Transference Number Determination in Poor-Dissociated Low Dielectric Constant Lithium and Protonic Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Background
2.1.1. DC and AC Conductance-Based Measurements
2.1.2. EMF-Based Studies—Hittorf Type Experiments
2.1.3. Concentration Cells Based Experiments
2.1.4. Non-Electrochemical Measurements—Diffusion of Radiotracers
2.1.5. Non-Electrochemical Measurements—PFG NMR Experiments
2.1.6. DC Polarization Experiments
2.1.7. Microelectrodes-Based Experiments
2.1.8. Isothermal Transient Ionic Current Type Approach
2.1.9. Wagner’s Method and Its Modifications
2.1.10. Coupled Electrochemical Techniques
2.1.11. Polarization Method
2.1.12. Concentrated Solutions Theory Approach—Newman’s Method
2.1.13. Modifications of Newman’s Approach
- κ—electrolyte conductivity at an initial salt concentration
- D—diffusion coefficient of electrolyte based on thermodynamic factor
- —total solution concentration
- —concentration of monomers making up of polymer chain
- —salt concentration
2.2. Experimental
3. Results and discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linden, D.; Reddy, T.B. Handbook of Batteries. In Fuel and Energy Abstracts; Linden, D., Reddy, T.B., Eds.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- DuPontTM Nafion® PFSA Membranes N-112, NE-1135, N-115, N-117, NE-1110: Perfluorosulfonic acid polymer. In Fluorinated Ionomers; Elsevier: Amsterdam, The Netherlands, 2011; pp. 271–276.
- Hwang, K.; Kim, J.H.; Kim, S.Y.; Byun, H. Preparation of polybenzimidazole-based membranes and their potential applications in the fuel cell system. Energies 2014, 7, 1721–1732. [Google Scholar] [CrossRef]
- Xing, P.; Robertson, G.P.; Guiver, M.D.; Mikhailenko, S.D.; Wang, K.; Kaliaguine, S. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J. Memb. Sci. 2004, 229, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Lufrano, F.; Squadrito, G.; Patti, A.; Passalacqua, E. Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. J. Appl. Polym. Sci. 2000, 77, 1250–1256. [Google Scholar] [CrossRef]
- Cha, M.S.; Lee, J.Y.; Kim, T.H.; Jeong, H.Y.; Shin, H.Y.; Oh, S.G.; Hong, Y.T. Preparation and characterization of crosslinked anion exchange membrane (AEM) materials with poly(phenylene ether)-based short hydrophilic block for use in electrochemical applications. J. Memb. Sci. 2017, 530, 73–83. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; Ru, Y.; Hu, M.; Din, L.; Xu, T. Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives. Polym. Chem. 2015, 6, 5809–5826. [Google Scholar] [CrossRef]
- He, Y.; Wang, J.; Zhang, H.; Zhang, T.; Zhang, B.; Cao, S.; Liu, J. Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A 2014, 2, 9548–9558. [Google Scholar] [CrossRef]
- Cao, L.; Sun, Q.; Gao, Y.; Liu, L.; Shi, H. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery. Electrochim. Acta 2015, 158, 24–34. [Google Scholar] [CrossRef]
- Takamuku, S.; Jannasch, P. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications. Adv. Energy Mater. 2012, 2, 129–140. [Google Scholar] [CrossRef]
- Adjemian, K.T.; Lee, S.J.; Srinivasan, S.; Benziger, J.; Bocarsly, A.B. Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80–140 °C. J. Electrochem. Soc. 2002, 149, A256. [Google Scholar] [CrossRef]
- Krishnan, N.N.; Lee, S.; Ghorpade, R.V.; Konovalova, A.; Jang, J.H.; Kim, H.J.; Han, J.; Henkensmeier, D.; Han, H. Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell. J. Memb. Sci. 2018, 560, 11–20. [Google Scholar] [CrossRef]
- Eguizábal, A.; Lemus, J.; Urbiztondo, M.; Garrido, O.; Soler, J.; Blazquez, J.A.; Pina, M.P. Novel hybrid membranes based on polybenzimidazole and ETS-10 titanosilicate type material for high temperature proton exchange membrane fuel cells: A comprehensive study on dense and porous systems. J. Power Sources 2011, 196, 8994–9007. [Google Scholar] [CrossRef]
- Kim, D.J.; Choi, D.H.; Park, C.H.; Nam, S.Y. Characterization of the sulfonated PEEK/sulfonated nanoparticles composite membrane for the fuel cell application. Int. J. Hydrogen Energy 2016, 41, 5793–5802. [Google Scholar] [CrossRef]
- Mossayebi, Z.; Saririchi, T.; Rowshanzamir, S.; Parnian, M.J. Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2016, 41, 12293–12306. [Google Scholar] [CrossRef]
- Devrim, Y.; Erkan, S.; Baç, N.; Eroǧlu, I. Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2009, 34, 3467–3475. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, C.; Varcoe, J.R.; Poynton, S.D.; Xu, T.; Fu, Y. Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: Effect of silica content and the single cell performance. J. Power Sources 2010, 195, 3069–3076. [Google Scholar] [CrossRef]
- Ahmed, H.T.; Abdullah, O.G. Impedance and ionic transport properties of proton-conducting electrolytes based on polyethylene oxide/methylcellulose blend polymers. J. Sci. Adv. Mater. Devices 2020, 5, 125–133. [Google Scholar] [CrossRef]
- Prusinowska, D.; Siekierski, M.; Wieczorek, W.; Przyluski, J.A.C. Conductivity Studies of PEO-NH4SCN Electrolytes. Solid State Phenom. 1994, 39–40, 181–184. [Google Scholar] [CrossRef]
- Mroczkowska-Szerszeń, M.; Siekierski, M.; Letmanowski, R.; Zabost, D.; Piszcz, M.; Żukowska, G.; Sasim, E.; Wieczorek, W.; Dudek, M.; Struzik, M. Synthetic preparation of proton conducting polyvinyl alcohol and TiO2-doped inorganic glasses for hydrogen fuel cell applications. Electrochim. Acta 2013, 104, 487–495. [Google Scholar] [CrossRef]
- Siekierski, M.; Mroczkowska-Szerszeń, M.; Letmanowski, R.; Dariusz, Z.; Piszcz, M.; Dudek, L.; Struzik, M.M.; Winkowska-Struzik, M.; Cicha-Szot, R.; Dudek, M. Ionic Transport Properties of P2O5-SiO2 Glassy Protonic Composites Doped with Polymer and Inorganic Titanium-based Fillers. Materials 2020, 13, 3004. [Google Scholar] [CrossRef] [PubMed]
