Multifunctional Hydrogel Nanocomposites for Biomedical Applications
Abstract
:1. Introduction
Hydrogels | Relevant Properties |
---|---|
Agarose | bioinert [33,34], biocompatible [34], compatible with extrusion-based bioprinting [33], resistant to bacterial adhesion [34] |
Alginate | adhesive [35], biocompatible, biodegradable, in vivo stability [36] |
Chitosan | antibacterial [26], biodegradable [26,37,38], biocompatible [37], in situ gelation, in vivo immunostimulatory potential [39] |
Gelatin Methacrylate | biocompatible, biodegradable, low hemostatic potential, nonimmunogenic [40] |
Polyethylene glycol | biocompatible [29], low immunogenicity, low-protein binding [41] |
Poly(N-isopropylacrylamide) | adhesive, optically transparent, thermoresponsive [21,42] |
Polyvinyl alcohol | biocompatible [43], chemically stable [44], low friction coefficient [43] |
Nanoparticles | Examples of Hydrogel Properties Affected by Nanoparticles |
---|---|
Carbon-based nanomaterials | electrical conductivity [45,46,47], photothermal behavior [45,47], resistance to degradation [48] |
Cellulose-based nanomaterials | injectability/printability [37,49], mechanical strength [50], nutrient permeability, self-healing [37] |
Graphene Oxide NPs | injectability/printability [43], stimuli-responsive [51], drug loading [52] |
Hydroxyapatite NPs | biomineralization, osteoconductivity/osteoinductivity, self-healing [53] |
Silica NPs | mechanical stability, printability [33,51], thermal stability [41], drug loading [54,55] |
Silver NPs | antimicrobial [39,44,52,56,57,58,59], antiviral [60], electrical conductivity [61] |
2. Tissue Engineering
2.1. Cell Culture
2.2. Implantable Tissue Scaffolds
2.3. Interpenetrating Polymer Network (IPN) or Double-Network (DN) Tissue Engineering Applications
3. Drug Delivery
3.1. In Situ Stimuli
3.2. External Stimuli
4. Wound Healing
4.1. Antimicrobial Dressings
4.2. Adhesive Surgical Sealants and Wound Dressings
5. Bioprinting
5.1. 3D Printing
5.2. 4D Printing
6. Biowearable Devices
6.1. Biowearables for Ocular Applications
6.2. Conductive Components
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calo, E.; Khutoryanskiy, V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Biondi, M.; Borzacchiello, A.; Mayol, L.; Ambrosio, L. Nanoparticle-Integrated Hydrogels as Multifunctional Composite Materials for Biomedical Applications. Gels 2015, 1, 162–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Hao, Y.; Wang, Y.; Chen, Y.; Mao, L.; Deng, Y.; Chen, J.; Yuan, S.; Zhang, T.; Ren, J.; et al. Functional Hydrogels and Their Application in Drug Delivery, Biosensors, and Tissue Engineering. Int. J. Polym. Sci. 2019, 2019, 3160732. [Google Scholar] [CrossRef]
- Naseri, N.; Deepa, B.; Mathew, A.P.; Oksman, K.; Girandon, L. Nanocellulose-Based Interpenetrating Polymer Network (IPN) Hydrogels for Cartilage Applications. Biomacromolecules 2016, 17, 3714–3723. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Tang, W.; Hu, L.; Chen, X.; Su, Y.; Zou, C.; Wang, J.; Lu, W.; Zhen, W.; et al. Multifunctional Nanoengineered Hydrogels Consisting of Black Phosphorus Nanosheets Upregulate Bone Formation. Small J. 2019, 15, 1901560. [Google Scholar] [CrossRef] [PubMed]
