resin-Dentin Bonding Interface: Mechanisms of Degradation and Strategies for Stabilization of the Hybrid Layer. Int. J. Biomater. 2019, 2019, 5268342. [Google Scholar] [CrossRef] [PubMed]
- Takamizawa, T.; Imai, A.; Hirokane, E.; Tsujimoto, A.; Barkmeier, W.W.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. SEM observation of novel characteristic of the dentin bond interfaces of universal adhesives. Dent. Mater. 2019, 35, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- Masarwa, N.; Mohamed, A.; Abou-Rabii, I.; Abu Zaghlan, R.; Steier, L. Longevity of Self-etch Dentin Bonding Adhesives Compared to Etch-and-rinse Dentin Bonding Adhesives: A Systematic Review. J. Evid. Based Dent. Pract. 2016, 16, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Geng Vivanco, R.; Cardoso, R.S.; Sousa, A.B.S.; Chinelatti, M.A.; de Vincenti, S.A.F.; Tonani-Torrieri, R.; Pires-de-Souza, F.D.C.P. Effect of thermo-mechanical cycling and chlorhexidine on the bond strength of universal adhesive system to dentin. Heliyon 2020, 6, e03871. [Google Scholar] [CrossRef]
- Papadogiannis, D.; Dimitriadi, M.; Zafiropoulou, M.; Gaintantzopoulou, M.-D.; Eliades, G. Universal Adhesives: Setting Characteristics and Reactivity with Dentin. Materials 2019, 12, 1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuevas-Suárez, C.E.; de Oliveira da Rosa, W.L.; Vitti, R.P.; da Silva, A.F.; Piva, E. Bonding Strength of Universal Adhesives to Indirect Substrates: A Meta-Analysis of in Vitro Studies. J. Prosthodont. 2020, 29, 298–308. [Google Scholar] [CrossRef]
- Cuevas-Suárez, C.E.; De Oliveira da Rosa, W.L.; Lund, R.G.; da Silva, A.F.; Piva, E. Bonding Performance of Universal Adhesives: An Updated Systematic Review and Meta-Analysis. J. Adhes. Dent. 2019, 21, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.J.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Nagarkar, S.; Theis-Mahon, N.; Perdigão, J. Universal dental adhesives: Current status, laboratory testing, and clinical performance. J. Biomed. Mater. Res. 2019, 107, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, R.; Hardan, L.; Rivera-Gonzaga, A.; Cuevas-Suárez, C.E. Effect of warm-air stream for solvent evaporation on bond strength of adhesive systems: A systematic review and meta-analysis of in vitro studies. Int. J. Adhes. Adhes. 2021, 105, 102794. [Google Scholar] [CrossRef]
- Page, M.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffman, T.; Mulrow, C.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.; et al. The PRISMA 2020 statement: An Updated Guideline for Reporting Systematic Reviews. MetaArXiv Prepr. 2020. Available online: https://osf.io/preprints/metaarxiv/v7gm2/ (accessed on 2 March 2021).
- Jones, P.M. COMBINE: Stata Module to Combine n, Mean, and SD from Two Groups According to the Cochrane-RECOMMENDED Formula for Meta-Analyses. 2011. Available online: https://ideas.repec.org/c/boc/bocode/s457265.html (accessed on 2 March 2021).
- Anja, B.; Walter, D.D.; Nicoletta, C.; Marco, F.; Pezelj Ribaric, S.; Ivana, M.M.; Pezelj Ribarić, S.; Ivana, M.M. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin. Sci. World J. 2015, 2015, 368745. [Google Scholar] [CrossRef] [Green Version]
- Alaghehmand, H.; Nezhad Nasrollah, F.; Nokhbatolfoghahaei, H.; Fekrazad, R. An In Vitro Comparison of the Bond Strength of Composite to Superficial and Deep Dentin, Treated With Er:YAG Laser Irradiation or Acid-Etching. J. Lasers Med. Sci. 2016, 7, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, E.C.; Parreiras, S.O.; Gutierrez, M.F.; Loguercio, A.D.; Reis, A. Effect of different protocols in preconditioning with EDTA in sclerotic dentin and enamel before universal adhesives applied in self-etch mode. Oper. Dent. 2017. [Google Scholar] [CrossRef]
- Shahabi, S.; Chiniforush, N.; Bahramian, H.; Monzavi, A.; Baghalian, A.; Kharazifard, M.J. The effect of erbium family laser on tensile bond strength of composite to dentin in comparison with conventional method. Lasers Med. Sci. 2013, 28, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Sinjari, B.; Santilli, M.; D’Addazio, G.; Rexhepi, I.; Gigante, A.; Caputi, S.; Traini, T. Influence of dentine pre-treatment by sandblasting with aluminum oxide in adhesive restorations. An in vitro study. Materials 2020, 13, 3026. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wang, S.; Han, L.; Peng, W.; Yi, L.; Guo, R.; Liu, S.; Yang, H.; Huang, C. Chlorhexidine-encapsulated mesoporous silica-modified dentin adhesive. J. Dent. 2018, 78, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Zumstein, K.; Peutzfeldt, A.; Lussi, A.; Flury, S. The Effect of SnCl 2 /AmF Pretreatment on Short- and Long-Term Bond Strength to Eroded Dentin. Biomed Res. Int. 2018, 2018, 3895356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Matos, N.R.S.; Costa, A.R.; Valdrighi, H.C.; Correr, A.B.; Vedovello, S.A.; Santamaria, M.J.; Correr-Sobrinho, L.; de Matos, N.R.S.; Costa, A.R.; Valdrighi, H.C.; et al. Effect of acid etching, silane and thermal cycling on the bond strength of metallic brackets to ceramic. Braz. Dent. J. 2016, 27, 734–738. [Google Scholar] [CrossRef]
- Santos, M.J.M.C.C.; Costa, M.D.; Rego, H.M.C.; Rubo, J.H.; Santos, G.C. Effect of surface treatments on the bond strength of self-etching adhesive agents to dentin. Gen. Dent. 2017, 65, e1–e6. [Google Scholar] [PubMed]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Latta, M.A.; Miyazaki, M. Effect of oxygen inhibition in universal adhesives on dentin bond durability and interfacial characteristics. Am. J. Dent. 2017, 30, 71–76. [Google Scholar]
- Ouchi, H.; Takamizawa, T.; Tsubota, K.; Tsujimoto, A.; Imai, A.; Barkmeier, W.; Latta, M.; Miyazaki, M. The Effects of Aluminablasting on Bond Durability Between Universal Adhesives and Tooth Substrate. Oper. Dent. 2020, 45, 196–208. [Google Scholar] [CrossRef]
- Poggio, C.; Beltrami, R.; Colombo, M.; Chiesa, M.; Beltrami, R.; Colombo, M.; Chiesa, M.; Scribante, A. Influence of dentin pretreatment on bond strength of universal adhesives. Acta Biomater. Odontol. Scand. 2017, 3, 30–35. [Google Scholar] [CrossRef]
- Cardenas, A.F.M.F.M.; Siqueira, F.S.F.S.F.; Bandeca, M.C.C.; Costa, S.O.O.; Lemos, M.V.S.V.S.; Feitora, V.P.P.; Reis, A.; Loguercio, A.D.D.; Gomes, J.C.C. Impact of pH and application time of meta-phosphoric acid on resin-enamel and resin-dentin bonding. J. Mech. Behav. Biomed. Mater. 2018, 78, 352–361. [Google Scholar] [CrossRef]
- Tamura, Y.; Takamizawa, T.; Shimamura, Y.; Akiba, S.; Yabuki, C.; Imai, A.; Tsujimoto, A.; Kurokawa, H.; Miyazaki, M. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems. Dent. Mater. J. 2017, 36, 762–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, R.A.; de Lima, E.A.; Montes, M.A.J.R.; Braz, R. Pre-treating dentin with chlorhexadine and CPP-ACP: Self-etching and universal adhesive systems. Acta Biomater. Odontol. Scand. 2016, 2, 79–85. [Google Scholar] [CrossRef]
- Şişmanoğlu, S. Bond durability of contemporary universal adhesives: Effect of dentin treatments and aging. J. Adhes. Sci. Technol. 2019, 33, 2061–2070. [Google Scholar] [CrossRef]
- De Souza, M.Y.; DI Nicoló, R.; Bresciani, E. Influence of ethanol-wet dentin, adhesive mode of application, and aging on bond strength of universal adhesive. Braz. Oral Res. 2018, 32, e102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayar, M.K. Comparative evaluation of immediate bond strength to enamel with one-step self-etch adhesives. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2014–2019. [Google Scholar]