- Armand, M. Charge transfer at polymer electrolytes. Faraday Discuss. Chem. Soc. 1989, 88, 65–76. [Google Scholar] [CrossRef]
- Bruce, P.G.; Hardgrave, M.T.; Vincent, C.A. dc Polarization of polymer electrolytes. Electrochim. Acta 1992, 37, 1517–1520. [Google Scholar] [CrossRef]
- Bruce, P.G.; Vincent, C.A. Transport in associated polymer electrolytes. Solid State Ion. 1990, 40–41, 607–611. [Google Scholar] [CrossRef]
- Hiller, M.M.; Joost, M.; Gores, H.J.; Passerini, S.; Wiemhöfer, H.D. The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. Electrochim. Acta 2013, 114, 21–29. [Google Scholar] [CrossRef]
- Jorne, J. Transference number approaching unity in nanocomposite electrolytes. Nano Lett. 2006, 6, 2973–2976. [Google Scholar] [CrossRef] [PubMed]
- Strauss, E.; Menkin, S.; Golodnitsky, D. On the way to high-conductivity single lithium-ion conductors. J. Solid State Electrochem. 2017, 21, 1879–1905. [Google Scholar] [CrossRef]
- Arof, A.K.; Amirudin, S.; Yusof, S.Z.; Noor, I.M. A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 1856–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, S.B.; Hamsan, M.H.; Brza, M.A.; Kadir, M.F.Z.; Abdulwahid, R.T.; Ghareeb, H.O.; Woo, H.J. Fabrication of energy storage EDLC device based on CS:PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys. 2019, 15, 102584. [Google Scholar] [CrossRef]
- Yang, T.; Shu, C.; Hou, Z.; Zheng, R.; Hei, P.; Li, M.; Ran, Z.; Zhang, Q.; Long, J. 3D porous network gel polymer electrolyte with high transference number for dendrite-free Li[sbnd]O2 batteries. Solid State Ion. 2019, 343, 115088. [Google Scholar] [CrossRef]
- Dhatarwal, P.; Sengwa, R.J. Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos. Commun. 2020, 17, 182–191. [Google Scholar] [CrossRef]
- Chua, S.; Fang, R.; Sun, Z.; Wu, M.; Gu, Z.; Wang, Y.; Hart, J.N.; Sharma, N.; Li, F.; Wang, D.W. Hybrid Solid Polymer Electrolytes with Two-Dimensional Inorganic Nanofillers. Chem. A Eur. J. 2018, 24, 18180–18203. [Google Scholar] [CrossRef]
- Moriya, M.; Nomura, K.; Sakamoto, W.; Yogo, T. Precisely controlled supramolecular ionic conduction paths and their structure-conductivity relationships for lithium ion transport. CrystEngComm 2014, 16, 10512–10518. [Google Scholar] [CrossRef]
- Pritam; Arya, A.; Sharma, A.L. Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics 2020, 26, 745–766. [Google Scholar] [CrossRef]
- Pritam; Arya, A.; Sharma, A.L. Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J. Mater. Sci. 2019, 54, 7131–7155. [Google Scholar] [CrossRef]
- Mohan, V.M.; Raja, V.; Sharma, A.K.; Narasimha Rao, V.V.R. Ion transport and battery discharge characteristics of polymer electrolyte based on PEO complexed with NaFeF4 salt. Ionics 2006, 12, 219–226. [Google Scholar] [CrossRef]
- Suthanthiraraj, S.A.; Kumar, R.; Paul, B.J. Ionic interactions and transport characteristics of a new polymer electrolyte system containing poly(propylene glycol) 4000 complexed with AgCF3SO3. J. Appl. Electrochem. 2010, 40, 401–408. [Google Scholar] [CrossRef]
- Dwelle, K.A.; Willard, A.P. The limited influence of transference number on the performance of nanoscale batteries. J. Chem. Phys. 2020, 152. [Google Scholar] [CrossRef] [Green Version]
- Vallet, C.E.; Braunstein, J. Solution of electrochemical flux equations with variable diffusion coefficient and transference number. J. Phys. Chem. 1977, 81, 2438–2443. [Google Scholar] [CrossRef]
- Doyle, M.; Fuller, T.F.; Newman, J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 1994, 39, 20073–22081. [Google Scholar] [CrossRef]
- Molinari, N.; Kozinsky, B. Chelation-Induced Reversal of Negative Cation Transference Number in Ionic Liquid Electrolytes. J. Phys. Chem. B 2020, 124, 2676–2684. [Google Scholar] [CrossRef]
- Zhang, Z.; Wheatle, B.K.; Krajniak, J.; Keith, J.R.; Ganesan, V. Ion Mobilities, Transference Numbers, and Inverse Haven Ratios of Polymeric Ionic Liquids. ACS Macro Lett. 2020, 9, 84–89. [Google Scholar] [CrossRef]
- Borodin, O.; Suo, L.; Gobet, M.; Ren, X.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M.S.; et al. Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. ACS Nano 2017, 11, 10462–10471. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.D.; Self, J.; Diederichsen, K.M.; Wood, B.M.; McCloskey, B.D.; Persson, K.A. Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries. ACS Cent. Sci. 2019, 5, 1250–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandell, D.; Liivat, A.; Aabloo, A.; Thomas, J.O. Conduction mechanisms in crystalline LiPF6·PEO 6 doped with SiF62- and SF6. Chem. Mater. 2005, 17, 3673–3680. [Google Scholar] [CrossRef]
- Mazor, H.; Golodnitsky, D.; Peled, E.; Wieczorek, W.; Scrosati, B. A search for a single-ion-conducting polymer electrolyte: Combined effect of anion trap and inorganic filler. J. Power Sources 2008, 178, 736–743. [Google Scholar] [CrossRef]
- Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.P.; Phan, T.N.T.; Bertin, D.; Gigmes, D.; Devaux, D.; et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457. [Google Scholar] [CrossRef]
- Shedlovsky, T. An equation for transference numbers. J. Chem. Phys. 1938, 6, 845–846. [Google Scholar] [CrossRef]
- Bruce, P.G.; Vincent, C.A. Effect of Ion Association on Transport in Polymer Electrolytes. Faraday Discuss. Chem. Soc. 1989, 88, 43–54. [Google Scholar] [CrossRef]
- Sorensen, P.R.; Jacobsen, T. Conductivity, charge transfer and transport number an AC-investigation of the polymer electrolyte LiSCN-Poly(Ethyleneoxide). Electrochem. Acta 1982, 27, 1671–1675. [Google Scholar] [CrossRef]
- Sørensen, P.R.; Jacobsen, T. Limiting currents in the polymer electrolyte: PEOxLiCF3SO3. Solid State Ion. 1983, 9–10, 1147–1153. [Google Scholar] [CrossRef]
