Effects of Molecular Weight of Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of SSBR/Silica Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Polymerization
2.1.2. Compounding
2.2. Measurements
2.2.1. Gel Permeation Chromatography
2.2.2. Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR)
2.2.3. Differential Scanning Calorimetry (DSC)
2.2.4. Payne Effect
2.2.5. Mooney Viscosity
2.2.6. Cure Characteristics
2.2.7. Solvent Extraction and Crosslink Density
2.2.8. Mechanical Properties
2.2.9. Abrasion Resistance
2.2.10. Viscoelastic Properties
2.3. Synthesis and Functionalization of Liquid Butadiene Rubbers
2.4. Preparation of SSBR/silica Compounds and Vulcanizates
3. Results and Discussion
3.1. Synthesis of LqBR
3.2. Payne Effect
3.3. Cure Characteristics and Mooney Viscosity of the Compounds
3.4. Crosslink Density and Solvent Extraction
3.5. Mechanical Properties and DIN Abrasion Loss
3.6. Dynamic Viscoelastic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruendken, M.; Velencoso, M.M.; Hirata, K.; Blume, A. Structure-property relationship of low molecular weight ‘liquid’ polymers in blends of sulfur cured SSBR-rich compounds. Polym. Test. 2020, 87, 106558. [Google Scholar] [CrossRef]
- Kuraray Liquid Rubber. Available online: https://www.elast omer.kuraray.com/downloads/product-brochures/ (accessed on 20 February 2019).
- Luxton, A.R. The preparation, modification and applications of nonfunctional liquid polybutadienes. Rubber Chem. Technol. 1981, 54, 596–626. [Google Scholar] [CrossRef]
- Deutscher Verlag für. Grundstoffindustrie. Roh-und Hilfsstoffe in der Gummiindustrie; VEB Deutscher Verlag für Grundstoffindustrie: Leipzig, Germany, 1968; p. 22. [Google Scholar]
- Salort, F.; Henning, S.K. Silane-terminated liquid poly (butadienes) in tread formulations: A mechanistic study. Rubber Chem. Technol. 2020. [Google Scholar] [CrossRef]
- European Union. Directive 2005/69/EC of the European Parliament and of the Council of 16 Nov 2005. Off. J. Eur. Union 2005, 2, 214–217. [Google Scholar]
- Ezzoddin, S.; Abbasian, A.; Aman Alikhani, M. The influence of non-carcinogenic petroleum-based process oils on tire compounds’ performance. Iran. Polym. J. 2013, 22, 697–707. [Google Scholar] [CrossRef]
- Nakazono, T.; Matsumoto, A. Mechanical properties and thermal aging behavior of styrene-butadiene rubbers vulcanized using liquid diene polymers as the plasticizer. J. Appl. Polym. Sci. 2010, 118, 2314–2320. [Google Scholar] [CrossRef]
- Kataoka, T.; Zetterlund, P.B.; Yamada, B. Effects of storage and service on tire performance: Oil component content and swelling behavior. Rubber Chem. Technol. 2003, 76, 507–516. [Google Scholar] [CrossRef]
- Gruendken, M. Liquid rubber for safer and faster tires. In Proceedings of the Tire technology EXPO 2018, Hannover, Germany, 14–16 February 2017. [Google Scholar]
- Ikeda, K. Bio Liquid Polymer for Winter Tires. In Proceedings of the Tire Technology EXPO 2018, Hanover, Germany, 20–22 February 2018. [Google Scholar]
- Sierra, V.P.; Wagemann, J.; Van De Pol, C.; Kendziorra, N.; Herzog, K.; Recker, C.; Mueller, N. Rubber Blend with Improved Rolling Resistance Behavior. U.S. Patent 9,080,042, 14 July 2015. [Google Scholar]
- Hirata, J.K. Effects of crosslinkable plasticizers. RFP Rubber Fibers Plast. Int. 2011, 6, 212–215. [Google Scholar]
