Preparation of Ag NPs and Its Multifunctional Finishing for Cotton Fabric
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ag NPs
2.3. Preparation of Ag NPs Finished Cotton
2.4. Characterization of Ag NPs and Finished Fabrics
2.4.1. UV–vis Spectroscopy Analysis
2.4.2. Transmission Electron Microscope Analysis
2.4.3. DLS Analysis
2.4.4. X-ray Powder Diffraction (XRD) Analysis
2.4.5. Fourier Transform Infrared (FT-IR) Analysis
2.4.6. Scanning Electron Microscopy (SEM) Analysis
2.4.7. X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric (TG) Analysis
2.4.8. Silver Content in Fabric Analysis
2.4.9. The Fabric ∆E Analysis
2.4.10. Antibacterial Rate Analysis
2.4.11. Wash Fastness
2.4.12. UV and Crease Resistance of Fabrics
3. Results and Discussion
3.1. UV–Vis Characterization of Ag NPs
3.2. TEM Characterization of Ag NPs
3.3. Laser Particle Size Measurement and Potential Analysis of Ag NPs
3.4. XRD Characterization of Ag NPs
3.5. FT-IR Characterization of Ag NPs
3.6. Structure Characterization and Property Analysis of Ag NPs- Cotton Fabrics
3.6.1. FT-IR Characterization of Ag NPs Finishing Cotton Fabric
3.6.2. SEM Characterization of Ag NPs Finishing Cotton Fabric
3.6.3. XPS Characterization of Ag NPs Finishing Cotton Fabric
3.6.4. XRD Characterization of Ag NPs Finishing Cotton Fabric
3.6.5. TG Characterization of the Ag NPs Cotton
3.6.6. Antibacterial Property, Ag Content, and ∆E Test of Finished Cotton
Antibacterial and Washing Resistance Characterization
Antibacterial and Washing Resistance Test
3.6.7. UV and Wrinkle Resistance Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teng, X.; Zhang, S.; Ma, W. Application of a hydrolyzable cationic agent, poly(acryloxyethyl trimethylammonium chloride), in salt-free reactive dyeing for good dyeing properties. J. Appl. Polym. Sci. 2011, 122, 2741–2748. [Google Scholar] [CrossRef]
- Pervin, A.; Tuba, T.; Egemen, K. Sericin assisted eco-friendly reactive dyeing for cotton fabric. Cellulose 2019, 26, 6317–6331. [Google Scholar] [CrossRef]
- Charles, T. Chemistry & Technology of Fabric Preparation & Finishing; North Carolina State University: Raleigh, NC, USA, 1992; p. 114. [Google Scholar]
- Schindler, W.D.; Hauser, P.J. Chemical Finishing of Textiles; Woodhead Publishing: Cambridge, UK, 2004; pp. 54–62. [Google Scholar]
- Dong, X.-Y.; Gao, Z.-W.; Yang, K.-F.; Zhang, W.-Q.; Xu, L.-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol. 2015, 5, 2554–2574. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Sha, D.; Liu, Y.; Xu, J.; Shi, K.; Yu, C.; Ji, X. Injectable and antibacterial ε-poly(l-lysine)-modified poly(vinyl alcohol)/chitosan/AgNPs hydrogels as wound healing dressings. Polymer 2021, 212, 123155. [Google Scholar] [CrossRef]
- Fisseha, A.B.; Shepherd, M.T.; Evans, M.N.C. Synthesis of biosurfactant stabilized Ag NPs, characterization and their potential application for bactericidal purposes. J. Hazard. Mater. 2020, 393, 122–319. [Google Scholar] [CrossRef]
- Shayan, F.; Maryam, M.; Mina, R.R. Design and application of (Fe3O4)-GOTfOH based AgNPs doped starch/ PEG-poly (acrylic acid) nanocomposite as the magnetic nanocatalyst and the wound dress. J. Mol. Struct. 2020, 1214, 128–142. [Google Scholar] [CrossRef]
- Cheng, F.; Jonathan, W.B.; Stephen, M.K.; Jens, S.; Thomas, H. Synthesis and antibacterial effects of aqueous colloidal solutions of Ag NPs using aminocellulose as a combined reducing and capping reagent. Green. Chem. 2013, 15, 989–998. [Google Scholar] [CrossRef]
- He, J.H.; Toyoki, K.; Aiko, N. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 2003, 15, 4401–4406. [Google Scholar] [CrossRef]
- Yang, N.; Li, W.H. Mango peel extract mediated novel route for synthesis of Ag NPs and antibacterial application of Ag NPs loaded onto non-woven fabrics. Ind. Crop Prod. 2013, 48, 81–88. [Google Scholar] [CrossRef]