- Kalita, M.; Bukat, M.; Ciosek, M.; Siekierski, M.; Chung, S.H.; Rodríguez, T.; Greenbaum, S.G.; Kovarsky, R.; Golodnitsky, D.; Peled, E.; et al. Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochim. Acta 2005, 50, 3942–3948. [Google Scholar] [CrossRef]
- Aziz, S.B. The Mixed Contribution of Ionic and Electronic Carriers to Conductivity in Chitosan Based Solid Electrolytes Mediated by CuNt Salt. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1942–1952. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abidin, Z.H.Z. Electrical and morphological analysis of chitosan:AgTf solid electrolyte. Mater. Chem. Phys. 2014, 144, 280–286. [Google Scholar] [CrossRef]
- MacInnes, D.A.; Cowperthwaite, I.A.; Blanchard, K.C. The moving-boundary method for determining transference numbers. V. A constant current apparatus. J. Am. Chem. Soc. 1926, 48, 1909–1912. [Google Scholar] [CrossRef]
- Milios, P.; Newman, J. Moving Boundary Measurement of Transference Numbers. J. Phys. Chem. 1969, 78, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Brady, A.P.; Brady, A.P. “Analytical Boundary” Method for the Determination of Transference Numbers. J. Am. Chem. Soc. 1948, 70, 911–914. [Google Scholar] [CrossRef]
- Sundheim, B.R. Transference numbers in molten salts. J. Phys. Chem. 1956, 60, 1381–1383. [Google Scholar] [CrossRef]
- Jüttner, K.; Ehrenbeck, C. Electrochemical measurements of the ion conductivity, permselectivity and transference numbers of polypyrrole and polypyrrole derivatives. J. Solid State Electrochem. 1998, 2, 60–66. [Google Scholar] [CrossRef]
- Banerjee, B.R.; Capenos, J.M.; Hauser, J.J.; Hirth, J.P. Dislocation interaction in bcc stainless steel. J. Appl. Phys. 1961, 32, 556–557. [Google Scholar] [CrossRef]
- Wall, F.T.; Gill, S.J. Transference numbers of electrolytes under pressure. J. Phys. Chem. 1955, 59, 278–283. [Google Scholar] [CrossRef]
- Meddings, N.; Owen, J.R.; Garcia-Araez, N. Operando Evaluation of Selectivity and Transference Number of Lithium-Conductive Membranes. ChemElectroChem 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Leveque, M.; Frangois, J.; Nest, L.; Gandini, A.; Cheradame, H. Ionic Transport Numbers in Polyether Networks Containing Different Metal Salts. Makromol. Chem. Rapid Commun. 2000, 502, 497–502. [Google Scholar]
- Olsen, I.I.; Koksbang, R.; Skou, E. Transference number measurements on a hybrid polymer electrolyte. Electrochim. Acta 1995, 40, 1701–1706. [Google Scholar] [CrossRef]
- Vassal, N.; Salmon, E.; Fauvarque, J.F. Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochim. Acta 2000, 45, 1527–1532. [Google Scholar] [CrossRef]
- Vincent, C.A. Some Effects of Ion-polymer and Ion-ion Interactions on Charge Transport in Polymer Electrolytes. Polym. Prep. 1989, 30, 422. [Google Scholar]
- Bruce, P.G.; Hardgrave, M.T.; Vincent, C.A. The determination of transference numbers in solid polymer electrolytes using the Hittorf method. Solid State Ion. 1992, 53–56, 1087–1094. [Google Scholar] [CrossRef]
- Becker, H.; Reimer, U.; Aili, D.; Cleemann, L.N.; Jensen, J.O.; Lehnert, W.; Li, Q. Determination of Anion Transference Number and Phosphoric Acid Diffusion Coefficient in High Temperature Polymer Electrolyte Membranes. J. Electrochem. Soc. 2018, 165, F863–F869. [Google Scholar] [CrossRef] [Green Version]
- Bouridah, A.; Dalard, F.; Deroo, D.; Armand, M.B. Potentiometric measurements of ionic mobilities in poly(ethyleneoxide) electrolytes. Solid State Ion. 1986, 18–19, 287–290. [Google Scholar] [CrossRef]
- Bouridah, A.; Dalard, F.; Deroo, D.; Armand, M.B. Potentiometric measurements of ionic transport parameters in poly(ethylene oxide)-LiX electrolytes. J. Appl. Electrochem. 1987, 17, 625–634. [Google Scholar] [CrossRef]
- Bouridah, A.; Dalard, F.; Armand, M. Utilisation of Poly(Decaviologen) as anion specific electrode for organic polymer electrolyte. Solid State Ion. 1988, 28–30, 950–953. [Google Scholar] [CrossRef]
- Golodnitsky, D.; Ardel, G.; Peled, E. Ion-transport phenomena in concentrated PEO-based composite polymer electrolytes. Solid State Ion. 2002, 147, 141–155. [Google Scholar] [CrossRef]
- Ceynowa, J. Hydrogen-ion transport numbers in cation exchange membrane determined by emf method. Polymer 1982, 23, 203–206. [Google Scholar] [CrossRef]
- Armstrong, R.D.; Proud, W.G.; Starfort, L. Transport numbers in PVC based membranes from diffusion potential measurements. J. Electroanal. Chem. 1989, 273, 209–213. [Google Scholar] [CrossRef]
- Ciosek, M.; Marcinek, M.; Zukowska, G.; Wieczorek, W. Lithium transference number measurements and complex abilities in anion trapping triphenyloborane-poly(ethylene oxide) dimethyl ether-lithium trifluoromethanesulfonate composite electrolyte. Electrochim. Acta 2009, 54, 4487–4493. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, S.M.; Lee, J.H.; Ji, H.I.; Yoon, K.J.; Son, J.W.; Kim, B.K.; Je, H.J.; Lee, H.W. Determination of proton transference number of Ba(Zr0.84Y 0.15Cu0.01)O3-δ via electrochemical concentration cell test. J. Solid State Electrochem. 2013, 17, 2833–2838. [Google Scholar] [CrossRef]
- Pérez-Coll, D.; Heras-Juaristi, G.; Fagg, D.P.; Mather, G.C. Transport-number determination of a protonic ceramic electrolyte membrane via electrode-polarisation correction with the Gorelov method. J. Power Sources 2014, 245, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Lakshminarayanaiah, N. Counterion transference numbers in ion-exchange membranes. J. Phys. Chem. 1969, 73, 97–102. [Google Scholar] [CrossRef]
- McLin, M.; Angell, C. Electrochemical determination of cation and anion diffusion coefficents and approximate transference numbers in polymer/salt electrolyte systems. Am. Chem. Soc. Polym. Prepr. 1989, 30, 439. [Google Scholar]
- Chadwick, A.V.; Strange, J.H.; Worboys, M.R. Ionic transport in polyether electrolytes. Solid State Ion. 1983, 9–10, 1155–1160. [Google Scholar] [CrossRef]