- Choi, S.S. Improvement of the filler dispersion in silica-filled SBR compounds using low molecular weight polybutadiene treated with maleic anhydride. Elastomers Compos. 2006, 41, 10–18. [Google Scholar]
- Hogan, T.E.; Hergenrother, W.L.; Tallman, M. Amine-Containing Alkoxysilyl-Functionalized Polymers. U.S. Patent 8,148,486, 3 April 2012. [Google Scholar]
- Hsu, W.L.; Halasa, A.F. Rubbers Having Improved Interaction with Silica. U.S. Patent 5,652,310, 29 July 1997. [Google Scholar]
- Taniguchi, K.; Tsukimawashi, K.; Kobayashi, N.; Tadaki, T. Conjugated-diolefin (co) polymer rubber and process for producing the same. U.S. Patent 7,528,199, 5 May 2009. [Google Scholar]
- Flory, P.J. Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950, 18, 108–111. [Google Scholar] [CrossRef]
- Lee, J.Y. The effect of accelerator contents on the vulcanizates structures of SSBR silica vulcanizates. Compos. Interfaces 2016, 24, 563–577. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: New York, NY, USA, 1971; p. 576. [Google Scholar]
- Ahn, B.; Park, N.; Kim, D.; Kim, W. Influence of end-functionalized solution styrene–butadiene rubber on silica-filled vulcanizates with various silica–silane systems. Rubber Chem. Technol. 2019, 92, 364–377. [Google Scholar] [CrossRef]
- Antkowiak, T.A.; Oberster, A.E.; Halasa, A.F.; Tate, D.P. Temperature and concentration effects on polar-modified alkyllithium polymerizations and copolymerizations. J. Polym. Sci. Part A-1 Polym. Chem. 1972, 10, 1319–1334. [Google Scholar] [CrossRef]
- Derouet, D.; Forgeard, S.; Brosse, J.C. Synthesis of alkoxysilyl-terminated polyisoprenes by means of “living” anionic polymerization, 1. Modeling of the termination step by studying the reaction of butyllithium with various alkoxysilane reagents. Macromol. Chem. Phys. 1998, 199, 1835–1842. [Google Scholar]
- Colucci, G.; Di Gianni, A.; Bongiovanni, R.; Priola, A.; Torello, F.; Bracco, S.; Sozzani, P. Modification of silica by liquid polybutadienes containing alkoxysilane groups. Macromol. Symp. 2010, 296, 550–556. [Google Scholar] [CrossRef]
- Lal, J. Effect of crosslink structure on properties of natural rubber. Rubber Chem. Technol. 1970, 43, 664–686. [Google Scholar] [CrossRef]
- Fan, R.; Zhang, Y.; Huang, C.; Zhang, Y.; Fan, Y.; Sun, K. Effect of crosslink structures on dynamic mechanical properties of natural rubber vulcanizates under different aging conditions. J. Appl. Polym. Sci. 2001, 81, 710–718. [Google Scholar] [CrossRef]
- Valladares, D.; Toki, S.; Sen, T.Z.; Yalcin, B.; Cakmak, M. The effect of natural rubber crosslink density on real time birefringence, true stress and true strain behavior. Macromol. Symp. 2002, 185, 149–166. [Google Scholar] [CrossRef]
- Minoura, Y.; Yamashita, S.; Okamoto, H.; Matsuo, T.; Izawa, M.; Kohmoto, S. Crosslinking and mechanical property of liquid rubber. II. Curative effect of aromatic diols. J. Appl. Polym. Sci. 1978, 22, 3101–3110. [Google Scholar] [CrossRef]
- Ventura, A.; Chenal, T.; Bria, M.; Bonnet, F.; Zinck, P.; Ngono-Ravache, Y.; Visseaux, M. Trans-stereospecific polymerization of butadiene and random copolymerization with styrene using borohydrido neodymium/magnesium dialkyl catalysts. Eur. Polym. J. 2013, 49, 4130–4140. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, S.; Zhang, X.; Li, X.; Bai, Y. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites. Polymer 2014, 55, 1964–1976. [Google Scholar] [CrossRef]
