Characterization of an Experimental Two-Step Self-Etch Adhesive’s Bonding Performance and Resin-Dentin Interfacial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Teeth Selection, Preparation, and Bonding Procedures
2.2. µTBS Test
2.3. Fracture Mode Analysis
2.4. Interface Observation through SEM
2.5. Specimen Preparation for Elastic Modulus Test
2.6. Indentation Tests for Elastic Modulus (E)
2.7. Statistical Analysis
3. Results
3.1. µTBS Test
3.2. Fracture Modes
3.3. Interface Observation
3.4. Elastic Modulus (E)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soderholm, K. Dental adhesives… how it all started and later evolved. J. Adhes. Dent. 2007, 9, 227. [Google Scholar]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Mine, A.; De Munck, J.; Jaecques, S.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. J. Adhes. Dent. 2009, 11, 175–190. [Google Scholar] [CrossRef]
- Sadek, F.T.; Goracci, C.; Cardoso, P.E.C.; Tay, F.R.; Ferrari, M. Microtensile bond strength of current dentin adhesives measured immediately and 24 hours after application. J. Adhes. Dent. 2005, 7, 297–302. [Google Scholar] [PubMed]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; Dorigo, E.D.S. Dental adhesion review: Aging and stability of the bonded interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef]
- De Munck, J.; Mine, A.; Poitevin, A.; Van Ende, A.; Cardoso, M.V.; Van Landuyt, K.L.; Peumans, M.; Van Meerbeek, B. Meta-analytical review of parameters involved in dentin bonding. J. Dent. Res. 2012, 91, 351–357. [Google Scholar] [CrossRef]
- Heintze, S.D.; Ruffieux, C.; Rousson, V. Clinical performance of cervical restorations—a meta-analysis. Dent. Mater. 2010, 26, 993–1000. [Google Scholar] [CrossRef]
- Peumans, M.; Kanumilli, P.; De Munck, J.; Van Landuyt, K.; Lambrechts, P.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent. Mater. 2005, 21, 864–881. [Google Scholar] [CrossRef] [PubMed]
- Peumans, M.; De Munck, J.; Mine, A.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent. Mater. 2014, 30, 1089–1103. [Google Scholar] [CrossRef]
- Finger, W.J.; Shao, B.; Hoffmann, M.; Kanehira, M.; Endo, T.; Komatsu, M. Does application of phase-separated self-etching adhesives affect bond strength? J. Adhes. Dent. 2007, 9, 9. [Google Scholar]
- De De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A critical review of the durability of adhesion to tooth tissue: Methods and results. J. Dent. Res. 2005, 84, 118–132. [Google Scholar] [CrossRef]
- Sano, H.; Chowdhury, A.F.M.A.; Saikaew, P.; Matsumoto, M.; Hoshika, S.; Yamauti, M. The microtensile bond strength test: Its historical background and application to bond testing. Jpn. Dent. Sci. Rev. 2020, 56, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Inokoshi, S.; Braem, M.; Lambrechts, P.; Vanherle, G. Morphological aspects of the resin-dentin interdiffusion zone with different dentin adhesive systems. J. Dent. Res. 1992, 71, 1530–1540. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, N.; Kojima, K.; Masuhara, E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Res. 1982, 16, 265–273. [Google Scholar] [CrossRef]
- Yamazaki, P.C.V.; Bedran-Russo, A.K.B.; Pereira, P.N.R. Importance of the hybrid layer on the bond strength of restorations subjected to cyclic loading. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 84, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Willems, G.; Celis, J.-P.; Roos, J.R.; Braem, M.; Lambrechts, P.; Vanherle, G. Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J. Dent. Res. 1993, 72, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Pongprueksa, P.; Kuphasuk, W.; Senawongse, P. The elastic moduli across various types of resin/dentin interfaces. Dent. Mater. 2008, 24, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Higashi, C.; Michel, M.D.; Reis, A.; Loguercio, A.D.; Gomes, O.M.M.; Gomes, J.C. Impact of adhesive application and moisture on the mechanical properties of the adhesive interface determined by the nano-indentation technique. Oper. Dent. 2009, 34, 51–57. [Google Scholar] [CrossRef]