- Bridges, C.; Chadwick, A.V.; Worboys, M.R. Radiotracer Self-Diffusion Measurements in Poly(Ethylene Oxide) and Poly(Propylene Oxide) Electrolytes. Br. Polym. J. 1988, 20, 207–211. [Google Scholar] [CrossRef]
- Al-mudaris, A.A.; Chadwick, A.V. Self-diffusion of ions in an ethylene oxide oligomer using the gelsectioning technique. Br. Polym. J. 1988, 20, 213–217. [Google Scholar] [CrossRef]
- Fauteux, D.; Boisvert, Y.; Robitaille, C.D.; Lupien, M.D. Phase Diagram, Conductivity and Transference Number of Poly(Ethylene Oxide) Base Electrolytes. Electrochem. Soc. Ext. Abstr. 1985, 134, 2761–2766. [Google Scholar] [CrossRef]
- Salley, D.J.; Brady, A.P. The Self-diffusion Coefficients and Transference Numbers of the Small Ions in Colloidal Electrolytes. J. Am. Chem. Soc. 1948, 70, 914–919. [Google Scholar] [CrossRef]
- Minier, M.; Berthier, C.; Gorecki, W. Thermal analysis and NMR study of a poly (ethylene oxide) complex electrolyte: PEO (LiCF3SO3) x To cite this version: Thermal analysis and NMR study of a poly (ethylene oxide) complex electrolyte. J. Phys. 1984, 45, 739–744. [Google Scholar]
- Bhattacharja, S.; Smoot, S.W.; Whitmore, D.H. Cation and anion diffusion in the amorphous phase of the polymer electrolyte (PEO) 8LiCF3SO3. J. Chem. Inf. Model. 1986, 18–19, 306–314. [Google Scholar] [CrossRef]
- Lindsey, S.E.; Whitmore, D.H.; Halperin, W.P.; Torkelson, J.M. Self-diffusion and ionic transport in PPO-LiSO3CF3 complexes using PFGNMR. Polym. Prepr. 1989, 30, 442–443. [Google Scholar]
- Dai, H.; Zawodzinski, T.A. The dependence of lithium transference numbers on temperature, salt concentration and anion type in poly (vinylidene fluoride)-hexafluoropropylene copolymer-based gel electrolytes. J. Electroanal. Chem. 1998, 459, 111–119. [Google Scholar] [CrossRef]
- Walls, H.J.; Zawodzinski, T.A. Anion and cation transference numbers determined by electrophoretic NMR of polymer electrolytes sum to unity. Electrochem. Solid-State Lett. 2000, 3, 321–324. [Google Scholar] [CrossRef]
- Qiao, B.; Leverick, G.M.; Zhao, W.; Flood, A.H.; Johnson, J.A.; Shao-Horn, Y. Supramolecular Regulation of Anions Enhances Conductivity and Transference Number of Lithium in Liquid Electrolytes. J. Am. Chem. Soc. 2018, 140, 10932–10936. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Kim, G.T.; Shi, J.; Paillard, E.; Judeinstein, P.; Lyonnard, S.; Bresser, D.; Iojoiu, C. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy Environ. Sci. 2018, 11, 3298–3309. [Google Scholar] [CrossRef]
- Diederichsen, K.M.; Fong, K.D.; Terrell, R.C.; Persson, K.A.; McCloskey, B.D. Investigation of Solvent Type and Salt Addition in High Transference Number Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries. Macromolecules 2018, 51, 8761–8771. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Curtiss, L.A.; Winans, R.E.; Zhang, Y.; Li, T.; Cheng, L. Asymmetric composition of ionic aggregates and the origin of high correlated transference number in water-in-salt electrolytes. J. Phys. Chem. Lett. 2020, 11, 1276–1281. [Google Scholar] [CrossRef]
- Timachova, K.; Watanabe, H.; Balsara, N.P. Effect of molecular weight and salt concentration on ion transport and the transference number in polymer electrolytes. Macromolecules 2015, 48, 7882–7888. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.H.; Wang, Y.; Persi, L.; Croce, F.; Greenbaum, S.G.; Scrosati, B.; Plichta, E. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J. Power Sources 2001, 97–98, 644–648. [Google Scholar] [CrossRef]
- Dai, Y.; Greenbaum, S.; Golodnitsky, D.; Ardel, G.; Strauss, E.; Peled, E.; Rosenberg, Y. Lithium-7 NMR studies of concentrated LiI/PEO-based solid electrolytes. Solid State Ion. 1998, 106, 25–32. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Y.; Greenbaum, S.G.; Bajue, S.A.; Golodnitsky, D.; Ardel, G.; Strauss, E.; Peled, E. Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim. Acta 1998, 43, 1557–1561. [Google Scholar] [CrossRef]
- Shigenobu, K.; Dokko, K.; Watanabe, M.; Ueno, K. Solvent effects on Li ion transference number and dynamic ion correlations in glyme- And sulfolane-based molten Li salt solvates. Phys. Chem. Chem. Phys. 2020, 22, 15214–15221. [Google Scholar] [CrossRef]
- Xu, J.J.; Farrington, G.C. Study of Ion-Transport Properties in Polymer Electrolytes Using a Novel Electrochemical Method. J. Electrochem. Soc. 1998, 145, 744–749. [Google Scholar] [CrossRef]
- Xu, J.; Farrington, G.C. A Novel Electrochemical Method for Measuring Salt Diffusion Coefficients and Ion Transference Numbers. J. Electrochem. Soc. 1996, 143, L44–L47. [Google Scholar] [CrossRef]
- Schaefer, J.L.; Yanga, D.A.; Archer, L.A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 2013, 25, 834–839. [Google Scholar] [CrossRef]
- Watanabe, M.; Rikukawa, M.; Sanui, K.; Ogata, N. Evaluation of ionic mobility and transference number in a polymeric solid electrolyte by isothermal transient ionic current method. J. Appl. Phys. 1985, 58, 736–740. [Google Scholar] [CrossRef]
- Watanabe, M.; Sanui, K.; Ogata, N.; Kobayashi, T.; Ohtaki, Z. Ionic conductivity and mobility in network polymers from poly(propylene oxide) containing lithium perchlorate. J. Appl. Phys. 1985, 57, 123–128. [Google Scholar] [CrossRef]
- Watanabe, M.; Sanui, K.; Ogata, N.; Inoue, F.; Kobayashi, T.; Ohtaki, Z. Ionic conductivity and mobility of poly(propylene oxide) networks dissolving alkali metal thiocyanates. Polym. J. 1985, 17, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Rathore, M.; Dalvi, A.; Kumar, A.; Ślubowska, W.; Nowinski, J.L. Ionic liquid dispersed Li+ ion oxide glasses and glass-ceramics: Assessment of electrical transport and thermal stability. Solid State Ion. 2015, 282, 76–81. [Google Scholar] [CrossRef]