- Derouet, D.; Forgeard, S.; Brosee, J. Synthesis of alkoxysilyl-terminated polyisoprenes by means of ‘living’ anionic polymerization, 2. Synthesis of trialkoxysilyl-terminated 1, 4-polyisoprenes by reaction of polyisoprenyllithium with various functional trialkoxysilanes selected as end-capping reagents. Macromol. Chem. Phys. 1999, 200, 10–24. [Google Scholar]
- Ko, Y.H.; Cheen, S.W. End-Modified Styrene-Diene Block Copolymer Prepared Using Polyfunctional Coupling Agent. U.S. Patent 6,777,493, 17 August 2004. [Google Scholar]
- Payne, A.R.; Whittaker, R.E. Low strain dynamic properties of filled rubbers. Rubber Chem. Technol. 1971, 44, 440–478. [Google Scholar] [CrossRef]
- Schreiber, H.P.; Bagley, E.B.; West, D.C. Viscosity/Molecular weight relation in bulk polymers—I. Polymer 1963, 4, 355–364. [Google Scholar] [CrossRef]
- Méndez-Hernández, M.L.; Rivera-Armenta, J.L.; Páramo–García, U.; Crorna Galvan, S.; García-Alamilla, R.; Salazar-Cruz, B.A. Synthesis of high cis-1, 4-BR with Neodymium for the manufacture of tires. Int. J. Polym. Sci. 2016, 2016, 7239540. [Google Scholar] [CrossRef] [Green Version]
- Reuvekamp, L.A.; Ten Brinke, J.W.; Van Swaaij, P.J.; Noordermeer, J.W. Effects of mixing conditions-Reaction of TESPT silane coupling agent during mixing with silica filler and tire rubber. Kautsch. Gummi Kunstst. 2002, 55, 41–47. [Google Scholar]
- Parks, C.R.; Brown, R.J. Crosslink density of elastomers. A new gas-chromatographic method. Rubber Chem. Technol. 1976, 49, 233–236. [Google Scholar] [CrossRef]
- Hashim, A.S.; Azahari, B.; Ikeda, Y.; Kohjiya, S. The effect of bis (3-triethoxysilylpropyl) tetrasulfide on silica reinforcement of styrene-butadiene rubber. Rubber Chem. Technol. 1998, 71, 289–299. [Google Scholar] [CrossRef]
- Choi, S.S. Improvement of properties of silica-filled styrene-butadiene rubber (SBR) compounds using acrylonitrile-styrene-butadiene rubber (NSBR). Polym. Adv. Technol. 2000, 14, 557–564. [Google Scholar] [CrossRef]
- Rattanasom, N.; Saowapark, T.; Deeprasertkul, C. Reinforcement of natural rubber with silica/ carbon black hybrid filler. Polym. Test. 2007, 26, 369–377. [Google Scholar] [CrossRef]
- Halasa, A.F.; Prentis, J.; Hsu, B.; Jasiunas, C. High vinyl high styrene solution SBR. Polymer 2005, 46, 4166–4174. [Google Scholar] [CrossRef]
- Padenko, E.; Berki, P.; Wetzel, B.; Karger-Kocsis, J. Mechanical and abrasion wear properties of hydrogenated nitrile butadiene rubber of identical hardness filled with carbon black and silica. J. Reinf. Plast. Comp. 2016, 35, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Derham, C.F.; Newell, R.; Swift, P.M. The use of silica for improving tread grip in winter tyres. NR Technol. 1988, 19, 1–9. [Google Scholar]
- Dörrie, H.; Schröder, C.; Wies, B. Winter tires: Operating conditions, tire characteristics and vehicle driving behavior. Tire Sci. Technol. 2010, 38, 119–136. [Google Scholar] [CrossRef]
- Hirata, K.; Moriguchi, M. Bio-based liquid rubber for tire application. Rubber World 2017, 256, 50–55. [Google Scholar]
- Maghami, S. Silica-Filled Tire Tread Compounds: An Investigation into the Viscoelastic Properties of the Rubber Compounds and their Relation to Tire Performance. Ph.D. Thesis, Elastomer Technology and Engineering, University of Twente, Twente, The Netherlands, 2016. [Google Scholar]