- Moritake, N.; Takamizawa, T.; Ishii, R.; Tsujimoto, A.; Barkmeier, W.; Latta, M.; Miyazaki, M. Effect of Active Application on Bond Durability of Universal Adhesives. Oper. Dent. 2019, 44, 188–199. [Google Scholar] [CrossRef]
- Saito, T.; Takamizawa, T.; Ishii, R.; Tsujimoto, A.; Hirokane, E.; Barkmeier, W.; Latta, M.; Miyazaki, M. Influence of Application Time on Dentin Bond Performance in Different Etching Modes of Universal Adhesives. Oper. Dent. 2020, 45, 183–195. [Google Scholar] [CrossRef]
- Da Rosa, L.S.; Follak, A.C.; Lenzi, T.L.; De Rocha, R.O.; Soares, F.Z.M. Phosphoric Acid Containing Chlorhexidine Compromises Bonding of Universal Adhesive. J. Adhes. Dent. 2018, 20, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Latta, M.A.; Miyazaki, M. Influence of the Oxygen-inhibited Layer on Bonding Performance of Dental Adhesive Systems: Surface Free Energy Perspectives. J. Adhes. Dent. 2016, 18, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-S.; Chen, Y.-L.; Chuang, S.-F.; Wu, C.-M.; Wei, P.-J.; Han, C.-F.; Lin, J.-C.; Chang, H.-T. Riboflavin-ultraviolet-A-induced collagen cross-linking treatments in improving dentin bonding. Dent. Mater. 2013, 29, 682–692. [Google Scholar] [CrossRef]
- de Alencar, N.A.; Fidalgo, T.K.; Cajazeira, M.R.; Maia, L.C. Influence of the number of adhesive layers on adhesive interface properties under cariogenic challenge using streptococcus mutans. J. Adhes. Dent. 2014, 16, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Al Deeb, L.; Bin-Shuwaish, M.S.; Abrar, E.; Naseem, M.; Al-Hamdan, R.S.; Maawadh, A.M.; Al Deeb, M.; Almohareb, T.; Al Ahdal, K.; Vohra, F.; et al. Efficacy of chlorhexidine, Er Cr YSGG laser and photodynamic therapy on the adhesive bond integrity of caries affected dentin. An in-vitro study. Photodiagnosis Photodyn. Ther. 2020, 31, 101875. [Google Scholar] [CrossRef]
- Deng, S.; Chung, K.; Chan, D.; Spiekerman, C. Evaluation of Bond Strength and Microleakage of a Novel Metal-titanate Antibacterial Agent. Oper. Dent. 2016, 41, E48–E56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devarajan, S.S.; Madhubala, M.M.; Rajkumar, K.; James, V.; Srinivasan, N.; Mahalaxmi, S.; Sathyakumar, S. Effect of polydopamine incorporated dentin adhesives on bond durability. J. Adhes. Sci. Technol. 2021, 35, 185–198. [Google Scholar] [CrossRef]
- Feiz, A.; Badrian, H.; Goroohi, H.; Mojtahedi, N. The Effect of Synthetic Grape Seed Extract (GSE) on the Shear Bond Strength of composite resin to Dentin. J. Res. Med. Dent. Sci. 2017, 5, 65–70. [Google Scholar]
- Gu, L.; Shan, T.; Ma, Y.; Tay, F.R.; Niu, L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019, 37, 464–491. [Google Scholar] [CrossRef] [PubMed]
- Guarda, M.B.; Di Nizo, P.T.; Abuna, G.F.; Catelan, A.; Sinhoreti, M.A.C.; Vitti, R.P. Effect of Electric Current-assisted Application of Adhesives on their Bond Strength and Quality. J. Adhes. Dent. 2020, 22, 393–398. [Google Scholar] [CrossRef]
- Cecchin, D.; Farina, A.; Vidal, C.; Bedran-Russo, A. A Novel Enamel and Dentin Etching Protocol Using α-hydroxy Glycolic Acid: Surface Property, Etching Pattern, and Bond Strength Studies. Oper. Dent. 2018, 43, 101–110. [Google Scholar] [CrossRef]
- Cangul, S.; Erpacal, B.; Adiguzel, O.; Sagmak, S.; Unal, S.; Tekin, S. Does the Use of Ozone as a Cavity Disinfectant Affect the Bonding Strength of Antibacterial Bonding Agents? Ozone Sci. Eng. 2020, 42, 565–570. [Google Scholar] [CrossRef]
- Demirel, G.; Baltacioǧlu, I.H. The influence of different etching modes and etching time periods on micro-shear bond strength of multi-mode universal adhesives on dentin. J. Stomatol. 2019, 72, 118–128. [Google Scholar] [CrossRef]
- Akarsu, S.; Aktu_-Karademir, S. In Vitro Effect of Temperature on Dentin Bond Strength of Universal Adhesive Systems. Odovtos Int. J. Dent. Sci. 2020, 22, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yan, X.; Li, K.; Zheng, S.; Sano, H.; Zhan, D.; Fu, J. Effect of air-blowing temperature and water storage time on the bond strength of five universal adhesive systems to dentin. Dent. Mater. J. 2020, 31, 116–122. [Google Scholar] [CrossRef]
- Thanatvarakorn, O.; Prasansuttiporn, T.; Thittaweerat, S.; Foxton, R.M.; Ichinose, S.; Tagami, J.; Hosaka, K.; Nakajima, M. Smear layer-deproteinizing improves bonding of one-step self-etch adhesives to dentin. Dent. Mater. 2018, 34, 434–441. [Google Scholar] [CrossRef]
- Silva, T.M.; Gonçalves, L.L.; Fonseca, B.M.; Esteves, S.R.M.S.; Barcellos, D.C.; Damião, A.J.; Gonçalves, S.E.P. Influence of Nd:YAG laser on intrapulpal temperature and bond strength of human dentin under simulated pulpal pressure. Lasers Med. Sci. 2016, 31, 49–56. [Google Scholar] [CrossRef]
- Chasqueira, A.F.; Arantes-Oliveira, S.; Portugal, J. Bonding performance of simplified dental adhesives with three application protocols: An 18-month in vitro study. J. Adhes. Dent. 2020, 22, 255–264. [Google Scholar] [CrossRef]
- De Lima, J.F.M.; Wajngarten, D.; Islam, F.; Clifford, J.; Botta, A.C.; De Lima, J.F.M.; Wajngarten, D.; Islam, F.; Clifford, J.; Botta, A.C. Effect of adhesive mode and chlorhexidine on microtensile strength of universal bonding agent to sound and caries-affected dentins. Eur. J. Dent. 2018, 12, 553–558. [Google Scholar] [CrossRef]
- Flury, S.; Peutzfeldt, A.; Schmidlin, P.R.; Lussi, A. Exposed Dentin: Influence of cleaning procedures and simulated pulpal pressure on bond strength of a universal adhesive system. PLoS ONE 2017, 12, e0169680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutil, B.G.D.S.; Susin, A.H. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system. J. Appl. Oral Sci. 2017, 25, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Bacelar-Sá, R.; Giannini, M.; Ambrosano, G.M.B.; Bedran-Russo, A.K. Dentin Sealing and Bond Strength Evaluation of Hema-Free and Multi-Mode Adhesives to Biomodified Dentin. Braz. Dent. J. 2017, 28, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Baena, E.; Cunha, S.R.; Maravić, T.; Comba, A.; Paganelli, F.; Alessandri-Bonetti, G.; Ceballos, L.; Tay, F.R.; Breschi, L.; Mazzoni, A. Effect of Chitosan as a Cross-Linker on Matrix Metalloproteinase Activity and Bond Stability with Different Adhesive Systems. Mar. Drugs 2020, 18, 263. [Google Scholar] [CrossRef] [PubMed]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Kaynar, Z.B.; Kazak, M.; Donmez, N.; Dalkilic, E.E. The effect of additional chlorhexidine and/or ethanol on the bond strength of universal adhesives. J. Adhes. Sci. Technol. 2021, 35, 375–385. [Google Scholar] [CrossRef]
- Kusdemir, M.; Çetin, A.R.; Özsoy, A.; Toz, T.; Öztürk Bozkurt, F.; Özcan, M. Does 2% chlorhexidine digluconate cavity disinfectant or sodium fluoride/hydroxyethyl methacrylate affect adhesion of universal adhesive to dentin? J. Adhes. Sci. Technol. 2016, 30, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Paulose, N.E.; Fawzy, A.S. Effect of grape seed extract on the bond strength and durability of resin-dentin interface. J. Adhes. Sci. Technol. 2017, 31, 2525–2541. [Google Scholar] [CrossRef]