- Agrawal, R.C.; Kathal, K.; Gupta, R.K. Estimation of energies of Ag+ ion formation and migration using transient ionic current (TIC) technique. Solid State Ion. 1994, 74, 137–140. [Google Scholar] [CrossRef]
- Qin, B.; Liu, Z.; Ding, G.; Duan, Y.; Zhang, C.; Cui, G. A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures. Electrochim. Acta 2014, 141, 167–172. [Google Scholar] [CrossRef]
- Karan, S.; Sahu, T.B.; Sahu, M.; Mahipal, Y.K.; Agrawal, R.C. Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2]. Ionics 2017, 23, 2721–2726. [Google Scholar] [CrossRef]
- Sahu, T.B.; Sahu, M.; Karan, S.; Mahipal, Y.K.; Sahu, D.K.; Agrawal, R.C. Study of electrical and electrochemical behavior on copper ion conducting nano-composite polymer electrolyte. Ionics 2018, 24, 2885–2892. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, L.; Liu, Q. Single-ion conductivity and carrier generation of polyelectrolytes. Solid State Ion. 1995, 76, 121–125. [Google Scholar] [CrossRef]
- Waals, D.; Laar, V. Carl Wagner. Ber. Der Bunsenges. Für Phys. Chem. 1991, 95, 936–949. [Google Scholar] [CrossRef]
- Vest, R.W.; Tallan, N.M. High-temperature transference number determinations by polarization measurements. J. Appl. Phys. 1965, 36, 543–547. [Google Scholar] [CrossRef]
- Wagner, C. Beitrag zur Theorie des Anlaufvorgangs. Z. Für Phys. Chem. 1933, 21B, 25–41. [Google Scholar] [CrossRef]
- Kumar, J.S.; Reddy, M.J.; Rao, U.V.S. Ion transport and battery studies of a new (PVP + KIO3) polymer electrolyte system. J. Mater. Sci. 2006, 41, 6171–6173. [Google Scholar] [CrossRef]
- Chapi, S.; Raghu, S.; Devendrappa, H. Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 2016, 22, 803–814. [Google Scholar] [CrossRef]
- Perera, K.; Vidanapathirana, K. Impedance spectroscopy, DC polarization, XRD and SEM studies on an ionic liquid based gel polymer electrolyte to be used for dye sensitized solar cells. Mater. Discov. 2017, 7, 30–33. [Google Scholar] [CrossRef]
- Sikkanthar, S.; Karthikeyan, S.; Selvasekarapandian, S.; Arunkumar, D.; Nithya, H.; Junichi, K. Structural, electrical conductivity, and transport analysis of PAN–NH4Cl polymer electrolyte system. Ionics 2016, 22, 1085–1094. [Google Scholar] [CrossRef]
- Nik-Aziz, N.A.; Idris, N.K.; Isa, M.I.N. Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: Conductivity and ionic transport studies. Int. J. Phys. Sci. 2010, 5, 748–752. [Google Scholar]
- Chai, M.N.; Isa, M.I.N. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Hemalatha, R.; Alagar, M.; Selvasekarapandian, S.; Sundaresan, B.; Moniha, V. Studies of proton conducting polymer electrolyte based on PVA, amino acid proline and NH4SCN. J. Sci. Adv. Mater. Devices 2019, 4, 101–110. [Google Scholar] [CrossRef]
- Ismail, M.; Zhao, Y.; Yu, X.B.; Dou, S.X.M. Proton-Conducting Polymer Electrolyte Based on PVA-PAN Blend Polymer Doped with NH4NO3. Int. J. Electroact. Mater. 2013, 1, 64–70. [Google Scholar]
- Pandi, D.V.; Selvasekarapandian, S.; Bhuvaneswari, R.; Premalatha, M.; Monisha, S.; Arunkumar, D.; Junichi, K. Development and characterization of proton conducting polymer electrolyte based on PVA, amino acid glycine and NH4SCN. Solid State Ion. 2016, 298, 15–22. [Google Scholar] [CrossRef]
- Hema, M.; Selvasekerapandian, S.; Sakunthala, A.; Arunkumar, D.; Nithya, H. Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system. Phys. B Condens. Matter 2008, 403, 2740–2747. [Google Scholar] [CrossRef]
- Chandra, A.; Srivastava, P.C.; Chandra, S. Ion transport studies in PEO:NH4I polymer electrolytes with dispersed Al2O3. J. Mater. Sci. 1995, 30, 3633–3638. [Google Scholar] [CrossRef]
- Agrawal, R.C. dc polarisation: An experimental tool in the study of ionic conductors. Indian J. Pure Appl. Phys. 1999, 37, 294–301. [Google Scholar]
- Woo, H.J.; Majid, S.R.; Arof, A.K. Transference number and structural analysis of proton conducting polymer electrolyte based on poly(ε-caprolactone). Mater. Res. Innov. 2011, 15, 49–54. [Google Scholar] [CrossRef]
- Watanabe, M.; Nagano, S.; Sanui, K.; Ogata, N. Estimation of Li+ transport number om polymer electrolytes by the combination of complex impedance and potentiostatic polarization measuremments. Solid State Ion. 1988, 30, 911–917. [Google Scholar] [CrossRef]
- Hashmi, S.A.; Ajay Kumar, K.; Maurya, K.; Chandra, S. Proton-conducting polymer electrolyte I: The polyethylene oxide Proton-conducting polymer electrolyte system + NH,CIO. J. Phys. D Appl. Phys. 1990, 23, 1307–1314. [Google Scholar] [CrossRef]
- Maurya, K.K.; Srivastava, N.; Hashmi, S.A.; Chandra, S. Proton conducting polymer electrolyte: II poly ethylene oxide + NH4l system. J. Mater. Sci. 1992, 27, 6357–6364. [Google Scholar] [CrossRef]
- Commer, P.; Cherstvy, A.G.; Spohr, E.; Kornyshev, A.A. The effect of water content on proton transport in polymer electrolyte membranes. Fuel Cells 2002, 2, 127–136. [Google Scholar] [CrossRef]
- Eikerling, M.; Kornyshev, A.A.; Kuznetsov, A.M.; Ulstrup, J.; Walbran, S. Mechanisms of proton conductance in polymer electrolyte membranes. J. Phys. Chem. B 2002, 105, 3646–3662. [Google Scholar] [CrossRef] [Green Version]
- Arya, A.; Sharma, A.L. Investigation on Enhancement of Electrical, Dielectric and Ion Transport Properties of Nanoclay-Based Blend Polymer Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2020; Volume 77, ISBN 0123456789. [Google Scholar]
- Subba Reddy, C.V.; Sharma, A.K.; Narasimha Rao, V.V.R. Conductivity and parametric studies of a polyblend electrolyte for battery applications. J. Mater. Sci. Lett. 2002, 21, 105–108. [Google Scholar] [CrossRef]
- Arya, A.; Sadiq, M.; Sharma, A.L. Structural, electrical and ion transport properties of free-standing blended solid polymeric thin films. Polym. Bull. 2019, 76, 5149–5172. [Google Scholar] [CrossRef]