- Dos Santos, P.H.; Karol, S.; Bedran-Russo, A.K. Long-term nano-mechanical properties of biomodified dentin–resin interface components. J. Biomech. 2011, 44, 1691–1694. [Google Scholar] [CrossRef]
- Armstrong, S.; Breschi, L.; Özcan, M.; Pfefferkorn, F.; Ferrari, M.; Van Meerbeek, B. Academy of Dental Materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (μTBS) approach. Dent. Mater. 2017, 33, 133–143. [Google Scholar] [CrossRef]
- Chowdhury, A.F.M.A.; Islam, R.; Alam, A.; Matsumoto, M.; Yamauti, M.; Carvalho, R.M.; Sano, H. Variable Smear Layer and Adhesive Application: The Pursuit of Clinical Relevance in Bond Strength Testing. Int. J. Mol. Sci. 2019, 20, 5381. [Google Scholar] [CrossRef] [PubMed]
- Saikaew, P.; Chowdhury, A.F.M.A.; Fukuyama, M.; Kakuda, S.; Carvalho, R.M.; Sano, H. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength. J. Dent. 2016, 47, 63–70. [Google Scholar] [CrossRef]
- Sato, K.; Hosaka, K.; Takahashi, M.; Ikeda, M.; Tian, F.; Komada, W.; Nakajima, M.; Foxton, R.; Nishitani, Y.; Pashley, D.H.; et al. Dentin bonding durability of two-step self-etch adhesives with improved of degree of conversion of adhesive resins. J. Adhes. Dent. 2017, 19, 31–37. [Google Scholar] [PubMed]
- Saikaew, P.; Chowdhury, A.F.M.; Matsumoto, M.; Carvalho, R.M.; Sano, H. Effects of Double Application of a Resin Cement Primer and Different Diamond Burs on Cement-Dentin Bond Strength. J. Adhes. Dent. 2020, 22, 311–320. [Google Scholar]
- Kitasako, Y.; Burrow, M.F.; Nikaido, T.; Tagami, J. The influence of storage solution on dentin bond durability of resin cement. Dent. Mater. 2000, 16, 1–6. [Google Scholar] [CrossRef]
- Aoki, K.; Kitasako, Y.; Ichinose, S.; Burrow, M.F.; Ariyoshi, M.; Nikaido, T.; Tagami, J. Ten-year observation of dentin bonding durability of 4-META/MMA-TBB resin cement—A SEM and TEM study. Dent. Mater. J. 2011, 1107180160. [Google Scholar] [CrossRef]
- Saikaew, P.; Fu, J.; Chowdhury, A.F.M.A.; Carvalho, R.M.; Sano, H. Effect of air-blowing time and long-term storage on bond strength of universal adhesives to dentin. Clin. Oral Investig. 2019, 23, 2629–2635. [Google Scholar] [CrossRef]
- Chowdhury, A.; Saikaew, P.; Matsumoto, M.; Sano, H.; Carvalho, R.M. Gradual dehydration affects the mechanical properties and bonding outcome of adhesives to dentin. Dent. Mater. J. 2019, 38, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Cova, A.; Breschi, L.; Nato, F.; Ruggeri Jr, A.; Carrilho, M.; Tjäderhane, L.; Prati, C.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H. Effect of UVA-activated riboflavin on dentin bonding. J. Dent. Res. 2011, 90, 1439–1445. [Google Scholar] [CrossRef]
- Huang, X.; Pucci, C.R.; Luo, T.; Breschi, L.; Pashley, D.H.; Niu, L.; Tay, F.R. No-waiting dentine self-etch concept—Merit or hype. J. Dent. 2017, 62, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Ting, S.; AFM, A.; Pan, F.; Fu, J.; Sun, J.; Kakuda, S.; Hoshika, S.; Matsuda, Y.; Ikeda, T.; Nakaoki, Y. Effect of remaining dentin thickness on microtensile bond strength of current adhesive systems. Dent. Mater. J. 2015, 34, 181–188. [Google Scholar] [CrossRef]