- Betsch, M.; Cristian, C.; Lin, Y.-Y.; Blaeser, A.; Schoneberg, J.; Vogt, M.; Buhl, E.M.; Fischer, H.; Campos, D.F.D. Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Adv. Healthc. Mater. 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tsou, Y.-H.; Khoneisser, J.; Huang, P.-C.; Xu, X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact. Mater. 2016, 1, 39–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvert, P. Hydrogels for soft machines. Adv. Mater. 2009, 21, 743–756. [Google Scholar] [CrossRef]
- Ahearne, M.; Yang, Y.; Liu, I. Mechanical Characterisation of Hydrogels for Tissue Engineering Applications. Top. Tissue Eng. 2008, 4, 1–16. [Google Scholar]
- Dannert, C.; Stokke, B.; Dias, R. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers 2019, 11, 275. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Huang, K.; Luo, Y.; Zhang, L.; Kuang, T.; Chen, Z.; Liao, G. Double network hydrogel for tissue engineering. WIRES Nanomed. Nanobiotechnol. 2018, 10, e1520. [Google Scholar] [CrossRef] [PubMed]
- Nonoyama, T.; Gong, J.P. Double-network hydrogel and its potential biomedical application:A review. J. Eng. Med. 2015, 229, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Panteli, P.; Patrickios, C. Multiply Interpenetrating Polymer Networks: Preparation, Mechanical Properties, and Applications. Gels 2019, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Babhadiashar, N.; Barrett-Catton, E.; Asuri, P. Role of Nanoparticle-Polymer Interactions on the Development of Double-Network Hydrogel Nanocomposites with High Mechanical Strength. Polymers 2020, 12, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaragoza, J.; Babhadiashar, N.; O’Brien, V.; Chang, A.; Blanco, M.; Zabalegui, A.; Lee, H.; Asuri, P. Experimental Investigation of Mechanical and Thermal Properties of Silica Nanoparticle-Reinforced Poly(acrylamide) Nanocomposite Hydrogels. PLoS ONE 2015, 10, e0136293. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, J.; Fukuoka, S.; Kraus, M.; Thomin, J.; Asuri, P. Exploring the Role of Nanoparticles in Enhancing Mechanical Properties of Hydrogel Nanocomposites. Nanomaterials 2018, 8, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haraguchi, K.; Li, H.-J. Mechanical Properties and Structure of Polymer-Clay Nanocomposite Gels with High Clay Content. Macromolecules 2006, 39, 1898–1905. [Google Scholar] [CrossRef]
- Haraguchi, K.; Song, L. Microstructures Formed in Co-Cross-Linked Networks and Their Relationships to the Optical and Mechanical Properties of PNIPA/Clay Nanocomposite Gels. Macromolecules 2007, 40, 5526–5536. [Google Scholar] [CrossRef]
- Oh, Y.; Islam, M.F. Preformed Nanoporous Carbon Nanotube Scaffold-Based Multifunctional Polymer Composites. ACS Nano 2015, 9, 4103–4110. [Google Scholar] [CrossRef]
- Olad, A.; Doustdar, F.; Gharekhani, H. Starch-based semi-IPN hydrogel nanocomposite integrated with clinoptilolite: Preparation and swelling kinetic study. Carbohydr. Polym. 2018, 200, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, K.; Murata, K.; Takehisa, T. Stimuli-Responsive Nanocomposite Gels and Soft Nanocomposites Consisting of Inorganic Clays and Copolymers with Different Chemical Affinities. Macromolecules 2012, 45, 385–391. [Google Scholar] [CrossRef]
- Kheirabadi, M.; Bagheri, R.; Kabiri, K. Swelling and mechanical behavior of nanoclay reinforced hydrogel: Single network vs. full interpenetrating polymer network. Polym. Bull. 2015, 72, 1663–1681. [Google Scholar] [CrossRef]
- Liu, R.; Liang, S.; Tang, X.-Z.; Yan, D.; Li, X.; Yu, Z.-Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012, 22, 14160–14167. [Google Scholar] [CrossRef]
- Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay. Macromolecules 2003, 36, 5732–5741. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Zhai, Z.; Yang, L.; Tang, X.; Zhao, L.; Xu, K.; Zhong, W. Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy. Acta Biomater. 2020, 106, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Liu, X.; Zhou, J.; Zhang, J.; Dong, A.; Huang, P.; Wang, W.; Deng, L. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int. J. Biol. Macromol. 2020, 155, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Bait, N.; Grassl, B.; Derail, C.; Benaboura, A. Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 2011, 7, 2025–2032. [Google Scholar] [CrossRef]
- Haraguchi, K.; Takada, T. Synthesis and Characteristics of Nanocomposite Gels Prepared by In Situ Photopolymerization in an Aqueous System. Macromolecules 2010, 43, 4294–4299. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, B.P.; Zhan, H. Marine Adhesive Containing Nanocomposite Hydrogel with Enhanced Materials and Bioadhesive Properties. MRS Spring Meet. 2013, 1569, 33–38. [Google Scholar] [CrossRef]
- Dragan, E. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, Z.; Cao, Y.; Du, H.; Wu, H.; Beuerman, R.; Chan-Park, M.; Duan, H.; Xu, R. High Refractive Index Inorganic−Organic Interpenetrating Polymer Network (IPN) Hydrogel Nanocomposite toward Artificial Cornea Implants. Am. Chem. Soc. Macro Lett. 2012, 1, 876–881. [Google Scholar] [CrossRef]
- Gaharwar, A.; Rivera, C.P.; Wu, C.-J.; Schmidt, G. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater. 2011, 7, 4139–4148. [Google Scholar] [CrossRef]
- Nadernezhad, A.; Caliskan, O.S.; Topuz, F.; Afghah, F.; Erman, B.; Koc, B. Nanocomposite Bioinks Based on Agarose and 2D Nanosilicates with Tunable Flow Properties and Bioactivity for 3D Bioprinting. ACS Appl. Bio. Mater. 2019, 2, 796–806. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Yang, Z.; Wei, J.; Li, J. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties. Mater. Sci. Eng. C 2016, 61, 376–386. [Google Scholar] [CrossRef]
- Arno, M.; Inam, M.; Weems, A.; Li, Z.; Binch, A.; Platt, C.; Richardson, S.; Hoyland, J.; Dove, A.; O’Reilly, R. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yao, Z.; Liu, Y.; Zhang, W.; Geng, L.; Ni, T. Incorporation of ROS-Responsive Substance P-Loaded Zeolite Imidazolate Framework-8 Nanoparticles into a Ca2+-Cross-Linked Alginate/Pectin Hydrogel for Wound Dressing Applications. Int. J. Nanomed. 2020, 15, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.-C.; Huang, C.-F.; Wei, Y.; Hsu, S. Novel chitosan–cellulose nanofiber self healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Mater. 2019, 11, 25. [Google Scholar] [CrossRef]
- Xia, B.; Zhang, W.; Tong, H.; Li, J.; Chen, Z.; Shi, J. Multifunctional Chitosan/Porous Silicon@Au Nanocomposite Hydrogels for Long-Term and Repeatedly Localized Combinatorial Therapy of Cancer via a Single Injection. ACS Biomater. Sci. Eng. 2019, 5, 1857–1867. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Wang, C.; Wang, Y.; Xu, W.; Hu, J.; Cheng, Y. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity. ACS Appl. Mater. Interfaces 2018, 10, 15163–15173. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, N.; Kharasiha, M.; Emadi, R.; Zarrabi, A.; Mokhtari, H.; Salehi, S. An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant. J. Colloid Interface Sci. 2020, 564, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Purwada, A.; Cherchietti, L.; Inghirami, G.; Melnick, A.; Gaharwar, A.K.; Singh, A. Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications. Cell. Mol. Bioeng. 2014, 7, 394–408. [Google Scholar] [CrossRef] [Green Version]