- Osman, Z.; Mohd Ghazali, M.I.; Othman, L.; Md Isa, K.B. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF 4 gel polymer electrolytes. Results Phys. 2012, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Deraman, S.K.; Mohamed, N.S.; Subban, R.H.Y. Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)—Ammonium triflate-ionic liquid for proton battery. Int. J. Electrochem. Sci. 2013, 8, 1459–1468. [Google Scholar]
- Kumar, M.; Chandra, A. In situ production of CuS particles in polymer electrolyte matrix for mixed ion+electron conduction. Ionics 2010, 16, 849–853. [Google Scholar] [CrossRef]
- Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703–A1719. [Google Scholar] [CrossRef]
- Chandra, A.; Singh, P.K.; Chandra, S. Semiconductor-dispersed polymer electrolyte composites. Solid State Ion. 2002, 154–155, 15–20. [Google Scholar] [CrossRef]
- Huggins, R.A. Simple method to determine electronic conductivity and ionic components of the conductors in mixed a review. Ionics 2002, 8, 300–313. [Google Scholar] [CrossRef]
- Riess, I. Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors. Solid State Ion. 1996, 91, 221–232. [Google Scholar] [CrossRef]
- Riess, I. Four point Hebb-Wagner polarization method for determining the electronic conductivity in mixed ionic-electronic conductors. Solid State Ion. 1992, 51, 219–229. [Google Scholar] [CrossRef]
- Unge, M.; Gudla, H.; Zhang, C.; Brandell, D. Electronic conductivity of polymer electrolytes: Electronic charge transport properties of LiTFSI-doped PEO. Phys. Chem. Chem. Phys. 2020, 22, 7680–7684. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.; Arif, T.; Kumar, R.; Kumar, D. Effect of Al2O3 nanoparticles on ionic conductivity of PVdF-HFP/PMMA blend-based Na+-ion conducting nanocomposite gel polymer electrolyte. J. Solid State Electrochem. 2019, 23, 2401–2409. [Google Scholar] [CrossRef]
- Selvasekarapandian, S.; Baskaran, R.; Hema, M. Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc-NH4SCN polymer electrolytes. Phys. B Condens. Matter 2005, 357, 412–419. [Google Scholar] [CrossRef]
- Evans, J.; Vincent, C.A.; Bruce, P.G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324–2328. [Google Scholar] [CrossRef]
- Bruce, P.G.; Evans, J.; Vincent, C.A. Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 1988; 28–30, 918–922. [Google Scholar] [CrossRef]
- Bruce, P.G.; Vincent, C.A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. 1987, 225, 1–17. [Google Scholar] [CrossRef]
- Blonsky, P.M.; Shriver, D.F.; Austin, P.; Allcock, H.R. Complex formation and ionic conductivity of polyphosphazene solid electrolytes. Solid State Ion. 1986, 18–19, 258–264. [Google Scholar] [CrossRef]
- Kurian, M.; Galvin, M.E.; Trapa, P.E.; Sadoway, D.R.; Mayes, A.M. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications. Electrochim. Acta 2005, 50, 2125–2134. [Google Scholar] [CrossRef]
- Cakmak, G.; Verhoeven, A.; Jansen, M. Synthesis and characterization of solid single ion conductors based on poly[lithium tetrakis(ethyleneboryl)borate]. J. Mater. Chem. 2009, 19, 4310–4318. [Google Scholar] [CrossRef]
- Vincent, C.A.; Bruce, P.G.; Hardgrave, M.T.; Shi, J. Constant-voltage polarization of symmetric polymer electrolyte cells with non-blocking electrodes. Polym. Adv. Technol. 1993, 4, 144–151. [Google Scholar] [CrossRef]
- Cameron, G.G.; Ingram, M.D.; Harvie, J.L. Comparative ion transport in several polymer electrolytes. J. Power Sources 1989, 68, 372–376. [Google Scholar] [CrossRef]
- Huo, H.; Wu, B.; Zhang, T.; Zheng, X.; Ge, L.; Xu, T.; Guo, X.; Sun, X. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67. [Google Scholar] [CrossRef]
- Piszcz, M.; Marczewski, M.; Zukowska, G.Z.; Wójcik, J.; Wieczorek, W.; Siekierski, M. Optimization of methylalumoxane based composite polymeric electrolytes for lithium battery applications. Solid State Ion. 2013, 245–246, 33–42. [Google Scholar] [CrossRef]
- Zygadło-Monikowska, E.; Florjańczyk, Z.; Tomaszewska, A.; Pawlicka, M.; Langwald, N.; Kovarsky, R.; Mazor, H.; Golodnitsky, D.; Peled, E. New boron compounds as additives for lithium polymer electrolytes. Electrochim. Acta 2007, 53, 1481–1489. [Google Scholar] [CrossRef]
- Blazejczyk, A.; Szczupak, M.; Wieczorek, W.; Cmoch, P.; Appetecchi, G.B.; Scrosati, B.; Kovarsky, R.; Golodnitsky, D.; Peled, E. Anion-binding calixarene receptors: Synthesis, microstructure, and effect on properties of polyether electrolytes. Chem. Mater. 2005, 17, 1535–1547. [Google Scholar] [CrossRef]
- Blazejczyk, A.; Wieczorek, W.; Kovarsky, R.; Golodnitsky, D.; Peled, E.; Scanlon, L.G.; Appetecchi, G.B.; Scrosati, B. Novel Solid Polymer Electrolytes with Single Lithium-Ion Transport. J. Electrochem. Soc. 2004, 151, A1762. [Google Scholar] [CrossRef]
- Golodnitsky, D.; Kovarsky, R.; Mazor, H.; Rosenberg, Y.; Lapides, I.; Peled, E.; Wieczorek, W.; Plewa, A.; Siekierski, M.; Kalita, M.; et al. Host-Guest Interactions in Single-Ion Lithium Polymer Electrolyte. J. Electrochem. Soc. 2007, 154, A547. [Google Scholar] [CrossRef]
- Ciosek, M.; Sannier, L.; Siekierski, M.; Golodnitsky, D.; Peled, E.; Scrosati, B.; Głowinkowski, S.; Wieczorek, W. Ion transport phenomena in polymeric electrolytes. Electrochim. Acta 2007, 53, 1409–1416. [Google Scholar] [CrossRef]
- Xi, J.; Tang, X. Enhanced lithium ion transference number and ionic conductivity of composite polymer electrolyte doped with organic-inorganic hybrid P123@SBA-15. Chem. Phys. Lett. 2004, 400, 68–73. [Google Scholar] [CrossRef]
- Chintapalli, M.; Timachova, K.; Olson, K.R.; Mecham, S.J.; Devaux, D.; Desimone, J.M.; Balsara, N.P. Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes. Macromolecules 2016, 49, 3508–3515. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Pesko, D.M.; Savoie, B.M.; Timachova, K.; Hasan, A.L.; Smith, M.C.; Miller, T.F.; Coates, G.W.; Balsara, N.P. Optimizing Ion Transport in Polyether-Based Electrolytes for Lithium Batteries. Macromolecules 2018, 51, 2847–2858. [Google Scholar] [CrossRef] [Green Version]