- Chowdhury, A.; Saikaew, P.; Alam, A.; Sun, J.; Carvalho, R.M.; Sano, H. Effects of double application of contemporary self-etch adhesives on their bonding performance to dentin with clinically relevant smear layers. J. Adhes. Dent. 2019, 21, 59–66. [Google Scholar] [PubMed]
- Van Meerbeek, B.; De Munck, J.; Yoshida, Y.; Inoue, S.; Vargas, M.; Vijay, P.; Van Landuyt, K.; Lambrechts, P.; Vanherle, G. Buonocore Memorial Lecture. Adhesion to enamel and dentin: Current status and future challenges. Oper. Dent. 2003, 28, 215. [Google Scholar]
- Moszner, N.; Salz, U.; Zimmermann, J. Chemical aspects of self-etching enamel–dentin adhesives: A systematic review. Dent. Mater. 2005, 21, 895–910. [Google Scholar] [CrossRef] [PubMed]
- De Munck, J.; Van Meerbeek, B.; Satoshi, I.; Vargas, M.; Yoshida, Y.; Armstrong, S.; Lambrechts, P.; Vanherle, G. Microtensile bond strengths of one-and two-step self-etch adhesives to bur-cut enamel and dentin. Am. J. Dent. 2003, 16, 414–420. [Google Scholar] [PubMed]
- Inoue, S.; Vargas, M.A.; Abe, Y.; Yoshida, Y.; Lambrechts, P.; Vanherle, G.; Sano, H.; Van Meerbeek, B. Microtensile bond strength of eleven contemporary adhesives to enamel. Am. J. Dent. 2003, 16, 329–334. [Google Scholar]
- King, N.M.; Tay, F.R.; Pashley, D.H.; Hashimoto, M.; Ito, S.; Brackett, W.W.; García-Godoy, F.; Sunico, M. Conversion of one-step to two-step self-etch adhesives for improved efficacy and extended application. Am. J. Dent. 2005, 18, 126–134. [Google Scholar]
- Hosaka, K.; Nakajima, M.; Monticelli, F.; Carrilho, M.; Yamauti, M.; Aksornmuang, J.; Nishitani, Y.; Tayh, F.R.; Pashley, D.H.; Tagami, J. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives. J. Adhes. Dent. 2007, 9, 437–442. [Google Scholar]
- Sarr, M.; Kane, A.W.; Vreven, J.; Mine, A.; Van Landuyt, K.L.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B.; De Munck, J. Microtensile bond strength and interfacial characterization of 11 contemporary adhesives bonded to bur-cut dentin. Oper. Dent. 2010, 35, 94–104. [Google Scholar] [CrossRef]
- Paul, S.J.; Leach, M.; Rueggeberg, F.A.; Pashley, D.H. Effect of water content on the physical properties of model dentine primer and bonding resins. J. Dent. 1999, 27, 209–214. [Google Scholar] [CrossRef]
- Choi, A.-N.; Lee, J.-H.; Son, S.; Jung, K.-H.; Kwon, Y.H.; Park, J.-K. Effect of dentin wetness on the bond strength of universal adhesives. Materials 2017, 10, 1224. [Google Scholar] [CrossRef]
- Alex, G. Universal adhesives: The next evolution in adhesive dentistry. Compend. Contin. Educ. Dent. 2015, 36, 15–26. [Google Scholar]
- Yiu, C.K.Y.; Pashley, E.L.; Hiraishi, N.; King, N.M.; Goracci, C.; Ferrari, M.; Carvalho, R.M.; Pashley, D.H.; Tay, F.R. Solvent and water retention in dental adhesive blends after evaporation. Biomaterials 2005, 26, 6863–6872. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, E.; Peutzfeldt, A. Influence of selected components on crosslink density in polymer structures. Eur. J. Oral Sci. 2001, 109, 282–285. [Google Scholar] [CrossRef]
- Peutzfeldt, A. Resin composites in dentistry: The monomer systems. Eur. J. Oral Sci. 1997, 105, 97–116. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Greener, E.H. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J. Biomed. Mater. Res. 1986, 20, 121–131. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Coutinho, E.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785. [Google Scholar] [CrossRef] [PubMed]
- The new standard in adhesive dentistry. Br. Dent. J. 2021, 230, 263. [CrossRef] [PubMed]
- GC America Inc. Safety Data Sheet for G2-BOND Universal (2-BOND). Available online: https://www.gcamerica.com/products/operatory/G2-BOND/downloads/G2-BONDUniversal(2-BOND)1303USENRev1SDS24Jan2021.pdf (accessed on 11 March 2021).
