Optimization of Process Parameters for Fabricating Polylactic Acid Filaments Using Design of Experiments Approach
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
- The developed PLA filaments are very practical and provide the greatest application potential in the AM industry since the PLA filaments can be employed to print physical models with high tensile strength economically.
- The tensile strength of the developed PLA filament is approximately 1.1 times that of the commercially available PLA filament. The production cost is only 60% of the commercially available PLA filament.
- The most important control factor affecting the diameter of the PLA filament is the barrel temperature, followed by the recycling material addition ratio, extrusion speed, and cooling distance.
- The optimal process parameters for fabricating PLA filaments with a diameter of 1.7 mm include a barrel temperature of 184 °C, extrusion speed of 490 mm/min, cooling distance of 57.5 mm, and recycled material addition ratio of 40%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rehmani, M.A.A.; Jaywant, S.A.; Arif, K.M. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems. Micromachines 2021, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Pitaru, A.A.; Lacombe, J.-G.; Cooke, M.E.; Beckman, L.; Steffen, T.; Weber, M.H.; Martineau, P.A.; Rosenzweig, D.H. Investigating Commercial Filaments for 3D Printing of Stiff and Elastic Constructs with Ligament-Like Mechanics. Micromachines 2020, 11, 846. [Google Scholar] [CrossRef]
- Kotz, F.; Mader, M.; Dellen, N.; Risch, P.; Kick, A.; Helmer, D.; Rapp, B.E. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate. Micromachines 2020, 11, 873. [Google Scholar] [CrossRef]
- Xu, S.; Huang, J.; Liu, J.; Ma, Y. Topology Optimization for FDM Parts Considering the Hybrid Deposition Path Pattern. Micromachines 2020, 11, 709. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Wu, B.; Cui, C.; Guo, Y.; Yan, C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 2019, 102, 2877–2889. [Google Scholar] [CrossRef]
- Adesina, O.T.; Sadiku, E.R.; Jamiru, T.; Ogunbiyi, O.F.; Beneke, L.W.; Adegbola, A.T. Optimization of SPS processing parameters on the density and hardness properties of graphene reinforced polylactic acid nanocomposite. Int. J. Adv. Manuf. Technol. 2019, 102, 4047–4058. [Google Scholar] [CrossRef]
- Yu, W.; Ruan, S.; Li, Z.; Gu, J.; Wang, X.; Shen, C.; Chen, B. Effect of injection velocity on the filling behaviors of microinjection-molded polylactic acid micropillar array product. Int. J. Adv. Manuf. Technol. 2019, 103, 2929–2940. [Google Scholar] [CrossRef]
- Daniel, F.; Patoary, N.H.; Moore, A.L.; Weiss, L.; Radadia, A.D. Temperature-dependent electrical resistance of conductive polylactic acid filament for fused deposition modeling. Int. J. Adv. Manuf. Technol. 2018, 99, 1215–1224. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.; Li, Q.; Yu, Z.; Wang, N. A quantitative investigation of distortion of polylactic acid/PLA) part in FDM from the point of interface residual stress. Int. J. Adv. Manuf. Technol. 2018, 94, 381–395. [Google Scholar] [CrossRef]
- Lebedev, S.M. Manufacturing poly(lactic acid)/metal composites and their characterization. Int. J. Adv. Manuf. Technol. 2019, 102, 3213–3216. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Lee, W.C.; Wei, C.C.; Chung, S.C. Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining. J. Mater. Process. Technol. 2014, 214, 2366–2374. [Google Scholar] [CrossRef]