- Haraguchi, K.; Takehisa, T.; Ebato, M. Control of Cell Cultivation and Cell Sheet Detachment on the Surface of Polymer/Clay Nanocomposite Hydrogels. Biomacromolecules 2006, 7, 3267–3275. [Google Scholar] [CrossRef]
- Meng, Y.; Cao, J.; Chen, Y.; Yu, Y.; Ye, L. 3D printing of a poly(vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy. J. Mater. Chem. B 2020, 8, 677–690. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl. Nanosci. 2012, 2, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Hu, T.; Lei, Q.; He, J.; Ma, P.X.; Guo, B. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. ACS Appl. Mater. Interfaces 2019, 11, 6796–6808. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.; Fang, Z.; Cao, L.; Li, W.; Lin, Z.; Zhang, P. Self-healing flexible and strong hydrogel nanocomposites based on polyaniline for supercapacitors. Ionics 2020, 26, 3015–3025. [Google Scholar] [CrossRef]
- He, J.; Shi, M.; Liang, Y.; Guo, B. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 2020, 394, 124888. [Google Scholar] [CrossRef]
- Dai, J.; Long, W.; Liang, Z.; Wen, L.; Yang, F.; Chen, G. A novel vehicle for local protein delivery to the inner ear: Injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev. Ind. Pharm. 2018, 44, 89–98. [Google Scholar] [CrossRef]
- Mendes, B.; Gomez-Florit, M.; Hamilton, A.; Detamore, M.; Domingues, R.; Reis, R.; Gomes, M. Human Platelet Lysate-Based Nanocomposite Bioink for Bioprinting Hierarchical Fibrillar Structures. Biofabrication 2020, 12, 015012. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, W. Highly Stretchable, Adhesive, and Mechanical Zwitterionic Nanocomposite Hydrogel Biomimetic Skin. ACS Appl. Mater. Interfaces 2019, 11, 40620–40628. [Google Scholar] [CrossRef]
- Jin, Y.; Shen, Y.; Yin, J.; Qian, J.; Huang, Y. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. ACS Appl. Mater. Interfaces 2018, 10, 10461–10470. [Google Scholar] [CrossRef]
- Huang, J.-F.; Zhong, J.; Chen, G.-P.; Lin, Z.-T.; Deng, Y.; Liu, Y.-L.; Cao, P.-Y.; Wang, B.; Wei, Y.; Wu, T.; et al. A Hydrogel-Based Hybrid Theranostic Contact Lens for Fungal Keratitis. ACS Nano 2016, 10, 6464–6473. [Google Scholar] [CrossRef] [PubMed]
- Parisi-Amon, A.; Lo, D.; Montoro, D.; Dewi, R.; Longaker, M.; Heilshorn, S. Protein-Nanoparticle Hydrogels that Self-assemble in Response to Peptide-based Molecular-Recognition. ACS Biomater. Sci. Eng. 2017, 3, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Ma, M.; Luo, Y.; Liu, T.; Zhou, P.; Qi, S.; Xu, Y.; Chen, H. Mesoporous Silica Nanoparticles-Reinforced Hydrogel Scaffold together with Pinacidil Loading to Improve Stem Cell Adhesion. ChemNanoMat 2018, 4, 631–641. [Google Scholar] [CrossRef]