- GC America Inc. Brochure. Available online: https://www.gcamerica.com/products/operatory/G2-BOND/GCA_G2-BOND_Universal_Brochure-02-09-2021_Ver1-digital.pdf (accessed on 11 March 2021).
- Ausiello, P.; Apicella, A.; Davidson, C.L.; Rengo, S. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J. Biomech. 2001, 34, 1269–1277. [Google Scholar] [CrossRef]
- Choi, K.K.; Condon, J.R.; Ferracane, J.L. The effects of adhesive thickness on polymerization contraction stress of composite. J. Dent. Res. 2000, 79, 812–817. [Google Scholar] [CrossRef]
- Freitas, P.H.; Giannini, M.; França, R.; Correr, A.B.; Correr-Sobrinho, L.; Consani, S. Correlation between bond strength and nanomechanical properties of adhesive interface. Clin. Oral Investig. 2017, 21, 1055–1062. [Google Scholar] [CrossRef]
- Reis, A.F.; Giannini, M.; Pereira, P.N.R. Effects of a peripheral enamel bond on the long-term effectiveness of dentin bonding agents exposed to water in vitro. J. Biomed. Mater. Res. Part B 2008, 85, 10–17. [Google Scholar] [CrossRef]
- Torkabadi, S.; Nakajima, M.; Ikeda, M.; Foxton, R.M.; Tagami, J. Influence of bonded enamel margins on dentin bonding stability of one-step self-etching adhesives. J. Adhes. Dent. 2009, 11, 347–353. [Google Scholar] [PubMed]
- Carvalho, R.M.; Pegoraro, T.A.; Tay, F.R.; Pegoraro, L.F.; Silva, N.; Pashley, D.H. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine. J. Dent. 2004, 32, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Water treeing--a potential mechanism for degradation of dentin adhesives. Am. J. Dent. 2003, 16, 6–12. [Google Scholar] [PubMed]
- Tay, F.R.; Pashley, D.H.; Garcìa-Godoy, F.; Yiu, C.K.Y. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part II. Silver tracer penetration evidence. Am. J. Dent. 2004, 17, 315–322. [Google Scholar] [PubMed]
- Tay, F.R.; Pashley, D.H.; Suh, B.; Carvalho, R.; Miller, M. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part I. Bond strength and morphologic evidence. Am. J. Dent. 2004, 17, 271–278. [Google Scholar] [PubMed]
- Tay, F.R.; Pashley, D.H.; Suh, B.I.; Carvalho, R.M.; Itthagarun, A. Single-step adhesives are permeable membranes. J. Dent. 2002, 30, 371–382. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H.; Suh, B.I.; Hiraishi, N.; Yiu, C.K.Y. Water treeing in simplified dentin adhesives-Déjà Vu? Oper. Dent. 2005, 30, 561–579. [Google Scholar]
- Van Landuyt, K.L.; De Munck, J.; Snauwaert, J.; Coutinho, E.; Poitevin, A.; Yoshida, Y.; Inoue, S.; Peumans, M.; Suzuki, K.; Lambrechts, P.V.M.B. Monomer-solvent phase separation in one-step self-etch adhesivese. J. Dent. Res. 2005, 84, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Borges, B.C.D.; Souza-Junior, E.J.; Brandt, W.C.; Loguercio, A.D.; Montes, M.A.J.R.; Puppin-Rontani, R.M.; Sinhoreti, M.A.C. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes. Oper. Dent. 2012, 37, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Giannini, M.; Arrais, C.A.G.; Vermelho, P.M.; Reis, R.S.; Santos, L.P.S.; Leite, E.R. Effects of the solvent evaporation technique on the degree of conversion of one-bottle adhesive systems. Oper. Dent. 2008, 33, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Nassif, M.; El Askary, F. Nanotechnology and nanoparticles in contemporary dental adhesives. In Nanobiomaterials in Clinical Dentistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–198. [Google Scholar]
