How Fiber Surface Topography Affects Interactions between Cells and Electrospun Scaffolds: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
- Problem: Fiber surface topography might affect cell development on electrospun scaffolds.
- Intervention: Modification of fiber surface topography.
- Comparison: Surface-modified scaffolds are compared to non-surface-modified scaffolds.
- Outcome: Changed cell adhesion, proliferation, or differentiation.
3. Results
3.1. Study Selection
- ScienceDirect (693 results, filtered by research articles);
- PubMed (36 results, filtered by English language);
- Scopus (58 results);
- Web of Science (98 results);
- Embase (26 results).
3.2. Study Characteristics
3.3. Risk of Bias within Studies
3.4. Results of Individual Studies
3.5. Synthesis of Results
3.6. Risk of Bias across Studies
3.7. Risk of Bias in this Review
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A-172 | A line of brain glioblastoma cells |
Adh | Adhesion |
BG | Bias groups 1-4 (group 1 having the lowest bias level) |
Chond. | Chondrogenic |
Coll. | Collagen |
Cs | Chitosan |
Diff | Differentiation |
HEF1s | HEF1 fibroblast cells differentiated from hESCs |
hESCs | human embryonic stem cells |
HFs | Human fibroblasts |
hMSCs | Human mesenchymal stem cells |
HUVECs | human umbilical vein endothelial cells |
MC3T3-E1 | Mouse osteblastic cells |
MFs or 3T3MFs | Mouse fibroblasts |
MG63OCs | MG63 line osteosarcoma cells |
NSIPS | (Non-)Solvent induced phase separation |
Ost. | Osteogenic |
PCL | Polycaprolactone |
PEECs | Porcine esophageal endothelial cells |
PEO | Polyethylene oxide |
PEOT/PBT | poly (ethylene oxide terephthalate)/poly (butylene terephthalate) |
PLA | Polylactic acid |
PLGA | poly (lactic-co-glycolic acid) |
PLLA | poly-L-lactic acid |
POMCs | Preosteoblastic mouse cells |
PPC | Polypropylene carbonate |
PRHs | Primary rat hepatocytes |
Prol | Proliferation |
PU | Polyurethane |
PVA | Polyvinyl acetate |
RAW264.7 | A line of macrophages |
RBCs | Red blood cells |
RNSCs | Rodent neural stem cells |
SK | Shish-kebab |
TIPS | Thermally induced phase separation |
Viab | Viability |
VIPS | Vapor induced phase separation |
vSMCs | vascular smooth muscle cells |
References
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Wendorff, J.H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49, 5603–5621. [Google Scholar] [CrossRef] [Green Version]
- Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29, 1989–2006. [Google Scholar] [CrossRef]
- Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721. [Google Scholar] [CrossRef]
- Mamidi, N.; Romo, I.L.; Barrera, E.V.; Elías-Zúñiga, A. High throughput fabrication of curcumin embedded gelatin-polylactic acid forcespun fiber-aligned scaffolds for the controlled release of curcumin. MRS Commun. 2018, 8, 1395–1403. [Google Scholar] [CrossRef]
- Mamidi, N.; Delgadillo, R.M.V.; González-Ortiz, A. Engineering of carbon nano-onion bioconjugates for biomedical applications. Mater. Sci. Eng. C 2021, 120, 111698. [Google Scholar] [CrossRef] [PubMed]
- Juncos Bombin, A.D.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C 2020, 114, 110994. [Google Scholar] [CrossRef]
- Vellayappan, M.V.; Venugopal, J.R.; Ramakrishna, S.; Ray, S.; Ismail, A.F.; Mandal, M.; Manikandan, A.; Seal, S.; Jaganathan, S.K. Electrospinning applications from diagnosis to treatment of diabetes. RSC Adv. 2016, 6, 83638–83655. [Google Scholar] [CrossRef]
- Blokhuis, T.J.; Calori, G.M.; Schmidmaier, G. Autograft versus BMPs for the treatment of non-unions: What is the evidence? Injury 2013, 44, S40–S42. [Google Scholar] [CrossRef]