- Basu, S.; Alkiswani, A.-R.; Pacelli, S.; Paul, A. Nucleic Acid-Based Dual Cross-Linked Hydrogels for in Situ Tissue Repair via Directional Stem Cell Migration. ACS Appl. Mater. Interfaces 2019, 11, 34621–34633. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Raghavendra, G.M.; Varaprasad, K.; Sadiku, R.; Ramam, K.; Raju, K.M. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr. Polym. 2013, 95, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Mai, B.; Jia, M.; Liu, S.; Sheng, Z.; Li, M.; Gao, Y.; Wang, X.; Liu, Q.; Wang, P. Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing. ACS Appl. Mater. Interfaces 2020, 12, 10156–10169. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, T.T.; Ly, K.L.; Tran, A.H.; Nguyen, T.T.N.; Vo, M.T.; Ho, H.M.; Dang, N.T.N.; Vo, V.T.; Nguyen, D.H.; et al. In Vivo Study of the Antibacterial Chitosan/Polyvinyl Alcohol Loaded with Silver Nanoparticle Hydrogel for Wound Healing Applications. Int. J. Polym. Sci. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Geng, J.; Yao, C.; Kou, X.; Tang, J.; Luo, D.; Yang, D. A Fluorescent Biofunctional DNA Hydrogel Prepared by Enzymatic Polymerization. Adv. Healthc. Mater. 2018, 7, 1700998. [Google Scholar] [CrossRef]
- Szymanska, E.; Orłowski, P.; Winnicka, K.; Tomaszewska, E.; B̨aska, P.B.; Celichowski, G.; Grobelny, J.; Basa, A.; Krzyzowska, M. Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2018, 19, 387. [Google Scholar] [CrossRef] [Green Version]
- Gniadek, M.; Malinowska, S.; Kaniewski, K.; Karbarz, M.; Stojek, Z.; Donten, M. Construction of multifunctional materials by intrachannel modification of NIPA hydrogel with PANI-metal composites. J. Electroanal. Chem. 2018, 812, 273–281. [Google Scholar] [CrossRef]
- McCracken, J.; Rauzan, B.; Kjellman, J.; Kandel, M.; Liu, Y.; Badea, A.; Miller, L.A.; Rogers, S.; Popescu, G.; Nuzzo, R. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization. Adv. Healthc. Mater. 2019, 8, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Abdul Khalil, H.P.S.; Adnan, A.S.; Yahya, E.B.; Olaiya, N.G.; Safrida, S.; Hossain, M.S.; Balakrishnan, V.; Gopakumar, D.A.; Abdullah, C.K.; Oyekanmi, A.A.; et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers 2020, 12, 1759. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.E.; Othman, S.I.; Allam, A.A.; Morsy, O.M. Synthesis, Drying Process and Medical Application of Polysaccharide-Based Aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Stergar, J.; Maver, U. Review of Aerogel-Based Materials in Biomedical Applications. J. Sol-Gel Sci. Technol. 2016, 77, 738–752. [Google Scholar] [CrossRef]
- Hu, X.; Gao, Z.; Tan, H.; Wang, H.; Mao, X.; Pang, J. An Injectable Hyaluronic Acid-Based Composite Hydrogel by DA Click Chemistry With pH Sensitive Nanoparticle for Biomedical Application. Front. Chem. 2019, 7, 477. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Schexnailder, P.; Gaharwar, A.K.; Schmidt, G. Silicate Cross-Linked Bio-Nanocomposite Hydrogels from PEO and Chitosan. Macromol. Biosci. 2009, 9, 1028–1035. [Google Scholar] [CrossRef]
- Lee, J.B.; Kim, D.-H.; Yoon, J.-K.; Park, D.B.; Kim, H.-S.; Shin, Y.M.; Baek, W.; Kang, M.-L.; Kim, H.J.; Sung, H.-J. Microchannel network hydrogel induced ischemic blood perfusion connection. Nat. Commun. 2020, 11, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Song, J.; Wang, J.; Zhang, Z.; Shen, Q.; Wang, J.; Guo, H.; Wang, R.; Xie, C.; Lu, W.; et al. Efficient Gene Delivery Based on Guanidyl-Nucleic Acid Molecular Interactions. Adv. Funct. Mater. 2020, 30, 2004783. [Google Scholar] [CrossRef]
- Jalani, G.; Naccache, R.; Rosenzweig, D.H.; Haglund, L.; Vetrone, F.; Cerruti, M. Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery. J. Am. Chem. Soc. 2016, 138, 1078–1083. [Google Scholar] [CrossRef] [Green Version]