- Luong, M.N.; Huang, L.; Chan, D.C.N.; Sadr, A. In vitro study on the effect of a new bioactive desensitizer on dentin tubule sealing and bonding. J. Funct. Biomater. 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Siso, S.H.; Dönmez, N.; Kahya, D.S.; Uslu, Y.S. The effect of calcium phosphate-containing desensitizing agent on the microtensile bond strength of multimode adhesive agent. Niger. J. Clin. Pract. 2017, 20, 964–970. [Google Scholar] [CrossRef]
- Bravo, C.; Sampaio, C.S.; Hirata, R.; Puppin-Rontani, R.M.; Mayoral, J.R.; Giner, L. Effect of 2% chlorhexidine on dentin shear bond strength of different adhesive systems: A 6 months evaluation. Int. J. Morphol. 2017, 35, 1140–1146. [Google Scholar] [CrossRef] [Green Version]
- Zenobi, W.; Feitosa, V.P.; Moura, M.E.M.; D’arcangelo, C.; de Azevedo Rodrigues, L.K.; Sauro, S. The effect of zoledronate-containing primer on dentin bonding of a universal adhesive. J. Mech. Behav. Biomed. Mater. 2018, 77, 199–204. [Google Scholar] [CrossRef]
- Bravo, C.; Sampaio, C.S.; Hirata, R.; Puppin-Rontani, R.M.; Mayoral, J.R.; Giner, L. In-vitro Comparative Study of the use of 2% Chlorhexidine on Microtensile Bond Strength of Different Dentin Adhesives: A 6 Months Evaluation. Int. J. Morphol. 2017, 35, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi Chaharom, M.E.; Bahari, M.; Rahbar, M.; Golbaz, S. Effect of galardin and its solvents on the microtensile bond strength of different adhesive systems to dentin. Pesqui. Bras. Odontopediatria Clin. Integr. 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Giacomini, M.C.; Scaffa, P.M.C.; Gonçalves, R.S.; Zabeu, G.S.; de Vidal, C.M.P.; de Carrilho, M.R.O.; Honório, H.M.; Wang, L. Profile of a 10-MDP-based universal adhesive system associated with chlorhexidine: Dentin bond strength and in situ zymography performance. J. Mech. Behav. Biomed. Mater. 2020, 110, 103925. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.M.; Nabih, S.M.; Wakwak, M.A. Effect of chitosan nanoparticles on microtensile bond strength of resin composite to dentin: An in vitro study. Brazilian Dent. Sci. 2020, 23, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Paulose, N.E.; Fawzy, A.S. Effect of carbodiimide on the bond strength and durability of resin-dentin interface. J. Adhes. Sci. Technol. 2018, 32, 931–946. [Google Scholar] [CrossRef]
- Peng, W.; Yi, L.; Wang, Z.; Yang, H.; Huang, C. Effects of resveratrol/ethanol pretreatment on dentin bonding durability. Mater. Sci. Eng. C. 2020, 114, 111000. [Google Scholar] [CrossRef]
- Shadman, N.; Farzin-Ebrahimi, S.; Mortazavi-Lahijani, E.; Jalali, Z. Effect of chlorhexidine on the durability of a new universal adhesive system. J. Clin. Exp. Dent. 2018, 10, e921–e926. [Google Scholar] [CrossRef]
- Tekçe, N.; Tuncer, S.; Demirci, M.; Balci, S. Do matrix metalloproteinase inhibitors improve the bond durability of universal dental adhesives? Scanning 2016, 38, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Jung, K.-H.; Son, S.-A.; Hur, B.; Kwon, Y.-H.; Park, J.-K. Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives. Restor. Dent. Endod. 2015, 40, 68. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.H.; De Munck, J.; Van Landuyt, K.; Peumans, M.; Yoshihara, K.; Van Meerbeek, B. Do Universal Adhesives Benefit from an Extra Bonding Layer? J. Adhes. Dent. 2019, 21, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Ermis, R.B.; Ugurlu, M.; Ahmed, M.H.; Van Meerbeek, B. Universal Adhesives Benefit from an Extra Hydrophobic Adhesive Layer When Light Cured Beforehand. J. Adhes. Dent. 2019, 21, 179–188. [Google Scholar] [CrossRef]
- Munoz, M.A.; Sezinando, A.; Luque-Martinez, I.; Szesz, A.L.; Reis, A.; Loguercio, A.D.; Bombarda, N.H.; Perdigao, J. Influence of a hydrophobic resin coating on the bonding efficacy of three universal adhesives. J. Dent. 2014, 42, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hiraishi, N.; Nassar, M.; Yiu, C.; Otsuki, M.; Tagami, J.; Islama, M.S.; Hiraishi, N.; Nassar, M.; Yiu, C.; et al. Effect of hesperidin incorporation into a self-etching primer on durability of dentin bond. Dent. Mater. 2014, 30, 1205–1212. [Google Scholar] [CrossRef]
- Perdigao, J.; Munoz, M.A.; Sezinando, A.; Luque-Martinez, I.V.; Staichak, R.; Reis, A.; Loguercio, A.D.; Perdigão, J.; Muñoz, M.A.; Sezinando, A.; et al. Immediate adhesive properties to dentin and enamel of a universal adhesive associated with a hydrophobic resin coat. Oper. Dent. 2014, 39, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Sezinando, A.; Luque-Martinez, I.; Muñoz, M.A.; Reis, A.; Loguercio, A.D.; Perdigão, J.; Munoz, M.A.; Reis, A.; Loguercio, A.D.; Perdigao, J.; et al. Influence of a hydrophobic resin coating on the immediate and 6-month dentin bonding of three universal adhesives. Dent. Mater. 2015, 31, e236–e246. [Google Scholar] [CrossRef] [PubMed]
- Vinagre, A.; Ralho, A.; Ramos, N.; Messias, A.; Ramos, J. Bonding performance of a universal adhesive: Effect of hydrophobic resin coating and long-term water storage. Rev. Port. Estomatol. Med. Dentária Cir. Maxilofac. 2019, 60. [Google Scholar] [CrossRef]
- Cadenaro, M.; Maravic, T.; Comba, A.; Mazzoni, A.; Fanfoni, L.; Hilton, T.; Ferracane, J.; Breschi, L. The role of polymerization in adhesive dentistry. Dent. Mater. 2019, 35, e1–e22. [Google Scholar] [CrossRef]
- Benitez Sellan, P.L.; Zanatta, R.F.; Gomes Torres, C.R.; Tian, F.; Bergeron, B.E.; Niu, L.; Pucci, C.R. Effects of calcium-phosphate, laser and adhesive on dentin permeability and bond strength. Heliyon 2020, 6, e03925. [Google Scholar] [CrossRef]
- Shadman, N.; Farzin Ebrahimi, S.; Amanpour, S.; Mehdizadeh, S. Shear Bond Strength of a Multi-Mode Adhesive to Bur-Cut and Er,Cr:YSGG Lased Dentin in Different Output Powers. J. Dent. 2019, 20, 118–123. [Google Scholar] [CrossRef]
- Silva, A.C.; Melo, P.; Ferreira, J.; Oliveira, S.; Gutknecht, N. Influence of grape seed extract in adhesion on dentin surfaces conditioned with Er,Cr:YSGG laser. Lasers Med. Sci. 2019, 34, 1493–1501. [Google Scholar] [CrossRef]
- Rechmann, P.; Bartolome, N.; Kinsel, R.; Vaderhobli, R.; Rechmann, B.M.T. Bond strength of etch-and-rinse and self-etch adhesive systems to enamel and dentin irradiated with a novel CO2 9.3 μm short-pulsed laser for dental restorative procedures. Lasers Med. Sci. 2017, 32, 1981–1993. [Google Scholar] [CrossRef]
- Trevelin, L.T.; da Silva, B.T.F.; de Freitas, P.M.; Matos, A.B. Influence of Er:YAG laser pulse duration on the long-term stability of organic matrix and resin-dentin interface. Lasers Med. Sci. 2019, 34, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Yazici, A.R.; Karaman, E.; Tuncer, D.; Berk, G.; Ertan, A. Effect of an Er, Cr: YSGG laser preparation on dentin bond strength of a universal adhesive. J. Adhes. Sci. Technol. 2016, 30, 2477–2484. [Google Scholar] [CrossRef]
- Chowdhury, A.F.M.A.; Saikaew, P.; Alam, A.; Sun, J.; Carvalho, R.M.; Sano, H. Effects of Double Application of Contemporary Self-Etch Adhesives on Their Bonding Performance to Dentin with Clinically Relevant Smear Layers. J. Adhes. Dent. 2019, 21, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.F.M.A.; Islam, R.; Alam, A.; Matsumoto, M.; Yamauti, M.; Carvalho, R.M.; Sano, H. Variable smear layer and adhesive application: The pursuit of clinical relevance in bond strength testing. Int. J. Mol. Sci. 2019, 20, 5381. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, S.; Takamizawa, T.; Barkmeier, W.W.; Tsujimoto, A.; Imai, A.; Watanabe, H.; Erickson, R.L.; Latta, M.A.; Nakatsuka, T.; Miyazaki, M. Effect of double-layer application on bond quality of adhesive systems. J. Mech. Behav. Biomed. Mater. 2018, 77, 501–509. [Google Scholar] [CrossRef]