- Drummer, D.; Cifuentes-Cuéllar, S.; Rietzel, D. Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyp. J. 2012, 18, 500–507. [Google Scholar] [CrossRef]
- Perez, A.R.T.; Roberson, D.A.; Wicker, R.B. Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials. J. Fail. Anal. Prev. 2014, 14, 343–353. [Google Scholar] [CrossRef]
- Berrio Bernal, J.D.; Silva, E.C.N.; Montealegre Rubio, W. Characterization of effective Young’s modulus for Fused Deposition Modeling manufactured topology optimization designs. Int. J. Adv. Manuf. Technol. 2019, 103, 2879–2892. [Google Scholar] [CrossRef]
- Lin, S.; Xia, L.; Ma, G.; Zhou, S.; Xie, Y.M. A maze-like path generation scheme for fused deposition modeling. Int. J. Adv. Manuf. Technol. 2019, 104, 1509–1519. [Google Scholar] [CrossRef]
- Zekavat, A.R.; Jansson, A.; Larsson, J.; Pejryd, L. Investigating the effect of fabrication temperature on mechanical properties of fused deposition modeling parts using X-ray computed tomography. Int. J. Adv. Manuf. Technol. 2019, 100, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Baca, D.; Ahmad, R. The impact on the mechanical properties of multi-material polymers fabricated with a single mixing nozzle and multi-nozzle systems via fused deposition modeling. Int. J. Adv. Manuf. Technol. 2020, 106, 4509–4520. [Google Scholar] [CrossRef]
- Paggi, R.A.; Salmoria, G.V.; Ghizoni, G.B.; Back, H.D.M.; Gindri, I.D.M. Structure and mechanical properties of 3D-printed cellulose tablets by fused deposition modeling. Int. J. Adv. Manuf. Technol. 2019, 100, 2767–2774. [Google Scholar] [CrossRef]
- Camposeco-Negrete, C. Optimization of printing parameters in fused deposition modeling for improving part quality and process sustainability. Int. J. Adv. Manuf. Technol. 2020, 108, 2131–2147. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Liu, B.; Wang, G. Development of a novel rectangular–circular grid filling pattern of fused deposition modeling in cellular lattice structures. Int. J. Adv. Manuf. Technol. 2020, 108, 3419–3436. [Google Scholar] [CrossRef]
- Zaman, U.K.U.; Boesch, E.; Siadat, A.; Rivette, M.; Baqai, A.A. Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments. Int. J. Adv. Manuf. Technol. 2019, 101, 1215–1226. [Google Scholar] [CrossRef]
- Adnan, M.F.; AbdullahE, A.B.; Samad, Z. Springback behavior of AA6061 with non-uniform thickness section using Taguchi Method. Int. J. Adv. Manuf. Technol. 2017, 89, 2041–2052. [Google Scholar] [CrossRef]
- Zhou, M.; Kong, L.; Xie, L.; Fu, T.; Jiang, G.; Feng, Q. Design and optimization of non-circular mortar nozzles using finite volume method and Taguchi method. Int. J. Adv. Manuf. Technol. 2017, 90, 3543–3553. [Google Scholar] [CrossRef]
- Azadeh, A.; Gharibdousti, M.S.; Firoozi, M.; Baseri, M.; Alishahi, M.; Salehi, V. Selection of optimum maintenance policy using an integrated multi-criteria Taguchi modeling approach by considering resilience engineering. Int. J. Adv. Manuf. Technol. 2016, 84, 1067–1079. [Google Scholar] [CrossRef]
- Effertz, P.S.; Quintino, L.; Infante, V. The optimization of process parameters for friction spot welded 7050-T76 aluminium alloy using a Taguchi orthogonal array. Int. J. Adv. Manuf. Technol. 2017, 91, 3683–3695. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, L.; Zhou, X. Automated multi-objective optimization for thin-walled plastic products using Taguchi, ANOVA, and hybrid ANN-MOGA. Int. J. Adv. Manuf. Technol. 2020, 106, 559–575. [Google Scholar] [CrossRef]