- Mamidi, N.; González-Ortiz, A.; Lopez Romo, I.; Barrera, E.V. Development of Functionalized Carbon Nano-Onions Reinforced Zein Protein Hydrogel Interfaces for Controlled Drug Release. Pharmaceutics 2019, 11, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Yuan, D.; Zheng, X.; Zhang, X.; Li, X.; Zhang, S. A triple-combination nanotechnology platform based on multifunctional RNA hydrogel for lung cancer therapy. Sci. China Chem. 2020, 63, 546–553. [Google Scholar] [CrossRef]
- Farag, R.; Labena, A.; Fakhry, S.; Safwat, G.; Diab, A.; Atta, A. Antimicrobial Activity of Hybrids Terpolymers Based on Magnetite Hydrogel Nanocomposites. Materials 2019, 12, 3604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haraguchi, K.; Shimizu, S.; Tanaka, S. Instant Strong Adhesive Behavior of Nanocomposite Gels toward Hydrophilic Porous Materials. Langmuir 2018, 34, 8480–8488. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-J.; Wilker, J.J.; Schmidt, G. Robust and Adhesive Hydrogels from Cross-Linked Poly(ethylene glycol) and Silicate for Biomedical Use. Macromol. Biosci. 2013, 13, 59–66. [Google Scholar] [CrossRef]
- Zhu, W.; Lu, J.; Dai, L. Multifunctional pH-Responsive Sprayable Hydrogel Based on Chitosan and Lignin-Based Nanoparticles. Part. Part. Syst. Charact. 2018, 35, 1800145. [Google Scholar] [CrossRef]
- Basha, S.; Ghosh, S.; Vinothkumar, K.; Ramesh, B.; Hema Praksh Kumari, P.; Mohan, K.V.; Sukumar, E. Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing. Mater. Sci. Eng. C 2020, 111, 110743. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, Z.; Han, J.; Wu, X. A Tough Nanocomposite Hydrogel for Antifouling Application with Quaternized Hyperbranched PEI Nanoparticles Crosslinking. RSC Adv. 2016, 6, 60530–60536. [Google Scholar] [CrossRef]
- Tian, S.; Jiang, D.; Pu, J.; Sun, X.; Li, Z.; Wu, B.; Zheng, W.; Liu, W.; Liu, Z. A New Hybrid Silicone-Based Antifouling Coating with Nanocomposite Hydrogel for Durable Antifouling Properties. Chem. Eng. J. 2019, 370, 1–9. [Google Scholar] [CrossRef]
- Tamesue, S.; Yasuda, K.; Endo, T. Adhesive Hydrogel System Based on the Intercalation of Anionic Substituents into Layered Double Hydroxides. ACS Appl. Mater. Interfaces 2018, 10, 29925–29932. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, H.; Qian, Z.; Fan, N.; Choi, W.; Zhao, F.; Lee, B.P. Moldable nanocomposite hydrogel as a fit-to-shape tissue sealant based on mussel-inspired chemistry. Angew. Chem. Int. Ed. 2017, 56, 4224–4228. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Kwak, H.; Hyun, J. Melanin Nanoparticle-Incorporated Silk Fibroin Hydrogels for the Enhancement of Printing Resolution in 3D-Projection Stereolithography of Poly(ethylene glycol)-Tetraacrylate Bio-ink. ACS Appl. Mater. Interfaces 2018, 10, 23573–23582. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-T.; Kumar Shrestha, L.; Ariga, K.; Hsu, S. A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. J. Mater. Chem. B 2017, 5, 8854–8864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bi, R.; Hodge, W.; Yin, P.; Tse, W.H. A nanocomposite contact lens for the delivery of hydrophilic protein drugs. J. Mater. Chem. B 2013, 1, 4388–4395. [Google Scholar] [CrossRef]
- Fu, Q.; Duan, C.; Yan, Z.; Li, Y.; Si, Y.; Liu, L.; Yu, J.; Ding, B. Nanofiber-Based Hydrogels: Controllable Synthesis and Multifunctional Applications. Macromol. Rapid Commun. 2018, 39, e1800058. [Google Scholar] [CrossRef]