- Pashaev, D.; Demirci, M.; Tekce, N.; Tuncer, S.; Baydemir, C. The effect of double-coating and times on the immediate and 6-month dentin bonding of universal adhesives. Biomed. Mater. Eng. 2017, 28, 169–185. [Google Scholar] [CrossRef]
- Taschner, M.; Kümmerling, M.; Lohbauer, U.; Breschi, L.; Petschelt, A.; Frankenberger, R.; Kummerling, M.; Lohbauer, U.; Breschi, L.; Petschelt, A.; et al. Effect of double-layer application on dentin bond durability of onestep self-etch adhesives. Oper. Dent. 2014, 39, 416–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zecin-Deren, A.; Sokolowski, J.; Szczesio-Wlodarczyk, A.; Piwonski, I.; Lukomska-Szymanska, M.; Lapinska, B. Multi-layer application of self-etch and universal adhesives and the effect on dentin bond strength. Molecules 2019, 24, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zecin-Deren, A.; Lukomska-Szymanska, M.; Szczesio-Wlodarczyk, A.; Piwonski, I.; Sokolowski, J.; Lapinska, B. The influence of application protocol of simplified and universal adhesives on the dentin bonding performance. Appl. Sci. 2020, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Ayres, A.P.; Bonvent, J.J.; Mogilevych, B.; Soares, L.E.S.; Martin, A.A.; Ambrosano, G.M.; Nascimento, F.D.; Van Meerbeek, B.; Giannini, M. Effect of non-thermal atmospheric plasma on the dentin-surface topography and composition and on the bond strength of a universal adhesive. Eur. J. Oral Sci. 2018, 126, 53–65. [Google Scholar] [CrossRef]
- Ayres, A.; Freitas, P.; De Munck, J.; Vananroye, A.; Clasen, C.; Dias, C.D.S.; Giannini, M.; Van Meerbeek, B. Benefits of Nonthermal Atmospheric Plasma Treatment on Dentin Adhesion. Oper. Dent. 2018, 43, E288–E299. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.Q. Influence of acid-etching or double-curing time on dentin bond strength of one-step self-etch adhesive. Saudi J. Dent. Res. 2015, 6, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, P.C.P.; de Kruly, P.C.; Ribeiro, C.C.; Hilgert, L.A.; Pereira, P.N.R.; Scaffa, P.M.C.; Di Hipólito, V.; D’Alpino, P.H.P.; Garcia, F.C.P. Comparative bonding ability to dentin of a universal adhesive system and monomer conversion as functions of extended light curing times and storage. J. Mech. Behav. Biomed. Mater. 2017, 75, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Saikaew, P.; Kawano, S.; Carvalho, R.M.; Hannig, M.; Sano, H.; Selimovic, D. Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin. Dent. Mater. 2017, 33, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Luque-Martinez, I.V.; Perdigão, J.; Muñoz, M.A.; Sezinando, A.; Reis, A.; Loguercio, A.D. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin. Dent. Mater. 2014, 30, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Saikaew, P.; Matsumoto, M.; Chowdhury, A.; Carvalho, R.; Sano, H. Does Shortened Application Time Affect Long-Term Bond Strength of Universal Adhesives to Dentin? Oper. Dent. 2018, 43, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Irmak, Ö.; Yaman, B.C.; Orhan, E.O.; Ozer, F.; Blatz, M.B. Effect of rubbing force magnitude on bond strength of universal adhesives applied in self-etch mode. Dent. Mater. J. 2018, 37, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.H.; Jeon, B.K.; Mo, S.Y.; Park, M.; Choi, D.; Choi, K.K.; Kim, D.S. Effect of various agitation methods on adhesive layer formation of hema-free universal dentin adhesive. Dent. Mater. J. 2019, 38, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Thanatvarakorn, O.; Prasansuttiporn, T.; Takahashi, M.; Thittaweerat, S.; Foxton, R.M.; Ichinose, S.; Tagami, J.; Nakajima, M. Effect of Scrubbing Technique with Mild Self-etching Adhesives on Dentin Bond Strengths and Nanoleakage Expression. J. Adhes. Dent. 2016, 18, 197–204. [Google Scholar] [CrossRef]
- Kharouf, N.; Rapp, G.; Mancino, D.; Hemmerlé, J.; Haikel, Y.; Reitzer, F. Effect of etching the coronal dentin with the rubbing technique on the microtensile bond strength of a universal adhesive system. Dent. Med. Probl. 2019, 56, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Stape, T.H.S.; Wik, P.; Mutluay, M.M.; Al-Ani, A.A.S.; Tezvergil-Mutluay, A. Selective dentin etching: A potential method to improve bonding effectiveness of universal adhesives. J. Mech. Behav. Biomed. Mater. 2018, 86, 14–22. [Google Scholar] [CrossRef]
- Takamizawa, T.; Barkmeier, W.W.; Tsujimoto, A.; Suzuki, T.; Scheidel, D.D.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. Influence of different pre-etching times on fatigue strength of self-etch adhesives to dentin. Eur. J. Oral Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Saikaew, P.; Fu, J.; Chowdhury, A.F.M.A.M.A.; Carvalho, R.M.; Sano, H. Effect of air-blowing time and long-term storage on bond strength of universal adhesives to dentin. Clin. Oral Investig. 2019, 23, 2629–2635. [Google Scholar] [CrossRef]
- Amsler, F.; Peutzfeldt, A.; Lussi, A.; Flury, S. Bond strength of resin composite to dentin with different adhesive systems: Influence of relative humidity and application time. J. Adhes. Dent. 2015, 17, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Q.; Pucci, C.R.; Luo, T.; Breschi, L.; Pashley, D.H.; Niu, L.N.; Tay, F.R. No-waiting dentine self-etch concept—Merit or hype. J. Dent. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikaew, P.; Chowdhury, A.F.M.A.; Fukuyama, M.; Kakuda, S.; Carvalho, R.M.; Sano, H. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength. J. Dent. 2016, 47, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Peumans, M.; Kanumilli, P.; De Munck, J.; Van Landuyt, K.; Lambrechts, P.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent. Mater. 2005, 21, 864–881. [Google Scholar] [CrossRef]
- Nunes, T.G.; Ceballos, L.; Osorio, R.; Toledano, M. Spatially resolved photopolymerization kinetics and oxygen inhibition in dental adhesives. Biomaterials 2005, 26, 1809–1817. [Google Scholar] [CrossRef]
- Perdigao, J.; Lambrechts, P.; Van Meerbeek, B.; Braem, M.; Yildiz, E.; Yucel, T.; Vanherle, G. The interaction of adhesive systems with human dentin. Am. J. Dent. 1996, 9, 167–173. [Google Scholar]
- Albuquerque, M.; Pegoraro, M.; Mattei, G.; Reis, A.; Loguercio, A.D. Effect of Double-application or the Application of a Hydrophobic Layer for Improved Efficacy of One-step Self-etch Systems in Enamel and Dentin. Oper. Dent. 2008, 33, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Albuquerque, M.; Pegoraro, M.; Mattei, G.; de Bauer, J.R.O.; Grande, R.H.M.; Klein-Junior, C.A.; Baumhardt-Neto, R.; Loguercio, A.D. Can the durability of one-step self-etch adhesives be improved by double application or by an extra layer of hydrophobic resin? J. Dent. 2008, 36, 309–315. [Google Scholar] [CrossRef]
- Sartori, N.; Peruchi, L.D.; Guimarães, J.C.; Silva, S.B.; Monteiro Jr, S.; Baratieri, L.N.; Belli, R. Clinical effectiveness of a hydrophobic coating used in conjunction with a one-step self-etch adhesive: An 18-month evaluation. Oper. Dent. 2013, 38, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; De Stefano Dorigo, E. Dental adhesion review: Aging and stability of the bonded interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Loguercio, A.D.; Loeblein, F.; Cherobin, T.; Ogliari, F.; Piva, E.; Reis, A. Effect of solvent removal on adhesive properties of simplified etch-and-rinse systems and on bond strengths to dry and wet dentin. J. Adhes. Dent. 2009, 11, 213–219. [Google Scholar] [CrossRef]