- Nancy, A.C.; Suthanthiraraj, S.A. Preparation and characterization of a new PEO-PPG blend polymer electrolyte system. Ionics 2016, 22, 2399–2408. [Google Scholar] [CrossRef]
- Aldalur, I.; Zhang, H.; Piszcz, M.; Oteo, U.; Rodriguez-Martinez, L.M.; Shanmukaraj, D.; Rojo, T.; Armand, M. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application. J. Power Sources 2017, 347, 37–46. [Google Scholar] [CrossRef]
- Tao, R.; Miyamoto, D.; Aoki, T.; Fujinami, T. Novel liquid lithium borates characterized with high lithium ion transference numbers. J. Power Sources 2004, 135, 267–272. [Google Scholar] [CrossRef]
- Onishi, K.; Matsumoto, M.; Shigehara, K. Transport number controlled solid electrolytes composed of aluminate polymer complex/LiBF4 hybrid. Polym. Adv. Technol. 2000, 11, 539–543. [Google Scholar] [CrossRef]
- Dewing, B.L.; Bible, N.G.; Ellison, C.J.; Mahanthappa, M.K. Electrochemically Stable, High Transference Number Lithium Bis(malonato)borate Polymer Solution Electrolytes. Chem. Mater. 2020, 32, 3794–3804. [Google Scholar] [CrossRef]
- Niedzicki, L.; Karpierz, E.; Zawadzki, M.; Dranka, M.; Kasprzyk, M.; Zalewska, A.; Marcinek, M.; Zachara, J.; Domańska, U.; Wieczorek, W. Lithium cation conducting TDI anion-based ionic liquids. Phys. Chem. Chem. Phys. 2014, 16, 11417–11425. [Google Scholar] [CrossRef] [Green Version]
- Gładka, D.; Omiotek, A.; Gosiewska, P.; Langwald, N.; Florjańczyk, Z.; Kubisa, P.; Biedroń, T.; Zygadło-Monikowska, E. Lithium polymer electrolytes containing oligomeric imidazolium ionic liquids. Polym. Int. 2016, 65, 963–969. [Google Scholar] [CrossRef]
- Bhide, A.; Hariharan, K. Ionic transport studies on (PEO)6:NaPO3 polymer electrolyte plasticized with PEG400. Eur. Polym. J. 2007, 43, 4253–4270. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, L.; Shi, L.; Wang, Z.; Zhu, J.; Zhao, Y.; Yuan, S. Gel Polymer Electrolyte with High Li + Transference Number Enhancing the Cycling Stability of Lithium Anodes. ACS Appl. Mater. Interfaces 2019, 11, 5168–5175. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Fu, C.; Li, L.; Mayilvahanan, K.S.; Watkins, T.; Perdue, B.R.; Zavadil, K.R.; Helms, B.A. Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. Nano Lett. 2019, 19, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Rohan, R.; Pareek, K.; Chen, Z.; Cheng, H. A pre-lithiated phloroglucinol based 3D porous framework as a single ion conducting electrolyte for lithium ion batteries. Rsc Adv. 2016, 6, 53140–53147. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Chai, J.; Liu, T.; Hu, R.; Zhang, Z.; Li, G.; Cui, G. A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries. Solid State Ion. 2019, 337, 140–146. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Han, D.; Xiao, M.; Sun, L.; Meng, Y. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance. Energy Storage Mater. 2020, 24, 579–587. [Google Scholar] [CrossRef]
- Guzmán-González, G.; Ávila-Paredes, H.J.; Rivera, E.; González, I. Electrochemical Characterization of Single Lithium-Ion Conducting Polymer Electrolytes Based on sp3 Boron and Poly(ethylene glycol) Bridges. ACS Appl. Mater. Interfaces 2018, 10, 30247–30256. [Google Scholar] [CrossRef]
- Lago, N.; Garcia-Calvo, O.; Lopezdelamo, J.M.; Rojo, T.; Armand, M. All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. ChemSusChem 2015, 8, 3039–3043. [Google Scholar] [CrossRef] [PubMed]
- Piszcz, M.; Garcia-Calvo, O.; Oteo, U.; Lopez del Amo, J.M.; Li, C.; Rodriguez-Martinez, L.M.; Youcef, H.B.; Lago, N.; Thielen, J.; Armand, M. New Single Ion Conducting Blend Based on PEO and PA-LiTFSI. Electrochim. Acta 2017, 255, 48–54. [Google Scholar] [CrossRef]
- Ma, Y.; Doyle, M.; Fuller, T.F.; Doeff, M.M.; De Jonghe, L.C.; Newman, J. The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution. J. Electrochem. Soc. 1995, 142, 1859–1868. [Google Scholar] [CrossRef]
- Hafezi, H.; Newman, J. Verification and Analysis of Transference Number Measurements by the Galvanostatic Polarization Method. J. Electrochem. Soc. 2000, 147, 3036. [Google Scholar] [CrossRef]
- Newman, J.; Tiedemann, W. Porous-electrode theory with battery applications. AIChE J. 1975, 21, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Marcinek, M.; Ciosek, M.; Zukowska, G.; Wieczorek, W.; Jeffrey, K.R.; Stevens, J.R. The impact of end groups on ionic interactions in low molecular weight Al2O3-polyether-LiClO4 electrolytes. Solid State Ion. 2004, 171, 69–80. [Google Scholar] [CrossRef]
- Ferry, A.; Doeff, M.M.; DeJonghe, L.C. Transport property measurements of polymer electrolytes. Electrochim. Acta 1998, 43, 1387–1393. [Google Scholar] [CrossRef] [Green Version]
- Doeff, M.M.; Georèn, P.; Qiao, J.; Kerr, J.; De Jonghe, L.C. Transport Properties of a High Molecular Weight Poly(propylene oxide)-LiCF3 SO3 System. J. Electrochem. Soc. 2019, 146, 2024–2028. [Google Scholar] [CrossRef]
- Pesko, D.M.; Timachova, K.; Bhattacharya, R.; Smith, M.C.; Villaluenga, I.; Newman, J.; Balsara, N.P. Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes. J. Electrochem. Soc. 2017, 164, E3569–E3575. [Google Scholar] [CrossRef] [Green Version]
- Balsara, N.P.; Newman, J. Relationship between Steady-State Current in Symmetric Cells and Transference Number of Electrolytes Comprising Univalent and Multivalent Ions. J. Electrochem. Soc. 2015, 162, A2720–A2722. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.B.; Nguyen, H.Q.; Grundy, L.S.; Olson, K.R.; Mecham, S.J.; Desimone, J.M.; Balsara, N.P. Difference between approximate and rigorously measured transference numbers in fluorinated electrolytes. Phys. Chem. Chem. Phys. 2019, 21, 7857–7866. [Google Scholar] [CrossRef] [Green Version]