- Catoira, M.C.; González-Payo, J.; Fusaro, L.; Ramella, M.; Boccafoschi, F. Natural Hydrogels R&D Process: Technical and Regulatory Aspects for Industrial Implementation. J. Mater. Sci. Mater. Med. 2020, 31, 64. [Google Scholar] [PubMed]
- Yu, A.C.; Chen, H.; Chan, D.; Agmon, G.; Stapleton, L.M.; Sevit, A.M.; Tibbitt, M.W.; Acosta, J.D.; Zhang, T.; Franzia, P.W.; et al. Scalable Manufacturing of Biomimetic Moldable Hydrogels for Industrial Applications. Proc. Natl. Acad. Sci. USA 2016, 113, 14255–14260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Field | Applications | Improvements in Properties due to Nanoparticles |
---|---|---|
Tissue Engineering | Cell Culture | Improved mechanical [28,42,54], adhesive, optical, swelling properties [28,42], directed stem cell differentiation, sustained release of factors [54] |
Implantable Tissue Scaffolds | pH responsive [66], sustained release of factors [55,66,69], guidance of stem cell migration [55], osteoconductive, self-healing [53], decreased healing time [37,69], tailored degradation, improved cell viability and differentiation [37] | |
IPN and DN Tissue Engineering | Improved mechanical [5,41] and thermal stability [41], increased cell adhesion [41], directed stem cell differentiation [5,41] | |
Drug Delivery | In Situ Stimuli | pH responsive [25,26,39,71] |
External Stimuli | Electromagnetic radiation responsive [38,70,72], local upconversion of wavelengths [70], photothermic [38], ROS generation [72] | |
Wound Healing | Antimicrobial Dressings | Antipathogenic [34,39,44,56,58,60,73], controlled drug delivery [47,76], improved mechanical and chemical properties [34,39,44,56,58,60,73], mucoadhesive [60], decreased pathogen adhesion and infection [34,60], pH responsive [47,76], ROS generation [36,57], electrically conductive [47] |
Adhesive Surgical Sealants | Improved adhesive and mechanical properties [27,29,35,40,74,75], controlled biodegradability and swelling [40], reduced gelation time [29,81], shortened blood clotting time [40] | |
Bioprinting | 3D Printing | Improved optical [82] and mechanical properties for enhanced printability and cell viability [33,43,49,51], increased biocompatibility [33], improved cell attachment [33], proliferation [82,83] and differentiation [83] |
4D Printing | Directed orientation of fibers (within the hydrogel) [6], spatial attachment and differentiation of cells [62] | |
Biowearable Devices | Ocular Applications | Improved optical properties [31], antipathogenic, localized, long term drug delivery [52,84] |
Conductive Components | Improved electrical [45,46,61], mechanical [50], and photothermic properties [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrett-Catton, E.; Ross, M.L.; Asuri, P. Multifunctional Hydrogel Nanocomposites for Biomedical Applications. Polymers 2021, 13, 856. https://doi.org/10.3390/polym13060856
Barrett-Catton E, Ross ML, Asuri P. Multifunctional Hydrogel Nanocomposites for Biomedical Applications. Polymers. 2021; 13(6):856. https://doi.org/10.3390/polym13060856
Chicago/Turabian StyleBarrett-Catton, Emma, Murial L. Ross, and Prashanth Asuri. 2021. "Multifunctional Hydrogel Nanocomposites for Biomedical Applications" Polymers 13, no. 6: 856. https://doi.org/10.3390/polym13060856
APA StyleBarrett-Catton, E., Ross, M. L., & Asuri, P. (2021). Multifunctional Hydrogel Nanocomposites for Biomedical Applications. Polymers, 13(6), 856. https://doi.org/10.3390/polym13060856