The Effect of Alkyl Substitution of Novel Imines on Their Supramolecular Organization, towards Photovoltaic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. Synthesis and Structural Characterization
- PAz-BOO-OMe
- PAz-Carb-OMe
- PAz-Carb-OOct
2.4. Organic Solar Cells Preparation
3. Results and Discussion
3.1. Structural and Solubility Studies
3.2. Thermal Properties
3.3. Electrochemical Measurements
3.4. Optical Properties
3.5. Morphology of Thin Films
3.6. Preliminary Photovoltaic Activity Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brabec, C.J.; Gowrisanker, S.; Halls, J.J.M.; Laird, D.; Jia, S.; Williams, S.P. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2010, 22, 3839–3856. [Google Scholar] [CrossRef]
- Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Xu, X.; Zhou, G. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. J. Mater. Chem. C 2015, 3, 913–944. [Google Scholar] [CrossRef]
- Drewniak, A.; Tomczyk, M.D.; Hanusek, L.; Mielanczyk, A.; Walczak, K.; Nitschke, P.; Hajduk, B.; Ledwon, P. The effect of aromatic diimide side groups on the π-Conjugated polymer properties. Polymers 2018, 10, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwan, A.; Boharewicz, B.; Tazbir, I.; Filapek, M.; Korona, K.P.; Wróbel, P.; Stefaniuk, T.; Ciesielski, A.; Wojtkiewicz, J.; Wronkowska, A.A.; et al. How do 10-camphorsulfonic acid, silver or aluminum nanoparticles influence optical, electrochemical, electrochromic and photovoltaic properties of air and thermally stable triphenylamine-based polyazomethine with carbazole moieties? Electrochim. Acta 2015, 185, 198–210. [Google Scholar] [CrossRef]
- Bejan, A.E.; Damaceanu, M.D. Acid-responsive behavior promoted by imine units in novel triphenylamine-based oligomers functionalized with chromophoric moieties. J. Photochem. Photobiol. A Chem. 2019, 378, 24–37. [Google Scholar] [CrossRef]
- Bolduc, A.; Al Ouahabi, A.; Mallet, C.; Skene, W.G. Insight into the isoelectronic character of azomethines and vinylenes using representative models: A spectroscopic and electrochemical study. J. Org. Chem. 2013, 78, 9258–9269. [Google Scholar] [CrossRef]
- Nitschke, P.; Jarząbek, B.; Vasylieva, M.; Honisz, D.; Małecki, J.G.; Musioł, M.; Janeczek, H.; Chaber, P. Influence of chemical structure on thermal, optical and electrochemical properties of conjugated azomethines. Synth. Met. 2021, 273, 116689. [Google Scholar] [CrossRef]
- Yağmur, H.K.; Kaya, İ.; Aydın, H. Synthesis, characterization, thermal and electrochemical features of poly (phenoxy-imine)s containing pyridine and pyrimidine units. J. Polym. Res. 2020, 27, 356. [Google Scholar] [CrossRef]
- Peng, H.; Sun, X.; Weng, W.; Fang, X. 2-Synthesis and Design of Conjugated Polymers for Organic Electronics. In Polymer Materials for Energy and Electronic Applications; Academic Press: Cambridge, MA, USA, 2017; pp. 9–61. [Google Scholar]
- Nitschke, P.; Jarząbek, B.; Damaceanu, M.-D.; Bejan, A.-E.; Chaber, P. Spectroscopic and electrochemical properties of thiophene-phenylene based Shiff-bases with alkoxy side groups, towards photovoltaic applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119242. [Google Scholar] [CrossRef] [PubMed]
- Petrus, M.L.; Bouwer, R.K.M.; Lafont, U.; Athanasopoulos, S.; Greenham, N.C.; Dingemans, T.J. Small-molecule azomethines: Organic photovoltaics via Schiff base condensation chemistry. J. Mater. Chem. A 2014, 2, 9474–9477. [Google Scholar] [CrossRef] [Green Version]