- Cherief, M.; Belaadi, A.; Bouakba, M.; Bourchak, M.; Meddour, I. Behaviour of lignocellulosic fibre-reinforced cellular core under low-velocity impact loading: Taguchi method. Int. J. Adv. Manuf. Technol. 2020, 108, 223–233. [Google Scholar] [CrossRef]
- Oemar, B.; Chang, W. Taguchi method for optimizing process parameters in the production of activated carbon from rubber seed shell. Int. J. Adv. Manuf. Technol. 2020, 107, 4609–4620. [Google Scholar] [CrossRef]
- Abdulkadir, L.N.; Abou-El-Hossein, K.; Abioye, A.M.; Liman, M.M.; Cheng, Y.-C.; Abbas, A.A.S. Process parameter selection for optical silicon considering both experimental and AE results using Taguchi L9 orthogonal design. Int. J. Adv. Manuf. Technol. 2019, 103, 4355–4367. [Google Scholar] [CrossRef]
- Li, K.; Zhou, T.; Liu, B. Internet-based intelligent and sustainable manufacturing: Developments and challenges. Int. J. Adv. Manuf. Technol. 2020, 108, 1767–1791. [Google Scholar] [CrossRef]
- Yu, H.; Lyu, Y.; Wang, J. Green manufacturing with a bionic surface structured grinding wheel-specific energy analysis. Int. J. Adv. Manuf. Technol. 2019, 104, 2999–3005. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Dan, B.; Wang, F. Evaluation of EDM process for green manufacturing. Int. J. Adv. Manuf. Technol. 2018, 94, 633–641. [Google Scholar] [CrossRef]
- Camposeco-Negrete, C. Prediction and optimization of machining time and surface roughness of AISI O1 tool steel in wire-cut EDM using robust design and desirability approach. Int. J. Adv. Manuf. Technol. 2019, 103, 2411–2422. [Google Scholar] [CrossRef]
- Hirigo, T.H.; Singh, B. Design and analysis of sand casting process of mill roller. Int. J. Adv. Manuf. Technol. 2019, 105, 2183–2214. [Google Scholar] [CrossRef]
- Revuru, R.S.; Zhang, J.Z.; Posinasetti, N.R. Comparative performance studies of turning 4140 steel with TiC/TiCN/TiN-coated carbide inserts using MQL, flooding with vegetable cutting fluids, and dry machining. Int. J. Adv. Manuf. Technol. 2020, 108, 381–391. [Google Scholar] [CrossRef]
- Tzeng, S.; Chen, X.; Wang, W. Numerical studies of metal particle behaviors inside the selective laser melting (SLM) chamber through computational fluid dynamics (CFD). Int. J. Adv. Manuf. Technol. 2020, 107, 4677–4686. [Google Scholar] [CrossRef]
- Wu, F.; Chyu, C. A Comparative Study on Taguchi’s SN Ratio, Minimising MSD and Variance for Nominal-the-Best Characteristic Experiment. Int. J. Adv. Manuf. Technol. 2002, 20, 655–659. [Google Scholar] [CrossRef]
- Hentati, F.; Hadriche, I.; Masmoudi, N.; Bradai, C. Optimization of the injection molding process for the PC/ABS parts by integrating Taguchi approach and CAE simulation. Int. J. Adv. Manuf. Technol. 2019, 104, 4353–4363. [Google Scholar] [CrossRef]
- Ujah, C.O.; Popoola, A.P.I.; Popoola, O.M.; Aigbodion, V.S. Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int. J. Adv. Manuf. Technol. 2019, 100, 1563–1573. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Kenanakis, G.; Romanitan, C.; Tutunaru, O.; Suchea, M.; Kechagias, J. The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites. Micromachines 2020, 11, 615. [Google Scholar] [CrossRef]
- Dempsey, D.; McDonald, S.; Masato, D.; Barry, C. Characterization of Stereolithography Printed Soft Tooling for Micro Injection Molding. Micromachines 2020, 11, 819. [Google Scholar] [CrossRef]