- Cadenaro, M.; Antoniolli, F.; Sauro, S.; Tay, F.R.; Di Lenarda, R.; Prati, C.; Biasotto, M.; Contardo, L.; Breschi, L. Degree of conversion and permeability of dental adhesives. Eur. J. Oral Sci. 2005, 113, 525–530. [Google Scholar] [CrossRef]
- Cadenaro, M.; Navarra, C.O.; Antoniolli, F.; Mazzoni, A.; Di Lenarda, R.; Rueggeberg, F.A.; Breschi, L. The effect of curing mode on extent of polymerization and microhardness of dual-cured, self-adhesive resin cements. Am. J. Dent. 2010, 23, 14–18. [Google Scholar]
- Breschi, L.; Cadenaro, M.; Antoniolli, F.; Sauro, S.; Biasotto, M.; Prati, C.; Tay, F.R.; Di Lenarda, R. Polymerization kinetics of dental adhesives cured with LED: Correlation between extent of conversion and permeability. Dent. Mater. 2007, 23, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Tay, F.R.; Hashimoto, M.; Yoshiyama, M.; Saito, T.; Brackett, W.W.; Waller, J.L.; Pashley, D.H. Effects of multiple coatings of two all-in-one adhesives on dentin bonding. J. Adhes. Dent. 2005, 7, 133–141. [Google Scholar] [PubMed]
- Yoshihara, K.; Yoshida, Y.; Hayakawa, S.; Nagaoka, N.; Irie, M.; Ogawa, T.; Van Landuyt, K.L.; Osaka, A.; Suzuki, K.; Minagi, S.; et al. Nanolayering of phosphoric acid ester monomer on enamel and dentin. Acta Biomater. 2011, 7, 3187–3195. [Google Scholar] [CrossRef]
- Yiu, C.K.Y.; Pashley, E.L.; Hiraishi, N.; King, N.M.; Goracci, C.; Ferrari, M.; Carvalho, R.M.; Pashley, D.H.; Tay, F.R. Solvent and water retention in dental adhesive blends after evaporation. Biomaterials 2005, 26, 6863–6872. [Google Scholar] [CrossRef] [Green Version]
- Bedran-Russo, A.; Leme-Kraus, A.A.; Vidal, C.M.P.; Teixeira, E.C. An Overview of Dental Adhesive Systems and the Dynamic Tooth–Adhesive Interface. Dent. Clin. North Am. 2017, 61, 713–731. [Google Scholar] [CrossRef]
- Seara, S.F.; Erthal, B.S.; Ribeiro, M.; Kroll, L.; Pereira, G.D.S. The influence of a dentin desensitizer on the microtensile bond strength of two bonding systems. Oper. Dent. 2002, 27, 154–160. [Google Scholar] [PubMed]
- Sengun, A.; Koyuturk, A.E.; Sener, Y.; Ozer, F. Effect of desensitizers on the bond strength of a self-etching adhesive system to caries-affected dentin on the gingival wall. Oper. Dent. 2005, 30, 430–435. [Google Scholar]
- Yang, H.; Pei, D.; Chen, Z.; Lei, J.; Zhou, L.; Huang, C. Effects of the application sequence of calcium-containing desensitising pastes during etch-and-rinse adhesive restoration. J. Dent. 2014. [Google Scholar] [CrossRef] [PubMed]
- Sahrmann, P.; Ronay, V.; Schmidlin, P.R.; Attin, T.; Paqué, F. Three-Dimensional Defect Evaluation of Air Polishing on Extracted Human Roots. J. Periodontol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H.; Kapur, R.R.; Carrilho, M.R.O.; Hur, Y.B.; Garrett, L.V.; Tay, K.C.Y. Bonding BisGMA to Dentin—a Proof of Concept for Hydrophobic Dentin Bonding. J. Dent. Res. 2007, 86, 1034–1039. [Google Scholar] [CrossRef]
- Shin, T.P.; Yao, X.; Huenergardt, R.; Walker, M.P.; Wang, Y. Morphological and chemical characterization of bonding hydrophobic adhesive to dentin using ethanol wet bonding technique. Dent. Mater. 2009, 25, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Sauro, S.; Toledano, M.; Aguilera, F.S.; Mannocci, F.; Pashley, D.H.; Tay, F.R.; Watson, T.F.; Osorio, R. Resin–dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding. Part II: Effects of mechanical cycling load on microtensile bond strengths. Dent. Mater. 2011, 27, 563–572. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Yu, Q.S.; Wang, Y. Nonthermal Atmospheric Plasmas in Dental Restoration. J. Dent. Res. 2016, 95, 496–505. [Google Scholar] [CrossRef] [Green Version]
- Han, G.J.; Kim, J.H.; Chung, S.N.; Chun, B.H.; Kim, C.K.; Seo, D.G.; Son, H.H.; Cho, B.H. Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin. Eur. J. Oral Sci. 2014. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Sky Driver, M.; Caruso, A.N.; Yu, Q.; Wang, Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent. Mater. 2013, 29, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, Q.; Wang, Y. Non-thermal atmospheric plasmas in dental restoration: Improved resin adhesive penetration. J. Dent. 2014, 42, 1033–1042. [Google Scholar] [CrossRef] [Green Version]
- Ritts, A.C.; Li, H.; Yu, Q.; Xu, C.; Yao, X.; Hong, L.; Wang, Y. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur. J. Oral Sci. 2010. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Han, G.-J.; Kim, C.-K.; Oh, K.-H.; Chung, S.-N.; Chun, B.-H.; Cho, B.-H. Promotion of adhesive penetration and resin bond strength to dentin using non-thermal atmospheric pressure plasma. Eur. J. Oral Sci. 2016, 124, 89–95. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Dusevich, V.; Liu, Y.; Yu, Q.; Wang, Y. Non-thermal atmospheric plasma brush induces HEMA grafting onto dentin collagen. Dent. Mater. 2014, 30, 1369–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Meerbeek, B.; De Munck, J.; Yoshida, Y.; Inoue, S.; Vargas, M.; Vijay, P.; Van Landuyt, K.; Lambrechts, P.; Vanherle, G. Buonocore memorial lecture. Adhesion to enamel and dentin: Current status and future challenges. Oper. Dent. 2003, 28, 215–235. [Google Scholar]
- Wagner, A.; Wendler, M.; Petschelt, A.; Belli, R.; Lohbauer, U. Bonding performance of universal adhesives in different etching modes. J. Dent. 2014, 42, 800–807. [Google Scholar] [CrossRef]
- Reis, A.; Carrilho, M.; Breschi, L.; Loguercio, A.D. Overview of clinical alternatives to minimize the degradation of the resin-dentin bonds. Oper. Dent. 2013, 38, E103–E127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, A.; Pellizzaro, A.; Dal-Bianco, K.; Gomes, O.M.; Patzlaff, R.; Loguercio, A.D. Impact of Adhesive Application to Wet and Dry Dentin on Long-term Resin-dentin Bond Strengths. Oper. Dent. 2007, 32, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, Y.; Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Torii, Y.; Ogawa, T.; Osaka, A.; Meerbeek, B. Van Self-assembled nano-layering at the adhesive interface. J. Dent. Res. 2012, 91, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Vargas, M.A.; Abe, Y.; Yoshida, Y.; Lambrechts, P.; Vanherle, G.; Sano, H.; Van Meerbeek, B. Microtensile bond strength of eleven contemporary adhesives to dentin. J. Adhes. Dent. 2001, 3, 237–245. [Google Scholar] [PubMed]
- Cardoso, M.V.; Delmé, K.I.M.; Mine, A.; Neves, A.D.A.; Coutinho, E.; De Moor, R.J.G.; Van Meerbeek, B. Towards a better understanding of the adhesion mechanism of resin-modified glass-ionomers by bonding to differently prepared dentin. J. Dent. 2010, 38, 921–929. [Google Scholar] [CrossRef]
- De Munck, J.; Van Meerbeek, B.; Yudhira, R.; Lambrechts, P.; Vanherle, G. Micro-tensile bond strength of two adhesives to Erbium:YAG-lased vs. bur-cut enamel and dentin. Eur. J. Oral Sci. 2002, 110, 322–329. [Google Scholar] [CrossRef]
- Aoki, A.; Ishikawa, I.; Yamada, T.; Otsuki, M.; Watanabe, H.; Tagami, J.; Ando, Y.; Yamamoto, H. Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro. J. Dent. Res. 1998. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Code, J.E.; Van de Merwe, W.P. Er:YAG laser ablation of enamel and dentin of human teeth: Determination of ablation rates at various fluences and pulse repetition rates. Lasers Surg. Med. 1992, 12, 625–630. [Google Scholar] [CrossRef]