- Bogdanowicz, K.A.; Jewłoszewicz, B.; Iwan, A.; Dysz, K.; Przybyl, W.; Januszko, A.; Marzec, M.; Cichy, K.; Świerczek, K.; Kavan, L.; et al. Selected Electrochemical Properties of 4,4′-((1E,1′E)-((1,2,4-Thiadiazole-3,5-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(N,N-di-p-tolylaniline) towards Perovskite Solar Cells with 14.4% Efficiency. Materials 2020, 13, 2440. [Google Scholar] [CrossRef] [PubMed]
- Gnida, P.; Pająk, A.; Kotowicz, S.; Malecki, J.G.; Siwy, M.; Janeczek, H.; Maćkowski, S.; Schab-Balcerzak, E. Symmetrical and unsymmetrical azomethines with thiophene core: Structure—properties investigations. J. Mater. Sci. 2019, 54, 13491–13508. [Google Scholar] [CrossRef] [Green Version]
- Kotowicz, S.; Siwy, M.; Golba, S.; Malecki, J.G.; Janeczek, H.; Smolarek, K.; Szalkowski, M.; Sek, D.; Libera, M.; Mackowski, S.; et al. Spectroscopic, electrochemical, thermal properties and electroluminescence ability of new symmetric azomethines with thiophene core. J. Lumin 2017, 192, 452–462. [Google Scholar] [CrossRef]
- Barik, S.; Bishop, S.; Skene, W.G. Spectroelectrochemical and electrochemical investigation of a highly conjugated all-thiophene polyazomethine. Mater. Chem. Phys. 2011, 129, 529–533. [Google Scholar] [CrossRef]
- Jarząbek, B.; Hajduk, B.; Domański, M.; Kaczmarczyk, B.; Nitschke, P.; Bednarski, H. Optical properties of phenylene–thiophene-based polyazomethine thin films. High Perform. Polym. 2018, 30, 1219–1228. [Google Scholar] [CrossRef]
- Jarzabek, B.; Weszka, J.; Domański, M.; Jurusik, J.; Cisowski, J. Optical studies of aromatic polyazomethine thin films. J. Non Cryst. Solids 2008, 354, 856–862. [Google Scholar] [CrossRef]
- Yang, C.J.; Jenekhe, S.A. Conjugated Aromatic Poly(azomethines). 1. Characterization of Structure, Electronic Spectra, and Processing of Thin Films from Soluble Complexes. Chem. Mater. 1991, 3, 878–887. [Google Scholar] [CrossRef]
- Thomas, O.; Inganäs, O.; Andersson, M.R. Synthesis and properties of a soluble conjugated poly(azomethine) with high molecular weight. Macromolecules 1998, 31, 2676–2678. [Google Scholar] [CrossRef]
- Jarząbek, B.; Kaczmarczyk, B.; Jurusik, J.; Siwy, M.; Weszka, J. Optical properties of thin films of polyazomethine with flexible side chains. J. Non Cryst. Solids 2013, 375, 13–18. [Google Scholar] [CrossRef]
- Nitschke, P.; Jarząbek, B.; Wanic, A.; Domański, M.; Hajduk, B.; Janeczek, H.; Kaczmarczyk, B.; Musioł, M.; Kawalec, M. Effect of chemical structure and deposition method on optical properties of polyazomethines with alkyloxy side groups. Synth. Met. 2017, 232, 171–180. [Google Scholar] [CrossRef]
- Himmelberger, S.; Duong, D.T.; Northrup, J.E.; Rivnay, J.; Koch, F.P.V.; Beckingham, B.S.; Stingelin, N.; Segalman, R.A.; Mannsfeld, S.C.B.; Salleo, A. Role of side-chain branching on thin-film structure and electronic properties of polythiophenes. Adv. Funct. Mater. 2015, 25, 2616–2624. [Google Scholar] [CrossRef]
- Chen, S.; Sun, B.; Hong, W.; Aziz, H.; Meng, Y.; Li, Y. Influence of side chain length and bifurcation point on the crystalline structure and charge transport of diketopyrrolopyrrole-quaterthiophene copolymers (PDQTs). J. Mater. Chem. C 2014, 2, 2183–2190. [Google Scholar] [CrossRef]
- Zajaczkowski, W.; Nanajunda, S.K.; Eichen, Y.; Pisula, W. Influence of alkyl substitution on the supramolecular organization of thiophene- and dioxine-based oligomers. RSC Adv. 2017, 7, 1664–1670. [Google Scholar] [CrossRef] [Green Version]