- Martínez-López, J.I.; Betancourt Cervantes, H.A.; Cuevas Iturbe, L.D.; Vázquez, E.; Naula, E.A.; Martínez López, A.; Siller, H.R.; Mendoza-Buenrostro, C.; Rodríguez, C.A. Characterization of Soft Tooling Photopolymers and Processes for Micromixing Devices with Variable Cross-Section. Micromachines 2020, 11, 970. [Google Scholar] [CrossRef] [PubMed]
- Rajpurohit, S.R.; Dave, H.K. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. Int. J. Adv. Manuf. Technol. 2019, 101, 1525–1536. [Google Scholar] [CrossRef]
- Kuo, C.; Liu, H.; Chang, C. Optimization of vacuum casting process parameters to enhance tensile strength of components using design of experiments approach. Int. J. Adv. Manuf. Technol. 2020, 106, 3775–3785. [Google Scholar] [CrossRef]
- Vital-Grappin, A.D.; Ariza-Tarazona, M.C.; Luna-Hernández, V.M.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; Siligardi, C.; Cedillo-González, E.I. The Role of the Reactive Species Involved in the Photocatalytic Degradation of HDPE Microplastics Using C,N-TiO2 Powders. Polymers 2021, 13, 999. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Wang, Z.; Zhang, M.-L.; Wang, X.-J.; Zhang, G.; Long, S.-R.; Yang, J. Synthesis, Characterization and Non-Isothermal Crystallization Kinetics of a New Family of Poly (Ether-Block-Amide)s Based on Nylon 10T/10I. Polymers 2021, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, L.; Santiago, L.C.; Barbosa, J.D.V.; Beal, V.E.; Nascimento, M.L.F. Effect of the Process Parameters on the Adhesive Strength of Dissimilar Polymers Obtained by Multicomponent Injection Molding. Polymers 2021, 13, 1039. [Google Scholar] [CrossRef]
- Sanya, O.T.; Oji, B.; Owoeye, S.S.; Egbochie, E.J. Influence of particle size and particle loading on mechanical properties of silicon carbide–reinforced epoxy composites. Int. J. Adv. Manuf. Technol. 2019, 103, 4787–4794. [Google Scholar] [CrossRef]
- Abima, C.S.; Akinlabi, E.T.; Akinlabi, S.A.; Fatoba, O.S.; Oladijo, O.P. Microstructural, mechanical and corrosion properties of aluminium MIG welds reinforced with copper powder. Int. J. Adv. Manuf. Technol. 2019, 105, 5181–5190. [Google Scholar] [CrossRef]
- Manap, A.; Okabe, T.; Ogawa, K.; Mahalingam, S.; Abdullah, H. Experimental and smoothed particle hydrodynamics analysis of interfacial bonding between aluminum powder particles and aluminum substrate by cold spray technique. Int. J. Adv. Manuf. Technol. 2019, 103, 4519–4527. [Google Scholar] [CrossRef]
- Azarhoushang, B.; Soltani, B.; Zahedi, A. Laser-assisted grinding of silicon nitride by picosecond laser. Int. J. Adv. Manuf. Technol. 2017, 93, 2517–2529. [Google Scholar] [CrossRef]
- Laouissi, A.; Yallese, M.A.; Belbah, A.; Belhadi, S.; Haddad, A. Investigation, modeling, and optimization of cutting parameters in turning of gray cast iron using coated and uncoated silicon nitride ceramic tools. Based on ANN, RSM, and GA optimization. Int. J. Adv. Manuf. Technol. 2019, 101, 523–548. [Google Scholar] [CrossRef]
- Kim, T.W.; Lee, C.M. A study on the development of milling process for silicon nitride using ball end-mill tools by laser-assisted machining. Int. J. Adv. Manuf. Technol. 2015, 77, 1205–1211. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Zhang, Y.; Jia, D.; Li, R.; Hou, Y.; Cao, H. Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int. J. Adv. Manuf. Technol. 2019, 102, 2617–2632. [Google Scholar] [CrossRef]
- Xu, S.; Yao, Z.; Cai, H.; Wang, H. An experimental investigation of grinding force and energy in laser thermal shock-assisted grinding of zirconia ceramics. Int. J. Adv. Manuf. Technol. 2017, 91, 3299–3306. [Google Scholar] [CrossRef]