- Ray, W.Z.; Mackinnon, S.E. Management of nerve gaps: Autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp. Neurol. 2010, 223, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safa, B.; Buncke, G. Autograft Substitutes: Conduits and Processed Nerve Allografts. Hand Clin. 2016, 32, 127–140. [Google Scholar] [CrossRef]
- Yu, X.; Bellamkonda, R.V. Tissue-engineered scaffolds are effective alternatives to autografts for bridging peripheral nerve gaps. Tissue Eng. 2003, 9, 421–430. [Google Scholar] [CrossRef]
- Bi, F.; Shi, Z.; Liu, A.; Guo, P.; Yan, S. Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft. PLoS ONE 2015, 10, e0125900. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, M.; Beherei, H.H.; Das, D.B. Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Mater. Sci. Eng. C 2020, 110, 110716. [Google Scholar] [CrossRef]
- Rutkowski, G.E.; Heath, C.A. Development of a bioartificial nerve graft. I. Design based on a reaction-diffusion model. Biotechnol. Prog. 2002, 18, 362–372. [Google Scholar] [CrossRef]
- Liang, M.; Fu, C.; Xiao, B.; Luo, L.; Wang, Z. A fractal study for the effective electrolyte diffusion through charged porous media. Int. J. Heat Mass Transf. 2019, 137, 365–371. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, W.; Zhang, X.; Long, G.; Fan, J.; Chen, H.; Deng, L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019, 349, 92–98. [Google Scholar] [CrossRef]
- Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J.M.; Sharifi, S.; Ramakrishna, S. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J. Tissue Eng. Regen. Med. 2016, 10, 715–738. [Google Scholar] [CrossRef]
- Rim, N.G.; Shin, C.S.; Shin, H. Current approaches to electrospun nanofibers for tissue engineering. Biomed. Mater. 2013, 8, 14102. [Google Scholar] [CrossRef] [PubMed]
- Badmus, M.; Liu, J.; Wang, N.; Radacsi, N.; Zhao, Y. Hierarchically electrospun nanofibers and their applications: A review. Nano Mater. Sci. 2021, 3, 213–232. [Google Scholar] [CrossRef]
- Zheng, W.; Jiang, X. Precise manipulation of cell behaviors on surfaces for construction of tissue/organs. Colloids Surf. B Biointerfaces 2014, 124, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Hong, H.J.; Koh, W.-G. Micropatterned fibrous scaffolds for biomedical application. J. Ind. Eng. Chem. 2019, 80, 729–738. [Google Scholar] [CrossRef]
- Lim, J.Y.; Donahue, H.J. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 2007, 13, 1879–1891. [Google Scholar] [CrossRef] [PubMed]
- Denchai, A.; Tartarini, D.; Mele, E. Cellular Response to Surface Morphology: Electrospinning and Computational Modeling. Front. Bioeng. Biotechnol. 2018, 6, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of PICO as a Knowledge Representation for Clinical Questions. AMIA Annu. Symp. Proc. 2006, 2006, 359–363. [Google Scholar]
- Lopez Marquez, A. Review Protocol Fiber Surface Properties.docx. Available online: https://figshare.com/articles/online_resource/Review_Protocol_Fiber_Surface_Properties_docx/13523822/1 (accessed on 30 November 2021).
- Rubenstein, D.A.; Greene, V.K.; Yin, W. Electrospun scaffold fiber orientation regulates endothelial cell and platelet properties associated with angiogenesis and hemocompatibility. Materialia 2020, 14, 100942. [Google Scholar] [CrossRef]
- Critical Appraisal Skills Programme. CASP. CASP Checklist: 10 Questions to Help You Make Sense of a Qualitative Research. 2019. Available online: https://casp-uk.net/wp-content/uploads/2018/03/CASP-Qualitative-Checklist-2018_fillable_form.pdf (accessed on 8 February 2021).
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. GRADE Handbook. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 20 January 2021).