- Schuettfort, T.; Thomsen, L.; McNeill, C.R. Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer. J. Am. Chem. Soc. 2013, 135, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Barik, S.; Skene, W.G. Selective chain-end postpolymerization reactions and property tuning of a highly conjugated and all-thiophene polyazomethine. Macromolecules 2010, 43, 10435–10441. [Google Scholar] [CrossRef]
- Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013, 42, 8895–8999. [Google Scholar] [CrossRef]
- Zhang, F.B.; Ohshita, J.; Miyazaki, M.; Tanaka, D.; Morihara, Y. Effects of substituents and molecular weight on the optical, thermal and photovoltaic properties of alternating dithienogermole—dithienylbenzothiadiazole polymers. Polym. J. 2014, 46, 628–631. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Q.; Feng, H.; Liu, B. Simple adjustments to the molecular planarity of organic sensitizers: Towards highly selective optimization of energy levels. New J. Chem. 2017, 41, 11853–11859. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, Y.; Liu, F.; Sun, C.; Huang, X.; Xie, Z.; Huang, F.; Roncali, J.; Russell, T.P.; Cao, Y. Chain length dependence of the photovoltaic properties of monodisperse donor-acceptor oligomers as model compounds of polydisperse low band gap polymers. Adv. Funct. Mater. 2014, 24, 7538–7547. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Yuan, W.; Jia, Z.; Liu, G. H- and J-aggregation of fluorene-based chromophores. J. Phys. Chem. B 2014, 118, 14536–14545. [Google Scholar] [CrossRef]
- Jones, R.N.; Shimokoshi, K. Some Observations on the Resolution Enhancement of Spectral Data by the Method of Self-Deconvolution. Appl. Spectrosc. 1983, 37, 59–67. [Google Scholar] [CrossRef]
- Barford, W. Electronic and Optical Properties of Conjugated Polymers; Oxford University Press (OUP): Oxford, UK, 2013. [Google Scholar]
- Jarzabek, B.; Weszka, J.; Domanski, M.; Jurusik, J.; Cisowski, J. Optical properties of amorphous polyazomethine thin films. J. Non Cryst. Solids 2006, 352, 1660–1662. [Google Scholar] [CrossRef]
- Louarn, G.; Trznadel, M.; Buisson, J.P.; Laska, J.; Pron, A.; Lapkowski, M.; Lefrant, S. Raman Spectroscopic Studies of Regioregular Poly(3-alkylthiophenes). J. Phys. Chem. 1996, 100, 12532–12539. [Google Scholar] [CrossRef]
- Clark, J.; Chang, J.F.; Spano, F.C.; Friend, R.H.; Silva, C. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 2009, 94, 2007–2010. [Google Scholar] [CrossRef]
- Beljonne, D.; Cornil, J.; Silbey, R.; Millié, P.; Brédas, J.L. Interchain interactions in conjugated materials: The exciton model versus the supermolecular approach. J. Chem. Phys. 2000, 112, 4749–4758. [Google Scholar] [CrossRef] [Green Version]
- Cody, G.D. Chapter 2: The Optical Absorption Edge of a-Si: H. Semicond. Semimet. 1984, 21, 11–82. [Google Scholar] [CrossRef]
- Tauc, J.; Menth, A. States in the gap. J. Non Cryst. Solids 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Hindson, J.C.; Ulgut, B.; Friend, R.H.; Greenham, N.C.; Norder, B.; Kotlewski, A.; Dingemans, T.J. All-aromatic liquid crystal triphenylamine-based poly(azomethine)s as hole transport materials for opto-electronic applications. J. Mater. Chem. 2010, 20, 937–944. [Google Scholar] [CrossRef]
- Iwan, A.; Boharewicz, B.; Tazbir, I.; Filapek, M. Enhanced power conversion efficiency in bulk heterojunction solar cell based on new polyazomethine with vinylene moieties and [6,6]-phenyl C61 butyric acid methyl ester by adding 10-camphorsulfonic acid. Electrochim. Acta 2015, 159, 81–92. [Google Scholar] [CrossRef]