- Sathyavathi, R.; Krishna, M.B.; Rao, S.V.; Saritha, R.; Rao, D.N. Biosynthesis of Ag NPs using coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett. 2010, 3, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; Sankar, P.D.; Misra, A. Green synthesis of Ag NPs using latex of Jatropha curcas. Colloids Surf. A 2009, 339, 134–139. [Google Scholar] [CrossRef]
- Cheng, T.H.; Yang, Z.Y.; Tang, R.C.; Zhai, A.D. Functionalization of silk by Ag NPs synthesized using the aqueous extract from tea stem waste. J. Mater. Res. Technol. 2020, 9, 4538–4549. [Google Scholar] [CrossRef]
- Souza, J.N.S.; Silva, E.M.; Loir, A.; Rees, J.F.; Rogez, H.; Larondelle, Y. Antioxidant capacity of four polyphenol-rich Amazonian plant extracts: A correlation study using chemical and biological in vitro assays(Article). Food Chem. 2008, 106, 331–339. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 2009, 84, 151–157. [Google Scholar] [CrossRef]
- Pan, Y.L.; Yang, P.F.; Mark, G.M.; Wang, L.; Wang, Y.Q. Ag NPs-loaded cotton fiber materials: Preparation, surface deposition and antibacterial activity with different chemical structures. ACS Appl. Biol. Mater. 2019, 2, 510–517. [Google Scholar] [CrossRef]
- Xu, Q.B.; Gu, J.Y.; Zhao, Y.; Ke, X.T.; Liu, X.D. Antibacterial cotton fabric with enhanced durability prepared using L-cysteine and Ag NPs. Fibers Polym. 2017, 18, 2204–2211. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, D.R.; Xu, Q.; Zhang, Y.Y. Excellent binding effect of L-methionine for immobilizing Ag NPs onto cotton fabrics to improve the antibacterial durability against washing. RSC Adv. 2018, 8, 24458–24463. [Google Scholar] [CrossRef] [Green Version]
- Charles, Q.Y.; Wang, X.L.; In-Sook, K. Ester Crosslinking of Cotton Fabric by Polymeric Carboxylic Acids and Citric Acid. Text. Res. 1997, 67, 334–342. [Google Scholar] [CrossRef]
- Edwin, S.; Nalankilli, G. Polyfunctional finishes on cotton textiles. Indian J. Fiber Text. Res. 2012, 37, 364–371. [Google Scholar] [CrossRef]
- Yue, X.X.; Lin, H.T.; Yan, T.; Zhang, D.S.; Lin, H.; Chen, Y.Y. Synthesis of Ag NPs with sericin and functional finishing to cotton fabrics. Fiber Polym. 2014, 15, 716–722. [Google Scholar] [CrossRef]
- Mulvaney, P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12, 788–800. [Google Scholar] [CrossRef]
- Sun, Y.G.; Xia, Y.N. Gold and Ag NPs: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 2003, 128, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Umesh, J.; Vishwas, A.B. Green synthesis of Ag NPs using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crop. Prod. 2013, 46, 132–137. [Google Scholar] [CrossRef]
- Bootz, A.; Vogel, V.; Schubert, D.; Kreuter, J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004, 57, 369–375. [Google Scholar] [CrossRef]
- Das, S.; Roy, P.; Mondal, S.; Bera, T.; Mukherjee, A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf. B Biointerfaces 2013, 107, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Andrade, M.; Cho, A.T.; Hu, P.; Lee, S.J.; Deming, C.P.; Sweeney, S.W.; Saltikov, C.; Chen, S. Enhanced antimicrobial activity with faceted silver nanostructures. J. Mater. Sci. 2015, 50, 2849–2858. [Google Scholar] [CrossRef]
- Wu, Q.Z.; Cao, H.Q.; Luan, Q.Y.; Zhang, J.Y. Biomolecule-assisted synthesis of water-soluble Ag NPs and their biomedical applications. Inorg. Chem. 2008, 47, 5882–5888. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crop. Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
- Durgawale, P.P.; Phatak, R.S.; Hendre, A. Biosynthesis of Ag NPs using latex of Syandenium grantii hook f and its assessment of antibacterial activities. Dig. J. Nanomater Bios. 2015, 10, 847–852. [Google Scholar]
- Zhang, G.; Zheng, H.; Shen, M.; Wang, L.; Wang, X. Green synthesis and characterization of Au@Pt core–shell bimetallic nanoparticles using gallic acid. J. Phys. Chem. Solids 2015, 81, 79–87. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, H. Structural characterization of cellulose with enzymatic treatment. J. Mol. Struct. 2004, 705, 189–193. [Google Scholar] [CrossRef]
