Double-Function Oxygen Scavenger and Aromatic Food Packaging Films Based on LDPE/Polybutadiene and Peanut Aroma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Films Preparation
2.3. Films Characterization
2.3.1. Optical Properties
2.3.2. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.3.3. Mechanical Properties
2.3.4. Thermal Analysis
2.3.5. Oxygen Absorption Capacity Measured after a Previous UV Activation of the Films
2.4. Quantification of Peanut Aroma Compounds Present in PE/PB-Based Films after Processing
2.5. Statistical Analysis
3. Results and Discussion
3.1. Films Characterization
3.1.1. Optical Properties
3.1.2. ATR-FTIR Analysis
3.1.3. Mechanical Properties
3.1.4. Thermal Characterization
3.2. Oxygen Absorption Capacity
3.3. Aroma Retention Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltrán, A.; Ramos, M.; Grané, N.; Martín, M.L.; Garrigós, M.C. Monitoring the oxidation of almond oils by HS-SPME–GC–MS and ATR-FTIR: Application of volatile compounds determination to cultivar authenticity. Food Chem. 2011, 126, 603–609. [Google Scholar] [CrossRef]
- Beltrán Sanahuja, A.; Maestre Pérez, S.E.; Grané Teruel, N.; Valdés García, A.; Prats Moya, M.S. Variability of Chemical Profile in Almonds (Prunus dulcis) of Different Cultivars and Origins. Foods 2021, 10, 153. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, A.; Prats, M.S.; Maestre, S.E.; Grané, N.; Martín Carratalá, M.L. Classification of four almond cultivars using oil degradation parameters based on FTIR and GC data. J. Am. Oil Chem. Soc. 2009, 86, 51–58. [Google Scholar] [CrossRef]
- Bearth, A.; Cousin, M.E.; Siegrist, M. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Prefer. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Ozturk, I.; Sagdic, O.; Yalcin, H.; Dursun Capar, T.; Hakan Asyali, M. The effects of packaging type on the quality characteristics of fresh raw pistachios (Pistacia vera L.) during the storage. LWT-Food Sci. Technol. 2016, 65, 457–463. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Vera, P.; Canellas, E.; Nerín, C. New Antioxidant Multilayer Packaging with Nanoselenium to Enhance the Shelf-Life of Market Food Products. Nanomaterials 2018, 8, 837. [Google Scholar] [CrossRef] [Green Version]
- Valdés García, A.; Juárez Serrano, N.; Beltrán Sanahuja, A.; Garrigós, M.C. Novel Antioxidant Packaging Films Based on Poly(ε-Caprolactone) and Almond Skin Extract: Development and Effect on the Oxidative Stability of Fried Almonds. Antioxidants 2020, 9, 629. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Mu, H.; Gao, H.; Chen, H.; Tao, F.; Fang, X.; Ge, L. A nanosised oxygen scavenger: Preparation and antioxidant application to roasted sunflower seeds and walnuts. Food Chem. 2013, 136, 245–250. [Google Scholar] [CrossRef]
- Dey, A.; Neogi, S. Oxygen scavengers for food packaging applications: A review. Trends Food Sci. Technol. 2019, 90, 26–34. [Google Scholar] [CrossRef]
- McGrath, M.P.; Sail, E.D.; Tremont, S.J. Functionalization of Polymers by Metal-Mediated Processes. Chem. Rev. 1995, 95, 381–398. [Google Scholar] [CrossRef]
- Li, H.; Tung, K.K.; Paul, D.R.; Freeman, B.D. Effect of film thickness on auto-oxidation in cobalt-catalyzed 1,4-polybutadiene films. Polymer 2011, 52, 2772–2783. [Google Scholar] [CrossRef]
- Wang, Y.; Shoda, M.; Hisama, A.; Oyaizu, K.; Nishide, H. Oxygen Scavenging and Oxygen Barrier Poly(1,2-butadiene) Films Containing an Iron-Complex Catalyst. Macromol. Chem. Phys. 2019, 220, 1900294. [Google Scholar] [CrossRef]
- Tung, K.K.; Li, R.H.; Freeman, B.D.; Paul, D.R. Characterization of oxygen scavenging films based on butadiene-containing polymers. Mater. Eng. Sci. Div.-Core Program. Top. 2011, 1, 338. [Google Scholar]
- Li, H.; Tung, K.K.; Paul, D.R.; Freeman, B.D.; Stewart, M.E.; Jenkins, J.C. Characterization of oxygen scavenging films based on 1,4-polybutadiene. Ind. Eng. Chem. Res. 2012, 51, 7138–7145. [Google Scholar] [CrossRef]