- Comba, A.; Baldi, A.; Michelotto Tempesta, R.; Cedrone, A.; Carpegna, G.; Mazzoni, A.; Breschi, L.; Alovisi, M.; Pasqualini, D.; Scotti, N.; et al. Effect of Er:YAG and Burs on Coronal Dentin Bond Strength Stability. J. Adhes. Dent. 2019, 21, 329–335. [Google Scholar] [CrossRef]
- Samad-Zadeh, A.; Harsono, M.; Belikov, A.; Shatilova, K.V.; Skripnik, A.; Stark, P.; Egles, C.; Kugel, G. The influence of laser-textured dentinal surface on bond strength. Dent. Mater. 2011, 27, 1038–1044. [Google Scholar] [CrossRef]
- Ikeda, T.; De Munck, J.; Shirai, K.; Hikita, K.; Inoue, S.; Sano, H.; Lambrechts, P.; Van Meerbeek, B. Effect of evaporation of primer components on ultimate tensile strengths of primer–adhesive mixture. Dent. Mater. 2005, 21, 1051–1058. [Google Scholar] [CrossRef]
- Mine, A.; De Munck, J.; Cardoso, M.V.; Van Landuyt, K.L.; Poitevin, A.; Van Ende, A.; Matsumoto, M.; Yoshida, Y.; Kuboki, T.; Yatani, H.; et al. Dentin-smear remains at self-etch adhesive interface. Dent. Mater. 2014, 30, 1147–1153. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Mendonça, J.S.; Santiago, S.L.; Silveira, R.R.; Garcia, F.C.P.; Tay, F.R.; Pashley, D.H. Effects of HEMA/solvent combinations on bond strength to dentin. J. Dent. Res. 2003, 82, 597–601. [Google Scholar] [CrossRef]
- Pashley, D.H.; Ciucchi, B.; Sano, H.; Horner, J.A. Permeability of dentin to adhesive agents. Quintessence Int. 1993, 24, 618–631. [Google Scholar]
- Reis, A.; de Carvalho Cardoso, P.; Vieira, L.C.C.; Baratieri, L.N.; Grande, R.H.M.; Loguercio, A.D. Effect of prolonged application times on the durability of resin–dentin bonds. Dent. Mater. 2008, 24, 639–644. [Google Scholar] [CrossRef]
- Yoshihara, K.; Yoshida, Y.; Hayakawa, S.; Nagaoka, N.; Torii, Y.; Osaka, A.; Suzuki, K.; Minagi, S.; Van Meerbeek, B.; Van Landuyt, K.L. Self-etch Monomer-Calcium Salt Deposition on Dentin. J. Dent. Res. 2011, 90, 602–606. [Google Scholar] [CrossRef]
- Manuja, N.; Nagpal, R.; Pandit, I.K. Dental adhesion: Mechanism, techniques and durability. J. Clin. Pediatr. Dent. 2012, 36, 223–234. [Google Scholar] [CrossRef]
- Hass, V.; Luque-Martinez, I.V.; Gutierrez, M.F.; Moreira, C.G.; Gotti, V.B.; Feitosa, V.P.; Koller, G.; Otuki, M.F.; Loguercio, A.D.; Reis, A. Collagen cross-linkers on dentin bonding: Stability of the adhesive interfaces, degree of conversion of the adhesive, cytotoxicity and in situ MMP inhibition. Dent. Mater. 2016, 32, 732–741. [Google Scholar] [CrossRef]
- Daood, U.; Yiu, C.K.Y.; Burrow, M.F.; Niu, L.-N.; Tay, F.R. Effect of a novel quaternary ammonium silane on dentin protease activities. J. Dent. 2017, 58, 19–27. [Google Scholar] [CrossRef]
- Favetti, M.; Schroeder, T.; Montagner, A.F.; Correa, M.B.; Pereira-Cenci, T.; Cenci, M.S. Effectiveness of pre-treatment with chlorhexidine in restoration retention: A 36-month follow-up randomized clinical trial. J. Dent. 2017, 60, 44–49. [Google Scholar] [CrossRef]
- Mazzoni, A.; Angeloni, V.; Apolonio, F.M.; Scotti, N.; Tjäderhane, L.; Tezvergil-Mutluay, A.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Breschi, L. Effect of carbodiimide (EDC) on the bond stability of etch-and-rinse adhesive systems. Dent. Mater. 2013, 29, 1040–1047. [Google Scholar] [CrossRef]
- Carvalho, C.; Fernandes, F.P.; Freitas, V.D.P.; França, F.M.G.; Basting, R.T.; Turssi, C.P.; Amaral, F.L.B. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin. J. Appl. Oral Sci. 2016, 24, 211–217. [Google Scholar] [CrossRef]
- de Carvalho, R.V.; Vieira, E.O.; Gaviolli, E.; Graunke, A.; Chisini, L.A.; Bacchi, A.; Ghiggi, P.C.; van de Sande, F.H. Doxycycline as a dentin pretreatment agent for MMP-2 inhibition and maintaining hybrid layer stability over time. Int. J. Adhes. Adhes. 2020, 98, 102510. [Google Scholar] [CrossRef]
- Münchow, E.A.; Bottino, M.C. Recent Advances in Adhesive Bonding: The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates. Curr. Oral Heal. Reports 2017, 4, 215–227. [Google Scholar] [CrossRef]
- Bailey, A.J.; Light, N.D.; Atkins, E.D.T. Chemical cross-linking restrictions on models for the molecular organization of the collagen fibre. Nature 1980, 288, 408–410. [Google Scholar] [CrossRef]
- Fawzy, A.S.; Nitisusanta, L.I.; Iqbal, K.; Daood, U.; Neo, J. Riboflavin as a dentin crosslinking agent: Ultraviolet A versus blue light. Dent. Mater. 2012, 28, 1284–1291. [Google Scholar] [CrossRef]
- Bourgi, R.; Daood, U.; Bijle, M.N.; Fawzy, A.; Ghaleb, M.; Hardan, L. Reinforced Universal Adhesive by Ribose Crosslinker: A Novel Strategy in Adhesive Dentistry. Polymers 2021, 13, 704. [Google Scholar] [CrossRef]
- Kishen, A.; Shrestha, S.; Shrestha, A.; Cheng, C.; Goh, C. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation. Dent. Mater. 2016, 32, 968–977. [Google Scholar] [CrossRef]
- Daood, U.; Sauro, S.; Pichika, M.R.; Omar, H.; Liang Lin, S.; Fawzy, A.S. Novel riboflavin/VE-TPGS modified universal dentine adhesive with superior dentine bond strength and self-crosslinking potential. Dent. Mater. 2020, 36, 145–156. [Google Scholar] [CrossRef]
- Faggion, C.M., Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef]
Search Strategy | |
---|---|
# 1 | Universal adhesives OR Universal adhesive OR Universal simplified adhesive systems OR Universal Dental Adhesives OR Multipurpose adhesives OR multi-purpose adhesives OR multimode adhesives OR multi-mode adhesives or universal bonding agent |
# 2 | Bond OR Bonding OR Dental bonding OR Bonding efficacy OR bond strength OR Bonding performance OR bonding effectiveness OR Bond performance OR adhesive properties OR microtensile strength OR Micro-tensile strength OR bonding properties OR Microtensile bond strength OR shear bond strength OR microshear bond strength OR performance |
# 3 | Dentine OR Dentin |
# 4 | #1 and #2 and #3 |
Study | Aging/Storage | Strategy | Bond Strength Test | Adhesive System Used |
---|---|---|---|---|
Flury, 2017 | 24 h of water storage at 37 °C | Air Abrasion | Dentin μSBS | Scotchbond Universal (3M ESPE) |
Sutil, 2017 | 24 h of water storage at 37 °C | Air Abrasion | Dentin μTBS | Scotchbond Universal (3M ESPE) |
Bacelar-Sá, 2017 | 24 h of water storage at 37 °C 6 months of water storage at 37 °C | Application of collagen crosslinking agents | Dentin μTBS | Scotchbond Universal (3M ESPE) Prime & Bond Elect (Dentsply) All-Bond 3 (Bisco Inc.) G-Aenial (GC Corp.) |
Baena, 2020 | 24 h of water storage at 37 °C 10,000 thermocycles between 5 and 55 °C | Application of collagen crosslinking agents | Dentin μTBS | OptiBond FL (Kerr) Scotchbond Universal (3M ESPE) |
Cha, 2016 | 24 h of water storage at 37 °C | Application of collagen crosslinking agents | Dentin SBS | Scotchbond Universal (3M ESPE) |
de Lima, 2018 | 24 h of water storage at 37 °C | Application of collagen crosslinking agents | Dentin μTBS | Prime & Bond Elect (Dentsply) |
Kaynar, 2020 | 10,000 thermocycles between 5 and 55 °C | Application of collagen crosslinking agents | Dentin μTBS | Peak Universal Bond (Ultradent Products Inc.) G-Premio Bond (GC Corp) |
Kusdemir, 2015 | 48 h of water storage at 37 °C | Application of collagen crosslinking agents | Dentin μTBS | Single Bond Universal (3M ESPE) |
Paulose, 2017 | 24 h of water storage at 37 °C 1 year of water storage at 37 °C | Application of collagen crosslinking agents | Dentin μTBS | Single Bond Universal (3M ESPE) Adper Scotchbond Multi-Purpose Plus (3M ESPE) |