- Abdo, B.M.A.; El-Tamimi, A.M.; Anwar, S.; Umer, U.; Alahmari, A.M.; Ghaleb, M.A. Experimental investigation and multi-objective optimization of Nd:YAG laser micro-channeling process of zirconia dental ceramic. Int. J. Adv. Manuf. Technol. 2018, 98, 2213–2230. [Google Scholar] [CrossRef]
- Yao, J.; Wu, Y.; Sun, J.; Ying, X.; He, W.; Peng, Z. Research on the metamorphic layer of silicon nitride ceramic under high temperature based on molecular dynamics. Int. J. Adv. Manuf. Technol. 2020, 109, 1249–1260. [Google Scholar] [CrossRef]
- Zhenhua, W.; Ning, S.; Liyan, C.; Zengbin, Y.; Yulin, W.; Juntang, Y. Cutting performance and wear mechanism of spark plasma–sintered silicon nitride ceramics tool in dry turning of 41Cr4 hardened steel. Int. J. Adv. Manuf. Technol. 2020, 107, 3415–3424. [Google Scholar]
- Minghua, C.; Wenqi, Z.; Jiawei, Z.; Oingguo, C. Dielectric Property and Space Charge Behavior of Polyimide/Silicon Nitride Nanocomposite Films. Polymers 2020, 12, 322. [Google Scholar]
- Li, A.; Lan, Q.; Dong, D.; Liu, Z.; Li, Z.; Bian, Y. Integrated design and process analysis of a blow molding turbo-charged pipe. Int. J. Adv. Manuf. Technol. 2014, 73, 63–72. [Google Scholar] [CrossRef]
- Fu, J.; Ma, Y. A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time. Robot. Comput. Integr. Manuf. 2019, 56, 66–74. [Google Scholar] [CrossRef]
- Kitayama, S.; Yokoyama, M.; Takano, M.; Aiba, S. Multi-objective optimization of variable packing pressure profile and process parameters in plastic injection molding for minimizing warpage and cycle time. Int. J. Adv. Manuf. Technol. 2017, 92, 3991–3999. [Google Scholar] [CrossRef]
- Krebelj, K.; Halilovič, M.; Mole, N. The cooling rate dependence of the specific volume in amorphous plastic injection molding. Int. J. Adv. Manuf. Technol. 2019, 103, 1175–1184. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Doan, M.H. Research on both the radiation heating and the cooling system inside the stretch blow molding machine CPSB-LSS12. Int. J. Adv. Manuf. Technol. 2018, 98, 2357–2364. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Nguyen, T.-D.; Zhu, Y.-J.; Lin, S.-X. Rapid Development of an Injection Mold with High Cooling Performance Using Molding Simulation and Rapid Tooling Technology. Micromachines 2021, 12, 311. [Google Scholar] [CrossRef]
- Thanh, T.D.; Tran, M.T.U.; Pham, S.M. The Feasibility of an Internal Gas-Assisted Heating Method for Improving the Melt Filling Ability of Polyamide 6 Thermoplastic Composites in a Thin Wall Injection Molding Process. Polymers 2021, 13, 1004. [Google Scholar]
- Kitayama, S.; Hashimoto, S.; Takano, M.; Yamazaki, Y.; Kubo, Y.; Aiba, S. Multi-objective optimization for minimizing weldline and cycle time using variable injection velocity and variable pressure profile in plastic injection molding. Int. J. Adv. Manuf. Technol. 2020, 107, 3351–3361. [Google Scholar] [CrossRef]
Control Factor | Level 1 | Level 2 | Level 3 | |
---|---|---|---|---|
A | Barrel temperature (°C) | 182 | 184 | 186 |
B | Extrusion speed (mm/min) | 480 | 490 | 500 |
C | Cooling distance (mm) | 52.5 | 55 | 57.5 |
D | Recycled material addition ratio (%) | 20 | 30 | 40 |
Experiment No. | Control Factor | Average Diameter (mm) | σ2 | S/N (dB) | |||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | 1 | 2 | 3 | |||
1 | A1 | B 1 | C 1 | D 1 | 1.66 | 1.65 | 1.65 | 0.0058 | 26.55 |
2 | A1 | B 2 | C 2 | D 2 | 1.7 | 1.69 | 1.71 | 0.0100 | 40.00 |
3 | A1 | B 3 | C 3 | D 3 | 1.7 | 1.69 | 1.69 | 0.0058 | 41.09 |