- Kordjazi, Z.; Ajji, A. Development of TiO2 catalyzed HTPB based oxygen scavenging films for food packaging applications. Food Control 2021, 121, 107639. [Google Scholar] [CrossRef]
- Schopov, I.; Kassabova, N.; Kossmehl, G. Oxidation of cis-1,4-polybutadiene by singlet oxygen. Polym. Degrad. Stab. 1989, 25, 31–38. [Google Scholar] [CrossRef]
- Rabek, J.F.; Ranby, B. Studies on the photo-oxidative mechanism of polymers. VII. The role of singlet oxygen in the dye-photosensitized oxidation of cis-1,4- and 1,2-polybutadienes and butadiene–styrene copolymers. J. Appl. Polym. Sci. 1979, 23, 2481–2491. [Google Scholar] [CrossRef]
- Lebedev, Y.A.; Kinzyabulatov, R.R.; Astanin, V.V.; Gunderov, D.V. Impact of Ultraviolet Irradiation on Stress–Strain Behavior of Syndiotactic 1,2-Polybutadien: The Role of Oxidation. Zhurnal Tekhnicheskoi Fiz. 2019, 89, 518–523. [Google Scholar] [CrossRef]
- Beltrán Sanahuja, A.; Valdés García, A. New Trends in the Use of Volatile Compounds in Food Packaging. Polymers 2021, 13, 1053. [Google Scholar] [CrossRef]
- Ramos, M.; Beltrán, A.; Fortunati, E.; Peltzer, M.; Cristofaro, F.; Visai, L.; Valente, A.J.M.; Jiménez, A.; Kenny, J.M.; Garrigós, M.C. Controlled Release of Thymol from Poly(Lactic Acid)-Based Silver Nanocomposite Films with Antibacterial and Antioxidant Activity. Antioxidants 2020, 9, 395. [Google Scholar] [CrossRef]
- Hambleton, F.; Debeaufort, A.; Bonnotte, A.; Voilley, A. Influence of alginate emulsion-based films structure on its barrier properties and on the protection of microencapsulated aroma compound. Food Hydrocoll. 2009, 23, 2116–2124. [Google Scholar] [CrossRef]
- Baker, G.L.; Cornell, J.A.; Gorbet, D.W.; O’Keefe, S.F.; Sims, C.A.; Talcott, S.T. Determination of pyrazine and flavor variations in peanut genotypes during roasting. J. Food Sci. 2003, 68, 394–400. [Google Scholar] [CrossRef]
- Simona, J.; Dani, D.; Petr, S.; Marcela, N.; Jakub, T.; Bohuslava, T. Edible Films from Carrageenan/Orange Essential Oil/Trehalose—Structure, Optical Properties, and Antimicrobial Activity. Polymers 2021, 13, 332. [Google Scholar] [CrossRef]
- Plastics-Determination of tensile properties—Part 3: Test conditions for films and sheets (ISO 527-3:2018). In Polymer Data Handbook; Mark, J.E. (Ed.) Oxford University Press: New York, NY, USA, 1999; pp. 1–1264. [Google Scholar]
- Wicochea-Rodríguez, J.D.; Chalier, P.; Ruiz, T.; Gastaldi, E. Active Food Packaging Based on Biopolymers and Aroma Compounds: How to Design and Control the Release. Front. Chem. 2019, 7, 398. [Google Scholar] [CrossRef]
- Jancikova, S.; Dordevic, D.; Jamroz, E.; Behalova, H.; Tremlova, B. Chemical and physical characteristics of edible films, based on κ-and ι-carrageenans with the addition of lapacho tea extract. Foods 2020, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- İnceoğlu, F.; Menceloğlu, Y.Z. Transparent low-density polyethylene/starch nanocomposite films. J. Appl. Polym. Sci. 2013, 129, 1907–1914. [Google Scholar] [CrossRef]
- Ramos, M.; Fortunati, E.; Peltzer, M.; Jimenez, A.; Kenny, J.M.; Garrigós, M.C. Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polym. Degrad. Stab. 2016, 132, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Beltrán-Sanahuja, A.; Casado-Coy, N.; Simó-Cabrera, L.; Sanz-Lázaro, C. Monitoring polymer degradation under different conditions in the marine environment. Environ. Pollut. 2020, 259, 113836. [Google Scholar] [CrossRef]
- Suri, K.; Singh, B.; Kaur, A.; Singh, N. Impact of roasting and extraction methods on chemical properties, oxidative stability and Maillard reaction products of peanut oils. J. Food Sci. Technol. 2019, 56, 2436–2445. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chang, L.; Hu, Y.; Wu, G.; Liu, H. Synthesis and Properties of In-Situ Bulk High Impact Polystyrene Toughened by High cis-1,4 Polybutadiene. Polymers 2019, 11, 791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persico, P.; Ambrogi, V.; Carfagna, C.; Cerruti, P.; Ferrocino, I.; Mauriello, G. Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym. Eng. Sci. 2009, 49, 1447–1455. [Google Scholar] [CrossRef]