Adhesives (Lot No.) | Composition | Application Procedures as per Manufacturers’ Instructions |
---|---|---|
€ G-Premio Bond (1807031) | 10-MDP, 4-META, 10-MDTP, methacrylate acid ester, distilled water, acetone, photoinitiators, fine powdered silica | 1. Apply using a micro brush. 2. Leave undisturbed for 10 s. 3. Dry thoroughly with air under maximum air pressure. 4. Light cure for 10 s. |
đ Clearfil Megabond 2 (000095) | Primer: 10-MDP, HEMA, hydrophilic aliphatic dimethacrylate, dl-CQ, water Bond: 10-MDP, Bis-GMA, HEMA, dl-CQ, hydrophobic aliphatic dimethacrylate, initiators, accelerators, silanated colloidal silica | 1. Apply the primer and leave for 20 s. 2. Gentle air-blowing for >5 s. 3. Apply the bond. 4. Gentle air-blowing to make the film uniform. 5. Light-cure for 10 s. |
æ BZF-29 (1907201G-primer) (1907172-bond) | Primer: 4-META, MDP, dimethacrylate, photoinitiator, water, acetone, silica, MDTP Bond: Dimethacrylate, photoinitiator, silica | 1. Apply the primer and leave for 10 s. 2. Dry with moderate air-blow for 5 s. 3. Apply the bond. 4. Gentle air-blowing to make the film uniform. 5. Light-cure for 5 s. |
Adhesives | Adhesive Layer Thickness Mean ± SD | 24 Hours (24 h) | 6 Months (6 m) | ||
---|---|---|---|---|---|
µTBS ± SD | A/CD/CC/M | µTBS ± SD | A/CD/CC/M | ||
G-Premio Bond (GP) | 8.8 ± 2.6 A | 39.0 ± 6.0 A | 100/0/0/0 | 37.6 ± 5.0 A | 63/29/0/8 |
Clearfil Megabond 2 (MB) | 13.5 ± 4.6 B | 55.6 ± 4.6 B | 21/75/0/4 | 51.2 ± 3.9 B | 46/50/0/4 |
BZF-29 (BZF) | 18.4 ± 2.5 C | 55.3 ± 5.7 B | 21/29/0/50 | 53.5 ± 6.2 B | 46/46/0/8 |
Adhesives | Adhesive Layer | Adhesive-Dentin Interface | Sound Dentin * |
---|---|---|---|
G-Premio Bond | 7192.6 ± 133.8 B | 12,314.4 ± 975.2 B | 19,975.6 ± 900.4 |
Clearfil Megabond 2 | 5730.9 ± 186.1 A | 7372.0 ± 169.7 A | 19,007.8 ± 922.8 |
BZF-29 | 5852.7 ± 97.1 A | 8798.8 ± 1090.4 A | 20,016.7 ± 1524.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, A.F.M.A.; Alam, A.; Yamauti, M.; Álvarez Lloret, P.; Saikaew, P.; Carvalho, R.M.; Sano, H. Characterization of an Experimental Two-Step Self-Etch Adhesive’s Bonding Performance and Resin-Dentin Interfacial Properties. Polymers 2021, 13, 1009. https://doi.org/10.3390/polym13071009
Chowdhury AFMA, Alam A, Yamauti M, Álvarez Lloret P, Saikaew P, Carvalho RM, Sano H. Characterization of an Experimental Two-Step Self-Etch Adhesive’s Bonding Performance and Resin-Dentin Interfacial Properties. Polymers. 2021; 13(7):1009. https://doi.org/10.3390/polym13071009
Chicago/Turabian StyleChowdhury, Abu Faem Mohammad Almas, Arefin Alam, Monica Yamauti, Pedro Álvarez Lloret, Pipop Saikaew, Ricardo Marins Carvalho, and Hidehiko Sano. 2021. "Characterization of an Experimental Two-Step Self-Etch Adhesive’s Bonding Performance and Resin-Dentin Interfacial Properties" Polymers 13, no. 7: 1009. https://doi.org/10.3390/polym13071009
APA StyleChowdhury, A. F. M. A., Alam, A., Yamauti, M., Álvarez Lloret, P., Saikaew, P., Carvalho, R. M., & Sano, H. (2021). Characterization of an Experimental Two-Step Self-Etch Adhesive’s Bonding Performance and Resin-Dentin Interfacial Properties. Polymers, 13(7), 1009. https://doi.org/10.3390/polym13071009