- Mihailetchi, V.D.; Xie, H.; De Boer, B.; Koster, L.J.A.; Blom, P.W.M. Charge transport and photocurrent generation in poly(3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 2006, 16, 699–708. [Google Scholar] [CrossRef] [Green Version]
Compound | NMP (ε = 33.00) | THF (ε = 7.58) | Chloroform (ε = 4.80) | n-Hexane (ε = 1.88) |
---|---|---|---|---|
PAz-BOO-OMe | -/- | -/- | +/- | -/- |
PAz-BOO-OOct | +/- * | +/+ * | +/+ * | -/- * |
PAz-Carb-OMe | -/- | -/- | +/- | -/- |
PAz-Carb-OOct | +/+ | +/+ | +/+ | -/- |
Compound | Mn [g/mol] | Mw [g/mol] | Ð |
---|---|---|---|
PAz-BOO-OMe | 1350 | 3250 | 2.4 |
PAz-BOO-OOct | 2690 * | 7520 * | 2.8 * |
PAz-Carb-OMe | 4700 | 5300 | 1.2 |
PAz-Carb-OOct | 9600 | 16,350 | 1.7 |
Compound | Tg [°C] | T5% [°C] | T10% [°C] | Tmax [°C] |
---|---|---|---|---|
PAz-BOO-OMe | 318.0 | n/d | n/d | n/d |
PAz-BOO-OOct | 30.8 * | 350.0 * | 364.8 * | 380.0 * |
PAz-Carb-OMe | 264.0 | 341.5 | 368.8 | 391.5 |
PAz-Carb-OOct | 291.0 | 331.3 | 365.5 | 393.7 |
Compound | Eoxonset [V] | Eredonset [V] | EHOMO [eV] | ELUMO [eV] | EgCV [eV] |
---|---|---|---|---|---|
PAz-BOO-OMe | 0.50 | −1.14 | −5.60 | −3.96 | 1.64 |
PAz-BOO-OOct | 0.38 * | −1.51 * | −5.48 * | −3.59 * | 1.89 * |
PAz-Carb-OMe | 0.51 | −1.34 | −5.61 | −3.76 | 1.85 |
PAz-Carb-OOct | 0.54 | −1.33 | −5.64 | −3.77 | 1.87 |
Compound | λmax [nm]/(Emax [eV]) | W [meV] | Eg [eV] | EU [meV] | |
---|---|---|---|---|---|
Solution | Thin Film | ||||
PAz-BOO-OMe | 684.5/(1.81) | 676.0/(1.83) | 4 | 1.59 | 93 |
PAz-BOO-OOct | 556.0/(2.23) * | 604.0/(2.05) * | 46 | 1.69 * | 62 * |
PAz-Carb-OMe | 513.0/(2.42) | 535.0/(2.32) | 30 | 1.42 | 349 |
PAz-Carb-OOct | 446.5/(2.78) | 450.0/(2.76) | 85 | 1.77 | 233 |
System | VOC [mV] | JSC [mA/cm2] | FF | η [%] |
---|---|---|---|---|
PAz-BOO-OMe:PCBM (1:1) | 728.2 | 0.65 | 0.20 | 0.09 |
PAz-BOO-OMe:PCBM (1:2) | less than 0.01% | |||
PAz-BOO-OMe:PCBM (1:3) | ||||
PAz-BOO-Oct:PCBM (1:1) | 834.8 | 0.72 | 0.16 | 0.16 |
PAz-BOO-Oct:PCBM (1:2) | 630.8 | 0.87 | 0.29 | 0.17 |
PAz-BOO-Oct:PCBM (1:3) | less than 0.01% | |||
PAz-Carb-OMe:PCBM | less than 0.01% for each ratio | |||
PAz-Carb-OOct:PCBM (1:1) | 210.6 | 0.22 | 0.47 | 0.02 |
PAz-Carb-OOct:PCBM (1:2) | 615.1 | 0.58 | 0.26 | 0.09 |
PAz-Carb-OOct:PCBM (1:3) | less than 0.01% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitschke, P.; Jarząbek, B.; Vasylieva, M.; Godzierz, M.; Janeczek, H.; Musioł, M.; Domiński, A. The Effect of Alkyl Substitution of Novel Imines on Their Supramolecular Organization, towards Photovoltaic Applications. Polymers 2021, 13, 1043. https://doi.org/10.3390/polym13071043
Nitschke P, Jarząbek B, Vasylieva M, Godzierz M, Janeczek H, Musioł M, Domiński A. The Effect of Alkyl Substitution of Novel Imines on Their Supramolecular Organization, towards Photovoltaic Applications. Polymers. 2021; 13(7):1043. https://doi.org/10.3390/polym13071043
Chicago/Turabian StyleNitschke, Paweł, Bożena Jarząbek, Marharyta Vasylieva, Marcin Godzierz, Henryk Janeczek, Marta Musioł, and Adrian Domiński. 2021. "The Effect of Alkyl Substitution of Novel Imines on Their Supramolecular Organization, towards Photovoltaic Applications" Polymers 13, no. 7: 1043. https://doi.org/10.3390/polym13071043
APA StyleNitschke, P., Jarząbek, B., Vasylieva, M., Godzierz, M., Janeczek, H., Musioł, M., & Domiński, A. (2021). The Effect of Alkyl Substitution of Novel Imines on Their Supramolecular Organization, towards Photovoltaic Applications. Polymers, 13(7), 1043. https://doi.org/10.3390/polym13071043