- Li, B.; Dong, Y.; Li, L. Preparation and catalytic performance of Fe(III)-citric acid-modified cotton fiber complex as a novel cellulose fiber-supported heterogeneous photo-Fenton catalyst. Cellulose 2015, 22, 1295–1309. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.; Statz, A.R.; Rho, J.; Park, T.G.; Messersmith, P.B. Substrate-Independent Layer-by-Layer Assembly by Using Mussel-A dhesive-Inspired Polymers. Adv. Mater. 2008, 20, 1619–1623. [Google Scholar] [CrossRef] [Green Version]
- Kwak, W.-G.; Oh, M.H.; Gong, M.-S. Preparation of silver-coated cotton fabrics using silver carbamate via thermal reduction and their properties. Carbohydr. Polym. 2015, 115, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.J.; Li, Q.; Newberg, J.T.; Menke, E.J.; Hemminger, J.C.; Penner, R.M. Shape- and Size-Selective Electrochemical Synthesis of Dispersed Silver(I) Oxide Colloids. Nano Lett. 2005, 5, 2319–2324. [Google Scholar] [CrossRef] [PubMed]
- Kozicki, M.; Sąsiadek, E.; Kołodziejczyk, M.; Komasa, J.; Adamus, A.; Maniukiewicz, W.; Pawlaczyk, A.; Szynkowska, M.; Rogowski, J.; Rybicki, E. Facile and durable antimicrobial finishing of cotton textiles using a silver salt and UV light. Carbohydr. Polym. 2013, 91, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Luo, Y.; Luo, J. Novel antibacterial paper based on quatenized carboxymethylchitosan/organic montmorillonite/Ag NP nanocomposites. Ind. Crop. Prod. 2013, 51, 470–479. [Google Scholar] [CrossRef]
- Montazer, M.; Alimohammadi, F.; Shamei, A. In situ synthesis of Ag NPs on cotton using Tollens reagent. Carbohydr. Polym. 2012, 87, 1706–1712. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.; Himmel, M.; Parilla, P.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- El-Rafie, H.M.; El-Rafie, M.H.; Zahran, M.K. Green synthesis of Ag NPs using polysaccharides extracted from marine macro al gae. Carbohydr. Polym. 2013, 96, 403–410. [Google Scholar] [CrossRef]
- Majid, M.; Farbod, A.; Ali, S.; Mohammad, K.R. Durable antibacterial and cross-linking cotton with colloidal Ag NPs and butane tetracarboxylic acid without yellowing. Colloids Surf. B 2012, 89, 196–202. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles. Text. Res. J. 2019, 89, 867–880. [Google Scholar] [CrossRef]
- Li, W.; Xu, X.; Chen, S.; Zhou, X.; Li, L.; Chen, D.; Wang, X. Esterification crosslinking structures of rayon fibers with 1,2,3,4-butanetetracarboxylic acid and their water-responsive properties. Carbohydr. Polym. 2008, 71, 574–582. [Google Scholar] [CrossRef]
- Bajaj, P. Finishing of textile materials. J. Appl. Polym. Sci. 2001, 83, 631–659. [Google Scholar] [CrossRef]
Sample | Average UV Transmittance (%) | UPF | WRA(W + F(°)) | |
---|---|---|---|---|
UVA | UVB | |||
Unfinished Cotton | 29.98 | 15.65 | 5.36 | 138 |
Ag/Cotton | 1.8 | 2.76 | 36.31 | 144 |
PMA-CA-Ag/Cotton | 2.05 | 2.52 | 39.45 | 236 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Li, H.; Wang, Y.; Wang, Y.; Yan, J. Preparation of Ag NPs and Its Multifunctional Finishing for Cotton Fabric. Polymers 2021, 13, 1338. https://doi.org/10.3390/polym13081338
Zhu J, Li H, Wang Y, Wang Y, Yan J. Preparation of Ag NPs and Its Multifunctional Finishing for Cotton Fabric. Polymers. 2021; 13(8):1338. https://doi.org/10.3390/polym13081338
Chicago/Turabian StyleZhu, Jionglin, Hong Li, Yu Wang, Yusu Wang, and Jun Yan. 2021. "Preparation of Ag NPs and Its Multifunctional Finishing for Cotton Fabric" Polymers 13, no. 8: 1338. https://doi.org/10.3390/polym13081338
APA StyleZhu, J., Li, H., Wang, Y., Wang, Y., & Yan, J. (2021). Preparation of Ag NPs and Its Multifunctional Finishing for Cotton Fabric. Polymers, 13(8), 1338. https://doi.org/10.3390/polym13081338