- Beltrán, A.; Valente, A.J.; Jiménez, A.; Garrigós, M.C. Characterization of poly(ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging. J. Agric. Food Chem. 2014, 62, 2244–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcilla, A.; Garcia-Quesada, J.C.; Hernandez, J.; Ruiz-Femenia, R.; Perez, J.M. Study of polyethylene crosslinking with polybutadiene as coagent. Polym. Test. 2005, 24, 925–931. [Google Scholar] [CrossRef]
- Beg, M.D.H.; Kormin, S.; Bijarimi, M.; Zaman, H.U. Preparation and Characterization of Low-Density Polyethylene/Thermoplastic Starch Composites. Adv. Polym. Technol. 2016, 35, 21521. [Google Scholar] [CrossRef] [Green Version]
- Speer, D.V.; Morgan, C.R.; Roberts, W.P.; VanPutte, A.W. Multilayer Structure for a Package for Scavenging Oxygen. U.S. Patent US5350622A, 27 September 1994. [Google Scholar]
- Rooney, M.L. Oxygen Scavengers Independent of Transition Metal Catalysts. U.S. Patent US6746630B2, 28 September 1999. [Google Scholar]
- Dun, Q.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of hot and cold-pressed processes on volatile compounds of peanut oil and corresponding analysis of characteristic flavor components. LWT 2019, 112, 107648. [Google Scholar] [CrossRef]
- Onat, B.; Bakal, H.; Arioghi, H.; Bozdogan, A.; Kafkas, E.; el Sabagh, A. Comparison of volatile composition of raw and roasted halisbey peanut variety using HS-SPME GC/MS techniques. Fresenius Environ. Bull. 2017, 26, 5198–5204. [Google Scholar]
- Smith, A.L.; Barringer, S.A. Color and volatile analysis of peanuts roasted using oven and microwave technologies. J. Food Sci. 2014, 79, C1895–C1906. [Google Scholar] [CrossRef]
- Ammari, A.; Schroen, K. Flavor Retention and Release from Beverages: A Kinetic and Thermodynamic Perspective. J. Agric. Food Chem. 2018, 66, 9869–9881. [Google Scholar] [CrossRef]
Formulations | Code | t600 |
---|---|---|
LDPE | PE | 26.9 ± 0.3 a |
LDPE + 5 wt % PA | PE/PA | 27.4 ± 0.2 a |
LDPE + 5 wt % PA + 5 wt % PB | PE/PA/PB5 | 27.4 ± 0.2 a |
LDPE + 5 wt % PA + 13 wt % PB | PE/PA/PB13 | 27.3 ± 0.3 a |
YM (MPa) | EaB (%) | TS (MPa) | Tc (°C) | ΔHc (J g−1) | Tm (°C) | ΔHm (J g−1) | Xc (%) | Tini (°C) | Tmax (°C) | |
---|---|---|---|---|---|---|---|---|---|---|
PE | 150 ± 20 a | 183 ± 25 a | 18 ± 1 a | 98 ± 0 a | 82 ± 2 a | 108 ± 0 a | 118 ± 2 a | 40 ± 1 a | 432 ± 1 a | 476 ± 1 a |
PE/PA | 110 ± 18 b | 199 ± 25 a | 17 ± 1 a | 98 ± 0 a | 78 ± 2 a | 108 ± 0 a | 111 ± 0 b | 40 ± 0 a | 417 ± 1 b | 475 ± 1 a |
PE/PA/PB5 | 100 ± 10 b | 155 ± 15 a | 17 ± 1 a | 98 ± 0 a | 78 ± 1 a | 108 ± 0 a | 111 ± 1 b | 42 ± 0 b | 413 ± 1 c | 475 ± 1 a |
PE/PA/PB13 | 110 ± 10 b | 170 ± 21 a | 16 ± 1 a | 98 ± 0 a | 78 ± 0 a | 108 ± 0 a | 108 ± 2 b | 45 ± 1 c | 406 ± 1 d | 475 ± 1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juan-Polo, A.; Maestre Pérez, S.E.; Monedero Prieto, M.; Tone, A.M.; Sánchez Reig, C.; Beltrán Sanahuja, A. Double-Function Oxygen Scavenger and Aromatic Food Packaging Films Based on LDPE/Polybutadiene and Peanut Aroma. Polymers 2021, 13, 1310. https://doi.org/10.3390/polym13081310
Juan-Polo A, Maestre Pérez SE, Monedero Prieto M, Tone AM, Sánchez Reig C, Beltrán Sanahuja A. Double-Function Oxygen Scavenger and Aromatic Food Packaging Films Based on LDPE/Polybutadiene and Peanut Aroma. Polymers. 2021; 13(8):1310. https://doi.org/10.3390/polym13081310
Chicago/Turabian StyleJuan-Polo, Adriana, Salvador E. Maestre Pérez, María Monedero Prieto, Ana María Tone, Carmen Sánchez Reig, and Ana Beltrán Sanahuja. 2021. "Double-Function Oxygen Scavenger and Aromatic Food Packaging Films Based on LDPE/Polybutadiene and Peanut Aroma" Polymers 13, no. 8: 1310. https://doi.org/10.3390/polym13081310
APA StyleJuan-Polo, A., Maestre Pérez, S. E., Monedero Prieto, M., Tone, A. M., Sánchez Reig, C., & Beltrán Sanahuja, A. (2021). Double-Function Oxygen Scavenger and Aromatic Food Packaging Films Based on LDPE/Polybutadiene and Peanut Aroma. Polymers, 13(8), 1310. https://doi.org/10.3390/polym13081310