- Suchiva, K.; Sirisinha, C.; Sae-oui, P.; Thapthong, P. Development of tyre tread compounds for good wet-grip: Effects of rubber type. IOP Conf. Ser. Mater. Sci. Eng. 2019, 526, 12–35. [Google Scholar] [CrossRef]
- Wang, M.-J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol. 1998, 71, 520–589. [Google Scholar] [CrossRef]
- Han, S.; Kim, W.S.; Mun, D.Y.; Ahn, B.; Kim, W. Effect of coupling agents on the vulcanizate structure of carbon black filled natural rubber. Compos. Interfaces 2020, 27, 355–370. [Google Scholar] [CrossRef]
- Kitamura, T.; Lawson, D.F.; Morita, K.; Ozawa, Y. Anionic Polymerization Initiators and Reduced Hysteresis Products Therefom. U.S. Patent 5,393,721, 28 February 1995. [Google Scholar]
Processing Aid | N-LqBR | C-LqBR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample Code | N1 | N2 | N3 | N4 | N5 | C1 | C2 | C3 | C4 | C5 |
Butadiene (g) | 60 | |||||||||
Cyclohexane (g) | 300 | |||||||||
n-Butyllithium (mmol) | 10.9 | 3.9 | 2.4 | 1.6 | 1.2 | 17.1 | 11.4 | 3.6 | 3.0 | 2.1 |
Anisole (mmol) | 32.2 | 13.8 | 7.4 | 5.3 | 3.7 | 46.0 | 27.6 | 13.8 | 9.2 | 6.2 |
TEOS (mmol) | - | - | - | - | - | 9.1 | 5.5 | 1.8 | 1.5 | 1.1 |
Benzyl alcohol (mmol) | 12.2 | 4.6 | 3.0 | 2.3 | 1.5 | - | - | - | - | - |
Processing Aid | Treated Distillate Aromatic Extract (TDAE) Oil | N-LqBR | C-LqBR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample Code | TDAE | N1 | N2 | N3 | N4 | N5 | C1 | C2 | C3 | C4 | C5 |
SSBR | 100 | 100 | |||||||||
Silica | 100 | 100 | |||||||||
TESPT * | 8 | 8 | |||||||||
TDAE oil | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
N-LqBR (No. 1–5) | 0 | 30 | 30 | 30 | 30 | 30 | 0 | 0 | 0 | 0 | 0 |
C-LqBR (No. 1–5) | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 30 | 30 | 30 | 30 |
ZnO | 3 | 3 | |||||||||
Stearic acid | 2 | 2 | |||||||||
6PPD | 1 | 1 | |||||||||
DPG | 2.1 | 2.1 | |||||||||
Sulfur | 0.7 | 1.15 | |||||||||
CBS | 2.2 | 2.65 | |||||||||
ZBEC | 0.2 | 0.2 |
Time, min:s | Action | |
---|---|---|
1st stage | 0:00–0:40 | Rubber (initial temp.: 100 °C) |
0:40–1:40 | Silica 1/2 + silane1/2 + DPG1/2 + oil1/2 | |
1:40–2:40 | Silica 1/2 + silane1/2 + DPG1/2 + oil1/2 | |
2:40–5:00 | ZnO, St/A, 6PPD | |
5:00 | Ram up | |
5:00–7:40 | Extra mixing and dump (dump temp.: 150–155 °C) | |
2nd stage | 0:00–0:20 | Master batch from 1st stage (initial temp.: 50 °C) |
0:20–2:00 | Curatives and dump (dump temp.: 80–90 °C) |
Sample Code | Aliquot Sample a Mn (g/mol) | Final Sample b Mn (g/mol) | Polydispersity Index (PDI) | Vinyl Content (% in BD) | 1,4-cis/trans (wt% in BD) | Tg (°C) | Coupling Number (CN) |
---|---|---|---|---|---|---|---|
N1 | 4800 | 1.14 | 14 | 45/41 | −97 | N/A | |
N2 | 15,000 | 1.09 | 13 | 45/42 | −98 | ||
N3 | 26,000 | 1.08 | 13 | 46/41 | −97 | ||
N4 | 38,000 | 1.08 | 14 | 45/41 | −95 | ||
N5 | 50,000 | 1.07 | 13 | 46/41 | −96 | ||
C1 | 3000 | 5800 | 1.18 | 15 | 46/39 | −97 | 1.9 |
C2 | 4600 | 10,400 | 1.19 | 15 | 47/38 | −96 | 2.3 |
C3 | 12,300 | 24,800 | 1.11 | 14 | 46/40 | −94 | 2.0 |
C4 | 17,000 | 35,100 | 1.20 | 14 | 45/41 | −95 | 2.1 |
C5 | 20,300 | 44,700 | 1.34 | 14 | 46/40 | −95 | 2.2 |
Compound | TDAE | N1 | N2 | N3 | N4 | N5 | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|---|---|---|---|---|---|