4 | A2 | B 1 | C 2 | D 3 | 1.7 | 1.7 | 1.69 | 0.0058 | 43.52 |
5 | A2 | B 2 | C 3 | D 1 | 1.69 | 1.69 | 1.7 | 0.0058 | 41.09 |
6 | A 2 | B 3 | C 1 | D 2 | 1.68 | 1.7 | 1.7 | 0.0115 | 37.50 |
7 | A3 | B 1 | C 3 | D 2 | 1.65 | 1.68 | 1.67 | 0.0153 | 28.71 |
8 | A3 | B 2 | C 1 | D 3 | 1.69 | 1.68 | 1.71 | 0.0153 | 35.56 |
9 | A3 | B 3 | C 2 | D 1 | 1.63 | 1.62 | 1.65 | 0.0153 | 23.30 |
Control Factor | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Barrel temperature (°C) | 35.8818 | 40.7048 | 29.1924 |
Extrusion speed (mm/min) | 32.9301 | 38.8848 | 33.9641 |
Cooling distance (mm) | 33.2060 | 35.6071 | 36.9658 |
Recycled material addition ratio (%) | 30.3150 | 35.4053 | 40.0588 |
Control Factor | Leve1 | Level 2 | Level 3 | SS | DOF | V | ρ (%) | |
---|---|---|---|---|---|---|---|---|
A | Barrel temperature (°C) | 35.8818 | 40.7048 | 29.1924 | 200.545 | 2 | 100.272 | 47.1 |
B | Extrusion speed (mm/min) | 32.9301 | 38.8848 | 33.9641 | 60.741 | 2 | 30.370 | 14.3 |
C | Cooling distance (mm) | 33.2060 | 35.6071 | 36.9658 | 21.747 | 2 | 10.873 | 5.1 |
D | Recycled material addition ratio (%) | 30.3150 | 35.4053 | 40.0588 | 142.507 | 2 | 71.253 | 33.5 |
No. of Verification Experiments | Process Parameters | Diameter of PLA Filament (mm) | |||
---|---|---|---|---|---|
1 | 2 | 3 | Average | ||
1 | Barrel temperature 184 °C Extrusion speed 500 mm/min Cooling distance 57.5 mm Recycled material addition ratio 30% | 1.7 | 1.69 | 1.69 | 1.69 |
2 | Barrel temperature 186 °C Extrusion speed 480 mm/min Cooling distance 52.5 mm Recycled material addition ratio 20% | 1.66 | 1.65 | 1.66 | 1.66 |
3 | Barrel temperature 184 °C Extrusion speed 480 mm/min Cooling distance 57.5 mm Recycled material addition ratio 30% | 1.63 | 1.65 | 1.66 | 1.65 |
4 | Barrel temperature 182 °C Extrusion speed 500 mm/min Cooling distance 55 mm Recycled material addition ratio 40% | 1.62 | 1.61 | 1.65 | 1.63 |
Parameter | Input Values |
---|---|
Layer height (mm) | 0.18 |
Shell thickness (mm) | 0.7 |
Bottom/top thickness (mm) | 0.6 |
Fill density (%) | 40–50 |
Print speed (mm/s) | 30–40 |
Printing temperature (°C) | 220 |
Heated bed (°C) | 0–50 |
Platform adhesion type | Raft |
Filament diameter (mm) | 1.75 |
Flow (%) | 100 |
Retraction speed (mm/s) | 45 |
Retraction distance (mm) | 3 |
Initial layer thickness (mm) | 0.26 |
Initial layer line width (%) | 100 |
Dual extrusion overlap (mm) | 0.15 |
Travel speed (mm/s) | 100 |
Bottom layer speed (mm/s) | 20 |
Minimal layer thickness (s) | 5 |
Enable cooling fan | on |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-C.; Chen, J.-Y.; Chang, Y.-H. Optimization of Process Parameters for Fabricating Polylactic Acid Filaments Using Design of Experiments Approach. Polymers 2021, 13, 1222. https://doi.org/10.3390/polym13081222
Kuo C-C, Chen J-Y, Chang Y-H. Optimization of Process Parameters for Fabricating Polylactic Acid Filaments Using Design of Experiments Approach. Polymers. 2021; 13(8):1222. https://doi.org/10.3390/polym13081222
Chicago/Turabian StyleKuo, Chil-Chyuan, Jia-You Chen, and Yuan-Hao Chang. 2021. "Optimization of Process Parameters for Fabricating Polylactic Acid Filaments Using Design of Experiments Approach" Polymers 13, no. 8: 1222. https://doi.org/10.3390/polym13081222
APA StyleKuo, C. -C., Chen, J. -Y., & Chang, Y. -H. (2021). Optimization of Process Parameters for Fabricating Polylactic Acid Filaments Using Design of Experiments Approach. Polymers, 13(8), 1222. https://doi.org/10.3390/polym13081222