Zhang, 2020 | 24 h of water storage at 37 °C 1-month collagenase ageing | Application of collagen crosslinking agents | Dentin μTBS | Single Bond Universal (3M ESPE) |
Luong, 2020 | 1 h of water storage at 37 °C | Application of dentin desensitizer | Dentin μSBS | Parkell Universal Adhesive PBOND (Parkell, Edgewood, NY, USA) Clearfil SE 2 (Kuraray Noritake) |
iso, 2016 | 1000 thermal cycles between 5 °C and 55 °C | Application of dentin desensitizer | Dentin μTBS | Clearfil Universal Bond (Kuraray Noritake) |
Bravo, 2017 | (72 h, 3 months, 6 months) of storage in distilled water at room temperature | Application of matrix metalloproteinases (MMP) inhibitors | Dentin μTBS | Adper Scotchbond 1XT (3M ESPE) Adper Prompt L-Pop (3M ESPE) Single Bond Universal (3M ESPE) |
Bravo, 2017 (b) | (72 h, 3 months, 6 months) of storage in distilled water at room temperature | Application of MMP inhibitors | Dentin SBS | Adper Scotchbond 1XT (3M ESPE) Adper Prompt L-Pop (3M ESPE) Single Bond Universal (3M ESPE) |
Chaharom, 2018 | 500 thermal cycles between 5 °C and 55 °C | Application of MMP inhibitors | Dentin μTBS | All-Bond 3 (Bisco Inc.) Clearfil SE Bond (Kuraray Noritake) All Bond Universal (Bisco Inc.) |
Giacomini, 2020 | 24 h of storage in artificial saliva at 37 °C 6 months of storage in artificial saliva at 37 °C | Application of MMP inhibitors | Dentin μTBS | Single Bond Universal (3M ESPE) Adper Single Bond 2 (3M ESPE) |
Mohamed, 2020 | (24 h, 3 months, 6 months) of storage in distilled water at 37 °C | Application of MMP inhibitors | Dentin μTBS | Single Bond Universal (3M ESPE) |
Paulose, 2017 (b) | 24 h and 1 year of storage in distilled water at 37 °C | Application of MMP inhibitors | Dentin μTBS | Single Bond Universal (3M ESPE) Adper Single Bond 2 (3M ESPE) |
Peng, 2020 | 24 h of water storage at 37 °C 10,000 cycles between 5 °C and 55 °C one-month collagenase ageing samples were immersed in 0.1 mg/mL collagenase solution at 37 °C | Application of MMP inhibitors | Dentin μTBS | Scotchbond Universal (SBU; 3M ESPE) |
Shadman, 2018 | 24 h and 500 thermal cycles between 5 °C and 55 °C in distilled water at 37 °C | Application of MMP inhibitors | Dentin SBS | Scotchbond Universal (3M ESPE) Scotchbond Multi-Purpose Plus (3M ESPE) |
Tekçe, 2016 | 24 h of water storage at 37 °C 12 months of water storage at 37 °C | Application of MMP inhibitors | Dentin μTBS | Single Bond Universal (3M ESPE) All Bond Universal (Bisco Inc.) |
Vivanco, 2020 | 30 days of water storage at 37 °C 1.200.000 cycles with 5/37/55 °C | Application of MMP inhibitors | Dentin μTBS | Single Bond Universal (3M ESPE) Adper Scotchbond Multi-Purpose Plus (3M ESPE) |
Zenobi, 2017 | water immersion for 24 h 200,000 mechanical cycles under a load of 30 N, at a rate of 2 Hz for one week | Application of MMP inhibitors | Dentin μTBS | Single Bond Universal (3M ESPE) |
Ahn, 2014 | 24 h of water storage at room temperature | Ethanol-wet bonding | Dentin μTBS | Clearfil SE Bond (Kuraray Noritake) G-aenial Bond (GC Corp) Xeno V (Dentsply) BeautiBond (Shofu Inc.) Adper Easy Bond (3M ESPE) Single Bond Universal (3M ESPE) All Bond Universal (Bisco Inc.) |
Ahmed, 2019 | 1 month of water storage at 37 °C 25,000 and 50,000 thermocycles | Hydrophobic resin layer | Dentin μTBS | Clearfil SE Bond 2 (Kuraray Noritake, Osaka, Japan) Clearfil Universal Bond Quick (Kuraray Noritake) G-Premio Bond (GC Corp., Tokyo, Japan) Prime&Bond Active (Dentsply, Konstanz, Germany) |
Chasqueira, 2020 | 24 h of water storage at 37 °C 6 months in a sodium azide solution (pH = 7, 37 °C) 18 months in a sodium azide solution (pH = 7, 37 °C) | Hydrophobic resin layer | Dentin SBS | Adper Scotchbond 1XT (3M ESPE) Clearfil S3 Bond Plus (Kuraray Noritake) Solobond M (Voco; Cuxhaven, Germany) Adper Easy Bond (3M ESPE) Scotchbond Universal (3M ESPE) |
Ermis, 2019 | 24 h of water storage at 37 °C 6 months of water storage at 37 °C | Hydrophobic resin layer | Dentin μTBS | Clearfil SE Bond (Kuraray Noritake) OptiBond XTR (Kerr Co., Orange, CA, USA) Clearfil Universal Bond Quick (Kuraray Noritake) Single Bond Universal (3M ESPE, St Paul, MN, USA) |
Muñoz, 2014 | 24 h of water storage at 37 °C | Hydrophobic resin layer | Dentin μTBS | All Bond Universal (Bisco Inc., Schaumburg, IL, USA) Scotchbond Universal (3M ESPE) G-Bond Plus (GC Corp.) |
Perdigāo, 2014 | 24 h of water storage at 37 °C | Hydrophobic resin layer | Dentin μTBS Enamel μSBS | G-Bond Plus (GC Corp.) |
Sezinando, 2015 | 24 h of water storage at 37 °C 6 months of water storage at 37 °C | Hydrophobic resin layer | Dentin μTBS | Scotchbond Universal (3M ESPE) G-Bond Plus (GC Corp.) All Bond Universal (Bisco Inc.) |
Vinagre, 2019 | 7 days of water storage at 37 °C 4 years of water storage at 37 °C | Hydrophobic resin layer | Dentin μTBS | Scotchbond Universal (3M ESPE) Adper Scotchbond Multi-Purpose Plus (3M ESPE) |
Comba, 2019 | 24 h of water storage at 37 °C 6 months of water storage at 37 °C | Laser | Dentin μTBS | Clearfil SE Bond 2 (Kuraray Noritake) All Bond Universal (Bisco Inc.) OptiBond FL (Kerr Co.) |
Sellan, 2020 | 10,000 cycles between 5 °C and 55 °C | Laser | Dentin μTBS | Single Bond Universal (3M ESPE) |
Shadman, 2019 | 500 cycles of thermocycling between 5 and 55 °C | Laser | Dentin SBS | Scotchbond Universal (3M ESPE) |
Silva, 2016 | 48 h of water storage at 37 °C | Laser | Dentin μTBS | Scotchbond Universal (3M ESPE) |
Silva, 2019 | 500 cycles of thermocycling between 5 and 55 °C | Laser | Dentin SBS | Clearfil SE Bond (Kuraray Noritake) Scotchbond Universal (3M ESPE) |
Rechmann, 2017 | 24 h of water storage at 37 °C | Laser | Dentin SBS Enamel SBS | OptiBond Solo Plus (Kerr Co.) Peak Universal Bond (Ultradent Products Inc., South Jordan, UT, USA) Scotchbond Universal (3M ESPE) |
Trevelin, 2019 | 24 h of water storage at 37 °C 1 year of storage in artificial saliva at 37 °C | Laser | Dentin μSBS | Scotchbond Universal (3M ESPE) |
Yazici, 2016 | 24 h of water storage at 37 °C | Laser | Dentin SBS | Single Bond Universal (3M ESPE) |
Chowdhury, 2019 | 24 h of water storage at 37 °C | Multiple layer application | Dentin μTBS | Scotchbond Universal (3M ESPE) G-Premio Bond (GC Corp) Clearfil Megabond 2 (Kuraray Noritake) |
Chowdhury, 2019 (b) | 24 h of water storage at 37 °C | Multiple layer application | Dentin μTBS | Scotchbond Universal (3M ESPE) G-Premio Bond (GC Corp) Clearfil Megabond 2 (Kuraray Noritake) |
Fujiwara, 2018 | 24 h of water storage at 37 °C | Multiple layer application | Dentin and Enamel SBS | Scotchbond Universal (3M ESPE) Prime & Bond elect (Dentsply, Caulk Milford, DE, USA) G-aenial Bond (GC Corp.) Beautibond (Shofu Inc., Kyoto, Japan) OptiBond XTR (Kerr Co.) |
Pashaev, 2017 | 24 h of water storage at 37 °C 6 months of water storage at 37 °C | Multiple layer application | Dentin μTBS | Single Bond Universal (3M ESPE) All Bond Universal (Bisco Inc.) Adper Easy One (3M ESPE) Adper Single Bond 2 (3M ESPE) |
Taschner, 2014 | 24 h in artificial saliva 6 months in artificial saliva at 37 °C five hours in 10% NaOCl and then one hour in distilled water at room temperature | Multiple layer application | Dentin μTBS | iBond SE (Heraeus-Kulzer, Hanau, Germany) Xeno V+ (Dentsply DeTrey, Konstanz, Germany) Scotchbond Universal (3M ESPE) Clearfil S3 Bond (Kuraray Noritaken) |
Ugurlu, 2020 | 24 h of water storage at 37 °C | Multiple layer application | Dentin μTBS | Single Bond Universal (3M ESPE) Gluma Bond Universal (Heraeus Kulzer) Prime&Bond Elect (Dentsply DeTrey) Clearfil SE Bond (Kuraray Noritake) |
