Rapid Benzylation of Wood Powder without Heating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Materials
2.2. Preparation of Wood Samples
2.3. Fourier-Transform Infrared (FT-IR) Spectroscopy
2.4. NMR Spectroscopy
2.5. Thermomechanical Analysis (TMA)
2.6. Synthesis of A Translucent Film
3. Results and Discussion
3.1. Benzylation of Wood
3.2. Effects of Reaction Conditions
3.2.1. In-Feed Amount of BnBr
3.2.2. Reaction Temperature
3.2.3. Reaction Time
3.3. Characterization of the Benzylated Wood
3.3.1. Solid-State NMR Measurement
3.3.2. TMA
3.3.3. Fabrication of a Translucent Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashori, A. Wood-plastic composites as promising green-composites for automotive industries! Bioresource Technol. 2008, 99, 4661–4667. [Google Scholar] [CrossRef]
- Kumar, V.; Tyagi, L.; Shinha, S. Wood flour-reinforced plastic composites: A review. Rev. Chem. Eng. 2011, 27, 253–264. [Google Scholar] [CrossRef]
- Najafi, S.K. Use of recycled plastics in wood plastic composites-A review. Waste Manag. 2013, 33, 1898–1905. [Google Scholar] [CrossRef] [PubMed]
- Kuka, E.; Andersons, B.; Cirule, D.; Andersone, I.; Kajaks, J.; Militz, H.; Bicke, S. Weathering properties of wood-plastic composites based on heat-treated wood and polypropylene. Compos. Part A-Appl. Sci. Manuf. 2020, 139, 106102. [Google Scholar] [CrossRef]
- Elamin, M.A.M.; Li, S.X.; Osman, Z.A.; Otitoju, T.A. Preparation and characterization of wood-plastic composite by utilizing a hybrid compatibilizer system. Ind. Crop. Prod. 2020, 154, 112659. [Google Scholar] [CrossRef]
- Funakoshi, H.; Shiraishi, N.; Norimoto, M.; Aoki, T.; Hayashi, H.; Yokyota, T. Studies on the thermoplasticization of wood. Holzforschung 1979, 33, 159–166. [Google Scholar] [CrossRef]
- Shiraishi, N.; Aoki, T.; Norimoto, M.; Okumura, M. Thermoplasticization of cellulose and wood by graft-copolymerization and acylation. ACS Sym. Ser. 1982, 187, 321–348. [Google Scholar]
- Hon, D.N.-S.; Xing, L. Thermoplasticization of wood: Esterification. ACS Sym. Ser. 1992, 489, 118–132. [Google Scholar]
- Hassan, M.L.; Rowell, R.M.; Fadl, N.A.; Yacoub, S.F.; Christainsen, A.W. Thermoplasticization of bagasse. I. Preparation and characterization of esterified bagasse fibers. J. Appl. Polym. Sci. 2000, 76, 561–574. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.L.; Rowell, R.M.; Fadl, N.A.; Yacoub, S.F.; Christainsen, A.W. Thermoplasticization of bagasse. II. Dimensional stability and mechanical properties of esterified bagasse composite. J. Appl. Polym. Sci. 2000, 76, 575–586. [Google Scholar] [CrossRef]
- Chen, J.; Tang, C.; Yue, Y.; Qiao, W.; Hong, J.; Kitaoka, T.; Yang, Z. Highly translucent all wood plastics via heterogeneous esterification in ionic liquid/dimethyl sulfoxide. Ind. Crop. Prod. 2017, 108, 286–294. [Google Scholar] [CrossRef]
- Norimoto, M.; Morooka, T.; Aoki, T.; Shiraishi, N.; Yamada, T.; Tanaka, F. Some physical properties of benzylated wood. Mokuzai Kenkyu Shiryou 1983, 17, 181–191. (In Japanese) [Google Scholar]
- Hon, D.N.-S.; Ou, N.-H. Thermoplasticization of wood. I. Benzylation of wood. J. Polym. Sci. Part A Polym. Chem. 1989, 27, 2457–2482. [Google Scholar] [CrossRef]