ΔG′ (0.28–40.04%, MPa) | 2.34 | 1.07 | 1.17 | 1.32 | 1.73 | 1.81 | 0.8 | 0.92 | 1.1 | 1.43 | 1.74 |
Compound | Mooney Viscosity (ML1+4@100 °C) | Tmin (N·m) | Tmax (N·m) | ΔT (N·m) | t10 (min:s) | t90 (min:s) |
---|---|---|---|---|---|---|
TDAE | 121 | 0.57 | 2.14 | 1.57 | 2:32 | 6:22 |
N1 | 103 | 0.42 | 1.92 | 1.50 | 2:20 | 4:59 |
N2 | 108 | 0.45 | 1.96 | 1.50 | 2:20 | 4:59 |
N3 | 114 | 0.48 | 2.07 | 1.58 | 2:08 | 4:52 |
N4 | 119 | 0.52 | 2.18 | 1.66 | 2:17 | 5:10 |
N5 | 121 | 0.53 | 2.37 | 1.84 | 2:23 | 4:59 |
C1 | 99 | 0.32 | 1.93 | 1.61 | 2:36 | 5:16 |
C2 | 104 | 0.41 | 2.08 | 1.67 | 2:26 | 5:08 |
C3 | 110 | 0.43 | 2.19 | 1.76 | 2:26 | 4:52 |
C4 | 129 | 0.50 | 2.33 | 1.83 | 2:25 | 4:47 |
C5 | 133 | 0.53 | 2.51 | 1.98 | 2:26 | 4:39 |
Compound | TDAE | N1 | N2 | N3 | N4 | N5 | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Crosslink density (10−4 mol/g) | 1.10 | 1.05 | 1.06 | 1.07 | 1.11 | 1.13 | 1.15 | 1.16 | 1.22 | 1.24 | 1.30 |
Weight loss after the extraction (wt%) | 14.2 | 11.1 | 6.7 | 4.3 | 3.0 | 2.5 | 6.9 | 5.7 | 3.2 | 2.6 | 2.3 |
Compound | M100(kgf/cm2) | M300(kgf/cm2) | Elongation at Break (%) | Tensile Strength (kgf/cm2) | Toughness (kgf/cm2) | Compound Tg (°C) | DIN Abrasion Loss (mg) |
---|---|---|---|---|---|---|---|
TDAE | 27.5 | 112 | 527 | 226 | 59,551 | −34.8 | 100 |
N1 | 25.0 | 103 | 515 | 205 | 52,788 | −44.9 | 63 |
N2 | 28.1 | 120 | 465 | 214 | 49,755 | −44.0 | 57 |
N3 | 29.2 | 127 | 442 | 213 | 47,073 | −43.2 | 65 |
N4 | 29.9 | 139 | 423 | 216 | 45,631 | −41.9 | 76 |
N5 | 33.4 | 146 | 390 | 204 | 39,805 | −42.4 | 83 |
C1 | 28 | 107 | 529 | 212 | 56,074 | −42.1 | 72 |
C2 | 30.1 | 118 | 502 | 220 | 55,220 | −42.8 | 65 |
C3 | 33.8 | 139 | 436 | 226 | 49,313 | −43.1 | 71 |
C4 | 35.7 | 152 | 389 | 213 | 41,429 | −42.6 | 77 |
C5 | 39.5 | 163 | 352 | 200 | 35,200 | −42.9 | 83 |
Compound | Compound Tg (°C) | G′ at −30 °C (MPa) | G″ at 0 °C (MPa) | Tan δ at 60 °C |
---|---|---|---|---|
TDAE | −34.8 | 140 | 7.06 | 0.120 |
N1 | −44.9 | 75 | 5.92 | 0.129 |
N2 | −44.0 | 77 | 6.00 | 0.150 |
N3 | −43.2 | 76 | 5.53 | 0.164 |
N4 | −41.9 | 80 | 5.32 | 0.153 |
N5 | −42.4 | 86 | 5.50 | 0.130 |
C1 | −42.1 | 63 | 4.63 | 0.125 |
C2 | −42.8 | 66 | 4.94 | 0.132 |
C3 | −43.1 | 67 | 4.95 | 0.144 |
C4 | −42.6 | 64 | 4.43 | 0.138 |
C5 | −42.9 | 72 | 4.85 | 0.120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Ahn, B.; Kim, K.; Lee, J.; Kim, I.J.; Kim, W. Effects of Molecular Weight of Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of SSBR/Silica Compounds. Polymers 2021, 13, 850. https://doi.org/10.3390/polym13060850
Kim D, Ahn B, Kim K, Lee J, Kim IJ, Kim W. Effects of Molecular Weight of Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of SSBR/Silica Compounds. Polymers. 2021; 13(6):850. https://doi.org/10.3390/polym13060850
Chicago/Turabian StyleKim, Donghyuk, Byungkyu Ahn, Kihyun Kim, JongYeop Lee, Il Jin Kim, and Wonho Kim. 2021. "Effects of Molecular Weight of Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of SSBR/Silica Compounds" Polymers 13, no. 6: 850. https://doi.org/10.3390/polym13060850
APA StyleKim, D., Ahn, B., Kim, K., Lee, J., Kim, I. J., & Kim, W. (2021). Effects of Molecular Weight of Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of SSBR/Silica Compounds. Polymers, 13(6), 850. https://doi.org/10.3390/polym13060850