- Shea, B.J.; Grimshaw, J.M.; Wells, G.A.; Boers, M.; Andersson, N.; Hamel, C.; Porter, A.C.; Tugwell, P.; Moher, D.; Bouter, L.M. Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Med. Res. Methodol. 2007, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Correia, D.M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S.A.C.; Machado, A.V.; Lanceros-Mendez, S. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Appl. Surf. Sci. 2016, 371, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Huang, X.; Zhang, M.; Damanik, F.; Baker, M.B.; Leferink, A.; Yuan, H.; Truckenmüller, R.; van Blitterswijk, C.; Moroni, L. Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomater. 2017, 59, 82–93. [Google Scholar] [CrossRef]
- Jeon, H.; Kim, G. Preparation and characterization of an electrospun polycaprolactone (PCL) fibrousmat andmulti-layered PCL scaffolds having a nanosized pattern-surface for tissue regeneration. J. Mater. Chem. B 2014, 2, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Leong, M.F.; Chian, K.S.; Mhaisalkar, P.S.; Ong, W.F.; Ratner, B.D. Effect of electrospun poly(D,L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J. Biomed. Mater. Res. 2009, 89A, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Rubert, M.; Aslan, H.; Yu, Y.; Howard, K.A.; Dong, M.; Besenbacher, F.; Chen, M. Ultraporous interweaving electrospun microfibers from PCL–PEO binary blends and their inflammatory responses. Nanoscale 2014, 6, 3392. [Google Scholar] [CrossRef]
- Liao, S.; Nguyen, L.T.H.; Ngiam, M.; Wang, C.; Cheng, Z.; Chan, C.K.; Ramakrishna, S. Biomimetic Nanocomposites to Control Osteogenic Differentiation of Human Mesenchymal Stem Cells. Adv. Healthc. Mater. 2014, 3, 737–751. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, L.; Wang, N.; Gong, S.; Wang, L.; Li, Q.; Shen, C.; Turng, L.S. Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for tissue engineering scaffolds. Appl. Surf. Sci. 2018, 427, 311–325. [Google Scholar] [CrossRef]
- Moroni, L.; Licht, R.; de Boer, J.; de Wijn, J.R.; van Blitterswijk, C.A. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials 2006, 27, 4911–4922. [Google Scholar] [CrossRef]
- Mertgen, A.S.; Yazgan, G.; Guex, A.G.; Fortunato, G.; Muller, E.; Huber, L.; Schneider, R.; Brunelli, M.; Rossi, R.M.; Maniura-Weber, K.; et al. Controlling the surface structure of electrospun fibers: Effect on endothelial cells and blood coagulation. Biointerphases 2018, 13, 51001. [Google Scholar] [CrossRef]
- Nandakumar, A.; Birgani, Z.T.; Santos, D.; Mentink, A.; Auffermann, N.; van der Werf, K.; Bennink, M.; Moroni, L.; van Blitterswijk, C.; Habibovic, P. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration. Biofabrication 2013, 5, 15006. [Google Scholar] [CrossRef]
- Ozkan, O.; Sasmazel, H.T. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions. J. Biosci. Bioeng. 2016, 122, 232–239. [Google Scholar] [CrossRef]
- Das, P.; Ojah, N.; Kandimalla, R.; Mohan, K.; Gogoi, D.; Dolui, S.K.; Choudhury, A.J. Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility. Int. J. Biol. Macromol. 2018, 114, 1026–1032. [Google Scholar] [CrossRef]
- Schaub, N.J.; Britton, T.; Rajachar, R.; Gilbert, R.J. Engineered nanotopography on electrospun PLLA microfibers modifies RAW 264.7 cell response. ACS Appl. Mater. Interfaces 2013, 5, 10173–10184. [Google Scholar] [CrossRef] [PubMed]