- Pereira, R.; Filho, S.P.C.; Curvelo, A.A.S. Benzylated pulps from sugar cane bagasse. Cellulose 1997, 4, 21–31. [Google Scholar] [CrossRef]
- Chen, C.; Cho, M.; Kim, B.-W.; Nam, J.-D.; Lee, Y. Thermo plasticization and characterization of kenaf fiber by benzylation. J. Ind. Eng. Chem. 2012, 18, 1107–1111. [Google Scholar] [CrossRef]
- Üner, B.; Köse, G.; Yürümez, Y.; Yalçın, Ö.Ü.; Akgül, M. Wood waste turned into value added products: Thermal plasticization by benzylation process. Drvna Ind. 2016, 67, 315–322. [Google Scholar] [CrossRef]
- Abe, M.; Sugimura, K.; Nishiyama, Y.; Nishio, Y. Rapid benzylation of cellulose in tetra-n-butylphosphonium hydroxide aqueous solution at room temperature. ACS Sustain. Chem. Eng. 2017, 5, 4505–4510. [Google Scholar] [CrossRef] [Green Version]
- Abe, M.; Sugimura, K.; Nishio, Y. Rapid allylation of cellulose without heating in tetra-n-butylphosphonium hydroxide aqueous solution. Cellulose 2020, 27, 6887–6896. [Google Scholar] [CrossRef]
- Abe, M.; Yamanaka, S.; Fukaya, Y.; Ohno, H. Almost complete dissolution of woody biomass with tetra-n-butylphosphonium hydroxide aqueous solution at 60 °C. Green Chem. 2015, 17, 4432–4438. [Google Scholar] [CrossRef]
- Shi, J.; Xing, D.; Li, J. FT-IR studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Energy Procedia 2012, 16, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Nishida, M.; Tanaka, T.; Miki, T.; Shigematsu, I.; Kanayama, K.; Kanematsu, W. Study of nanoscale structural changes in isolated bamboo constituents using multiscale instrumental analyses. J. Appl. Polym. Sci. 2014, 131, 40243. [Google Scholar] [CrossRef]
- Nishida, M.; Tanaka, T.; Miki, T.; Ito, T.; Kanayama, K. Multi-scale instrumental analyses for structural changes in steam-treated bamboo using a combination of several solid-state NMR methods. Ind. Crop. Prod. 2017, 103, 89–98. [Google Scholar] [CrossRef]
Sample | Alkaline Treatment | Benzylation Treatment | Intensity Ratio of FT-IR Peaks | |||||
---|---|---|---|---|---|---|---|---|
Solvent | Temp (°C) | Time (min) | Reagent | Temp (°C) | Time (min) | OH/CH | Bn/CH | |
entry a 0 | - | - | - | - | - | - | 3.4 | 0.1 |
entry 1 | 40% NaOH | 25 | 5 | BnCl | 110 | 120 | 0.8 | 4.9 |
entry 2 | 50% [(n-Bu)4P]OH | 25 | 5 | BnCl | 110 | 120 | 2.1 | 3.0 |
entry 3 | 40% NaOH | 25 | 5 | BnCl | 25 | 60 | 3.3 | 0.2 |
entry 4 | 50% [(n-Bu)4P]OH | 25 | 5 | BnCl | 25 | 60 | 1.3 | 3.3 |
entry 5 | 40% NaOH | 25 | 5 | BnBr | 25 | 60 | 2.9 | 0.3 |
entry 6 | 50% [(n-Bu)4P]OH | 25 | 5 | BnBr | 25 | 60 | 0.7 | 5.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, M.; Seki, M.; Miki, T.; Nishida, M. Rapid Benzylation of Wood Powder without Heating. Polymers 2021, 13, 1118. https://doi.org/10.3390/polym13071118
Abe M, Seki M, Miki T, Nishida M. Rapid Benzylation of Wood Powder without Heating. Polymers. 2021; 13(7):1118. https://doi.org/10.3390/polym13071118
Chicago/Turabian StyleAbe, Mitsuru, Masako Seki, Tsunehisa Miki, and Masakazu Nishida. 2021. "Rapid Benzylation of Wood Powder without Heating" Polymers 13, no. 7: 1118. https://doi.org/10.3390/polym13071118
APA StyleAbe, M., Seki, M., Miki, T., & Nishida, M. (2021). Rapid Benzylation of Wood Powder without Heating. Polymers, 13(7), 1118. https://doi.org/10.3390/polym13071118