- Pesko, D.M.; Sawhney, S.; Newman, J.; Balsara, N.P. Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes. J. Electrochem. Soc. 2018, 165, A3014–A3021. [Google Scholar] [CrossRef] [Green Version]
- Bass, J.L.; Turner, G.L. 29 SI Anion Distributions in Sodium Silicate Solutions. Characterization by Infrared Spectroscopies, and Vapor Phase Osmometry. J. Phys. Chem. B 1997, 101, 10638–10644. [Google Scholar] [CrossRef]
- Bac, A.; Ciosek, M.; Bukat, M.; Marczewski, M.; Marczewska, H.; Wieczorek, W. The effect of type of the inorganic filler and dopant salt concentration on the PEO-LiClO4 based composite electrolyte-lithium electrode interfacial resistivity. J. Power Sources 2006, 159, 405–411. [Google Scholar] [CrossRef]
- Plewa, A.; Chyliński, F.; Kalita, M.; Bukat, M.; Parzuchowski, P.; Borkowska, R.; Siekierski, M.; Zukowska, G.Z.; Wieczorek, W. Influence of macromolecular additives on transport properties of lithium organic electrolytes. J. Power Sources 2006, 159, 431–437. [Google Scholar] [CrossRef]
- Christie, L.; Christie, A.M.; Vincent, C.A. Rapid Measurement of the Apparent Transference Number and Salt Diffusion Coefficient in Solid Polymer Electrolytes. Electrochem. Solid-State Lett. 1999, 2, 187–188. [Google Scholar] [CrossRef]
- Ciosek, M.; Siekierski, M.; Wieczorek, W. Determination of lithium transference number in PEO-DME-LiClO4 modified with alumina powders of various surface acidity. Electrochim. Acta 2005, 50, 3922–3927. [Google Scholar] [CrossRef]
- Doyle, M.; Newman, J. Analysis of Transference Number Measurements Based on the Potentiostatic Polarization of Solid Polymer Electrolytes. J. Electrochem. Soc. 2019, 142, 3465–3468. [Google Scholar] [CrossRef]
- Wieczorek, W.; Florjanczyk, Z.; Stevens, J.R. Composite polyether based solid electrolytes. Electrochem. Acta 1995, 40, 2251–2258. [Google Scholar] [CrossRef]
- Marcinek, M.; Bac, A.; Lipka, P.; Zalewska, A.; Zukowska, G.; Borkowska, R.; Wieczorek, W. Effect of filler surface group on ionic interactions in PEG-LiCIO4-AI2O3 composite polyether electrolytes. J. Phys. Chem. B 2000, 104, 11088–11093. [Google Scholar] [CrossRef]
- Borkowska, R.; Reda, A.; Zalewska, A.; Wieczorek, W. Composite polyether electrolytes with Lewis acid type additives. Electrochim. Acta 2001, 46, 1737–1746. [Google Scholar] [CrossRef]
- Marcinek, M.; Ciosek, M.; Zukowska, G.; Wieczorek, W.; Jeffrey, K.R.; Stevens, J.R. Ionic association in liquid (polyether-Al2O3-LiClO4 ) composite electrolytes. Solid State Ion. 2005, 176, 367–376. [Google Scholar] [CrossRef]
- Peled, E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126, 2047. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, F.; Sun, N.; Wu, A.; Pan, W.; Zheng, L. Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries. Soft Matter 2018, 14, 6313–6319. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Lucht, B.L. Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries. J. Electrochem. Soc. 2014, 161, A1001–A1006. [Google Scholar] [CrossRef]
- Bac, A.; Ciosek, M.; Bukat, M.; Siekierski, M.; Wieczorek, W. The effect of salt concentration on the PEO-LiClO4-lithium electrode interfacial resistivity. J. Power Sources 2006, 159, 438–442. [Google Scholar] [CrossRef]
Salt | X | 0 | 0.125 | 0.25 | 0.5 | 1.0 | |
---|---|---|---|---|---|---|---|
N | |||||||
LiBF4 | 20 | 0.32 | 0.78 | 0.81 | 0.85 | ||
50 | 0.72 | 0.53 | 0.68 | ||||
100 | 1.06 | 0.75 | 0.92 | ||||
LiI | 20 | 0.24 | 0.56 | 0.78 | |||
50 | 0.75 | ||||||
100 | 0.49 |
D Polymer 10−8 cm2/s | D− 10−8 cm2/s | D+ 10−8 cm2/s | t+ | |
---|---|---|---|---|
(PEO)20LiBF4-(C6P)0,25 | 6.51 | 27.5 | 24.6 | 0.47 |
(PEO)20LiBF4 | 3.37 | 36.1 | 20.0 | 0.36 |
Experiment | PEGDME LiI 0.1 mol/kg | PEGDME LiI 0.75 mol/kg |
---|---|---|
V1 | 3.35 × 10−8 | 1.97 × 10−8 |
V2 | 2.37 × 10−8 | 2.53 × 10−8 |
V3 | 4.35 × 10−8 | 2.44 × 10−8 |
V4 | 2.47 × 10−8 | 1.48 × 10−8 |
V5 | 2.46 × 10−8 | |
E1 | 6.17 × 10−7 | 1.12 × 10−7 |
P1 | 2.25 × 10−8 | 1.18 × 10−8 |
P2 | 2.51 × 10−8 | 1.52 × 10−8 |
Concentration [mol/kg] (PEGDME)x-LiI | t+ | Concentration [mol/kg] (PEGDME)x-LiI (CP6)0,5 | t+ |
---|---|---|---|
0.75 | −1.65 | 0.75 | −0.389 |
0.5 | −1.02 | 0.5 | −0.399 |
0.25 | −0.25 | 0.25 | −0.702 |
0.1 | −0.29 | 0.1 | −0.538 |
0.05 | −0.1 | 0.05 | −5.28 |
Concentration [mol/kg] (PEGDME)x-LiBF4 | t+ | Concentration [mol/kg] (PEGDME)x-LiBF4 (C6P)0.33 | t+ |
---|---|---|---|
0.75 | −5.77264 | 0.75 | 0.23699 |
0.5 | −1.19602 | 0.5 | −0.13511 |
0.25 | −3.00715 | 0.25 | −0.92227 |
0.1 | −1.34774 | 0.1 | −1.77051 |
0.05 | −2.29648 | 0.05 | −0.20036 |
0.01 | −1.21284 | 0.01 | −3.16524 |
0.005 | −3.45207 | 0.005 | −6.28005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siekierski, M.; Bukat, M.; Ciosek, M.; Piszcz, M.; Mroczkowska-Szerszeń, M. Transference Number Determination in Poor-Dissociated Low Dielectric Constant Lithium and Protonic Electrolytes. Polymers 2021, 13, 895. https://doi.org/10.3390/polym13060895
Siekierski M, Bukat M, Ciosek M, Piszcz M, Mroczkowska-Szerszeń M. Transference Number Determination in Poor-Dissociated Low Dielectric Constant Lithium and Protonic Electrolytes. Polymers. 2021; 13(6):895. https://doi.org/10.3390/polym13060895
Chicago/Turabian StyleSiekierski, Maciej, Marcin Bukat, Marcin Ciosek, Michał Piszcz, and Maja Mroczkowska-Szerszeń. 2021. "Transference Number Determination in Poor-Dissociated Low Dielectric Constant Lithium and Protonic Electrolytes" Polymers 13, no. 6: 895. https://doi.org/10.3390/polym13060895
APA StyleSiekierski, M., Bukat, M., Ciosek, M., Piszcz, M., & Mroczkowska-Szerszeń, M. (2021). Transference Number Determination in Poor-Dissociated Low Dielectric Constant Lithium and Protonic Electrolytes. Polymers, 13(6), 895. https://doi.org/10.3390/polym13060895