- Surucu, S.; Masur, K.; Sasmazel, H.T.; Von Woedtke, T.; Weltmann, K.D. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation. Appl. Surf. Sci. 2016, 385, 400–409. [Google Scholar] [CrossRef]
- Taskin, M.B.; Xia, D.; Besenbacher, F.; Dong, M.; Chen, M. Nanotopography featured polycaprolactone/polyethyleneoxide microfibers modulate endothelial cell response. Nanoscale 2017, 9, 9218–9229. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Feng, Z.-Q.; Leach, M.K.; Wu, J.; Jiang, Q. Nanoporous fibers of type-I collagen coated poly(l-lactic acid) for enhancing primary hepatocyte growth and function. J. Mater. Chem. B 2013, 1, 339–346. [Google Scholar] [CrossRef]
- Wang, X.; Salick, M.R.; Wang, X.; Cordie, T.; Han, W.; Peng, Y.; Li, Q.; Turng, L.-S. Poly(ε-caprolactone) Nanofibers with a Self-Induced Nanohybrid Shish-Kebab Structure Mimicking Collagen Fibrils. Biomacromolecules 2013, 14, 3557–3569. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, J.; Fan, R.; Tong, A.; Zhang, X.; Zhou, L.; Zheng, Y.; Xu, J.; Guo, G. Novel nanoscale topography on poly(propylene carbonate)/poly(ε-caprolactone) electrospun nanofibers modifies osteogenic capacity of ADCs. RSC Adv. 2015, 5, 82834–82844. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.Y.; Cordie, T.M.; Salick, M.R.; Peng, X.F.; Turng, L.S. Fabrication of shish–kebab structured poly(ε-caprolactone) electrospun nanofibers that mimic collagen fibrils: Effect of solvents and matrigel functionalization. Polymer 2014, 55, 5396–5406. [Google Scholar] [CrossRef]
- Jing, X.; Li, H.; Mi, H.Y.; Liu, Y.J.; Tan, Y.M. Fabrication of fluffy shish-kebab structured nanofibers by electrospinning, CO2 escaping foaming and controlled crystallization for biomimetic tissue engineering scaffolds. Chem. Eng. J. 2019, 372, 785–795. [Google Scholar] [CrossRef]
- Xu, T.; Yang, H.; Yang, D.; Yu, Z.-Z. Polylactic Acid Nanofiber Scaffold Decorated with Chitosan Islandlike Topography for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2017, 9, 21094–21104. [Google Scholar] [CrossRef]
- Yu, T.; Gleeson, S.E.; Li, C.Y.; Marcolongo, M. Electrospun poly(epsilon-caprolactone) nanofiber shish kebabs mimic mineralized bony surface features. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2019, 107, 1141–1149. [Google Scholar] [CrossRef]
- Zamani, F.; Amani-Tehran, M.; Latifi, M.; Shokrgozar, M.A. The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. J. Mater. Sci. Mater. Med. 2013, 24, 1551–1560. [Google Scholar] [CrossRef]
- Zandén, C.; Hellström Erkenstam, N.; Padel, T.; Wittgenstein, J.; Liu, J.; Kuhn, H.G. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 949–958. [Google Scholar] [CrossRef]
- Zandén, C.; Voinova, M.; Gold, J.; Mörsdorf, D.; Bernhardt, I.; Liu, J. Surface characterisation of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells. Eur. Polym. J. 2012, 48, 472–482. [Google Scholar] [CrossRef]
- Zhou, Q.H.; Xie, J.; Bao, M.; Yuan, H.H.; Ye, Z.Y.; Lou, X.X.; Zhang, Y.Z. Engineering aligned electrospun PLLA microfibers with nano-porous surface nanotopography for modulating the responses of vascular smooth muscle cells. J. Mater. Chem. B 2015, 3, 4439–4450. [Google Scholar] [CrossRef] [PubMed]
- Dang-Vu, T.; Hupka, J.; Drzymala, J. Impact of roughness on hydrophobicity of particles measured by the Washburn metod. Physicochem. Probl. Miner. Process. 2006, 40, 45–52. [Google Scholar]