Zecin-Deren, 2020 | 24 h of saline storage | Multiple layer application | Dentin SBS | Single Bond Universal (3M ESPE) Prime & Bond One Select (Dentsply) Xeno V (Dentsply) AdperTM Easy One (3M ESPE) |
Zecin-Deren, 2020 (b) | 24 h of saline storage | Multiple layer application | Dentin SBS | Single Bond Universal (3M ESPE) Prime & Bond One Select (Dentsply) Xeno V (Dentsply) AdperTM Easy One (3M ESPE) |
Ayres, 2017 | 24 h of water storage at 37 °C 2 years of water storage at 37 °C | Non-thermal atmospheric plasma | Dentin μTBS | Scotchbond Universal (3M ESPE) |
Ayres, 2018 | 24 h of water storage at 37 °C 1 years of direct water exposure 1 year of simulated pulpal pressure | Non-thermal atmospheric plasma | Dentin μTBS | Scotchbond Universal (3M ESPE) |
Alqahtani, 2014 | 24 h of water storage at 37 °C | Prolonged curing time | Dentin SBS | Single Bond Universal (3M ESPE) Xeno V+ (Dentsply) AdheSE One F VivaPen (Ivoclar Vivadent) |
Sampaio, 2017 | 24 h of water storage at 37 °C 2 years of water storage at 37 °C | Prolonged curing time | Dentin μTBS | Adper Single Bond 2 (3M ESPE) Optibond Solo Plus (Kerr) Optibond All-In-One (Kerr) Clearfil SE Bond (Kuraray Noritake) Scotchbond Universal (3M ESPE) |
Fu, 2017 | 24 h of water storage at 37 °C | Prolonged blowing time | Dentin μTBS | Scotchbond Universal (3M ESPE) All Bond Universal (Bisco Inc.) G-Premio Bond (GC Corp) Clearfil Universal Bond (Kuraray Noritake) Optibond All-in-one (Kerr) |
Luque-Martinez, 2014 | 24 h of water storage at 37 °C | Prolonged blowing time | Dentin μTBS | Scotchbond Universal (3M ESPE) All Bond Universal (Bisco Inc.) Prime & Bond Elect (Dentsply) |
Saikaew, 2018 | 24 h of water storage at 37 °C 1 year of water storage | Prolonged blowing time | Dentin μTBS | Scotchbond Universal (3M ESPE) G-Premio Bond (GC Corp) Clearfil Universal Bond (Kuraray Noritake) |
Irmak, 2018 | 24 h of water storage at 37 °C 10,000 cycles between 5 °C and 55 °C | Scrubbing technique | Dentin μTBS | Single Bond Universal (3M ESPE) Clearfil Universal Bond Quick (Kuraray Noritake) |
Jang, 2018 | 24 h of water storage at 37 °C Artificial aging (10% aqueous sodium hypochlorite solution for 1 h at room temperature) | Scrubbing technique | Dentin μTBS | G-Premio Bond (GC Corp) |
Thanatvarakorn, 2016 | 24 h of water storage at 37 °C | Scrubbing technique | Dentin μTBS | SE One (Kuraray Noritake) Scotchbond Universal (3M ESPE) |
Kharouf, 2019 | 24 h of water storage at 37 °C | Selective dentin etching | Dentin μTBS | Prime & Bond® active (Dentsply) |
Stape, 2018 | 24 h of water storage at 37 °C 6 months of storage in artificial saliva | Selective dentin etching | Dentin μTBS | Scotchbond Universal (3M ESPE) Scotchbond Multi-Purpose Plus (3M ESPE) |
Takamizawa, 2016 | 24 h of water storage at 37 °C | Selective dentin etching | Dentin SBS | Prime & Bond Elect (Dentsply) Scotchbond Universal (3M ESPE) G-ænial Bond (GC Corp.) OptiBond XTR (Kerr Co.) |
Pashaev,2017 | 24 h of water storage at 37 °C 6 months of water storage at 37 °C | Prolonged application time | Dentin μTBS | All Bond Universal (Bisco Inc.) Single Bond Universal (3M ESPE) Adper Easy One (3M ESPE, St Paul, MN, USA) Adper Single Bond 2 (3M ESPE, St Paul, MN, USA) |
Ahmed, 2019 | 1 week of water storage at 37 °C 6 months of water storage at 37 °C | Prolonged application time | Dentin μTBS | Scotchbond Universal (3M ESPE) Clearfil Universal Bond Quick (Kuraray Noritake) Clearfil SE Bond 2 (Kuraray Noritake) |
Amsler, 2015 | 24 h of water storage at 37 °C | Shortened application time | Dentin SBS | Syntac Classic (Ivoclar Vivadent; Schaan, Liechtenstein) OptiBond FL (Kerry) Clearfil SE Bond (Kuraray Noritake) AdheSE (Ivoclar Vivadent) Xeno Select (Dentsply) Scotchbond Universal (3M ESPE) |
Huang, 2017 | 24 h of water storage at 37 °C 10,000 thermal cycles (10 °C for one min, 25 °C for one min and 55 °C for one min) and 240,000 mechanical cycles | Shortened application time | Dentin μTBS | G-Premio Bond (GC Corp) |
Saikaew, 2016 | 24 h of water storage at 37 °C | Shortened application time | Dentin μTBS | G-Premio Bond (GC Corp) Clearfil Universal Bond (Kuraray Noritake) Scotchbond Universal (3M ESPE) |
Saikaew, 2018 | 24 h of water storage at 37 °C 1 year of water storage at 37 °C | Shortened application time | Dentin μTBS | G-Premio Bond (GC Corp) Clearfil Universal Bond (Kuraray Noritake) Scotchbond Universal (3M ESPE) |
Zecin-Deren, 2019 | 24 h saline solution | Shortened application time | Dentin SBS | Single Bond Universal (3M ESPE) Prime & Bond One Select (Dentsply) Xeno V (Dentsply) AdperTM Easy One (3M ESPE) |
Guarda, 2020 | 24 h of water storage at 37 °C | Electric-current application | Dentin μTBS | Single Bond Universal (3M ESPE) Adper Single Bond 2 (3M ESPE) Clearfil SE Bond (Kuraray Noritake) |
Cecchin, 2018 | 24 h of water storage at 37 °C | a-hydroxy glycolic acid (GA) as a surface pretreatment | Dentin and enamel μTBS | Scotchbond Universal (3M ESPE) Adper Single Bond (3M ESPE) One Step Plus Bisco (Schaumburg) |
Cangul, 2020 | 24 h of water storage at 37 °C | Ozone as cavity disinfectant | Dentin SBS | Clearfil SE Protect primer (Kuraray) Clearfil SE Protect Bond (Kuraray) Peek Universal (Ultradent Products Inc.) Gluma 2 Bond (Heraeus Kulzer) |
Demirel, 2019 | 10,000 thermocycles between 5 °C and 55 °C | Different etching modes and etching time | Dentin μSBS | Single Bond Universal (3M ESPE) All Bond Universal (Bisco Inc.) Clearfil Universal Bond Quick (Kuraray Noritake) Clearfil SE Bond (Kuraray Noritake) Clearfil S3 Bond Plus (Kuraray Noritake) Adper Single Bond 2 (3M ESPE) |
Akarsu, 2019 | 2 h of water storage at 36 °C | Pre-warming of adhesive bottles | Dentin SBS | All Bond Universal (Bisco Inc.) Single Bond Universal (3M ESPE) Clearfil SE Bond (Kuraray Noritake) |
Chen, 2020 | 24 h of water storage at 37 °C 100 days of water storage at 37 °C | Air-blowing with warm air | Dentin μTBS | All Bond Universal (Bisco Inc.) Single Bond Universal (3M ESPE) Clearfil Universal Bond (Kuraray Noritake) Gluma Bond Universal (Heraeus Kulzer) Adhese Universal (Ivoclar Vivadent) |
Thanatvarakorn, 2018 | 24 h of water storage at 37 °C | Smear layer deproteinizing | Dentin μTBS | SE One (Kuraray Noritake) Scotchbond Universal (3M ESPE) BeautiBond Multi (Shofu) Bond Force (Tokuyama Dental) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardan, L.; Bourgi, R.; Kharouf, N.; Mancino, D.; Zarow, M.; Jakubowicz, N.; Haikel, Y.; Cuevas-Suárez, C.E. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 814. https://doi.org/10.3390/polym13050814
Hardan L, Bourgi R, Kharouf N, Mancino D, Zarow M, Jakubowicz N, Haikel Y, Cuevas-Suárez CE. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers. 2021; 13(5):814. https://doi.org/10.3390/polym13050814
Chicago/Turabian StyleHardan, Louis, Rim Bourgi, Naji Kharouf, Davide Mancino, Maciej Zarow, Natalia Jakubowicz, Youssef Haikel, and Carlos Enrique Cuevas-Suárez. 2021. "Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis" Polymers 13, no. 5: 814. https://doi.org/10.3390/polym13050814
APA StyleHardan, L., Bourgi, R., Kharouf, N., Mancino, D., Zarow, M., Jakubowicz, N., Haikel, Y., & Cuevas-Suárez, C. E. (2021). Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers, 13(5), 814. https://doi.org/10.3390/polym13050814