- Lee, J.H.; Lee, H.B. A wettability gradient as a tool to study protein adsorption and cell adhesion on polymer surfaces. J. Biomater. Science. Polym. Ed. 1993, 4, 467–481. [Google Scholar] [CrossRef]
- Thorvaldsson, A.; Stenhamre, H.; Gatenholm, P.; Walkenström, P. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 2008, 9, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Lowery, J.L.; Datta, N.; Rutledge, G.C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials 2010, 31, 491–504. [Google Scholar] [CrossRef]
- O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005, 26, 433–441. [Google Scholar] [CrossRef]
- Curtis, A.; Wilkinson, C. Topographical control of cells. Biomaterials 1997, 18, 1573–1583. [Google Scholar] [CrossRef]
- Attia, A.C.; Yu, T.; Gleeson, S.E.; Petrovic, M.; Li, C.Y.; Marcolongo, M. A Review of Nanofiber Shish Kebabs and Their Potential in Creating Effective Biomimetic Bone Scaffolds. Regen. Eng. Transl. Med. 2018, 4, 107–119. [Google Scholar] [CrossRef]
- Nam, J.; Huang, Y.; Agarwal, S.; Lannutti, J. Materials selection and residual solvent retention in biodegradable electrospun fibers. J. Appl. Polym. Sci. 2008, 107, 1547–1554. [Google Scholar] [CrossRef]
- Page, M.J.; Higgins, J.P.T.; Sterne, J.A.C. Chapter 13: Assessing risk of bias due to missing results in a synthesis. In Cochrane Handbook for Systematic Reviews of Interventions, 6.2th ed.; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; John Wiley & Sons: Chichester, UK, 2021. [Google Scholar]
Was There a Clear Statement of the Aims of the Research? | Was the Methodology Appropriate to Address the Aims of the Research? | Is There an Untreated Electrospun Control? | Was the Data Analysis Method for Cell–Scaffold Interactions Reported? | No Selection Bias | No Performance Bias (i.e., Were There Other Changes Made to the Scaffolds?) | No Detection Bias (i.e., Does the Modification Affect Measurements?) | No Reporting Bias (i.e., Selective Outcome Reporting) | Is There a Clear Statement of Findings? | No Other Apparent Bias Sources | |
---|---|---|---|---|---|---|---|---|---|---|
Correia 2016 [32] | ||||||||||
Chen 2017 [33] | ||||||||||
Jeon 2014 [34] | ||||||||||
Leong 2009 [35] | ||||||||||
Li 2014 [36] | ||||||||||
Liao 2014 [37] | ||||||||||
Jiang 2018 [38] | ||||||||||
Moroni 2006 [39] | ||||||||||
Mertgen 2018 [40] | ||||||||||
Nandakumar 2013 [41] | ||||||||||
Ozkan 2016 [42] | ||||||||||
Das 2018 [43] | ||||||||||
Schaub 2013 [44] | ||||||||||
Surucu 2016 [45] | ||||||||||
Taskin 2017 [46] | ||||||||||
Wang, T. 2013 [47] | ||||||||||
Wang, X. 2013 [48] | ||||||||||
Wang, Y. 2015 [49] | ||||||||||
Jing 2014 [50] | ||||||||||
Jing 2019 [51] | ||||||||||
Xu 2017 [52] | ||||||||||
Yu 2019 [53] | ||||||||||
Zamani 2013 [54] | ||||||||||
Zandén 2014 [55] | ||||||||||
Zandén 2012 [56] | ||||||||||
Zhou 2015 [57] |
Ref. | Electrospun Material | Intervention | Results of Intervention | Cells | Cell-Intervention Interaction | BG |
---|---|---|---|---|---|---|
[35] | PLA | VIPS | Nanopores | PEECs | Adh + | 1 |
[40] | PCL | VIPS | Nanopores | HUVECs | Prol + | 1 |
[39] | PEOT/PBT | NSIPS | Nanopores | hMSCs | Prol + | 2 |
[47] | PLLA (+Coll.) | NSIPS | Nanopores | PRHs | Adh =, Prol + (↓) | 3 |
[37] | PLLA | NSIPS | Nanopores | hMSCs | Viab =, prol =, diff = | 3 |
[49] | PPC/PCL | PCL ratio variations | Nanopores | Adipose cells | Viab+, Prol = | 4 |
[38] | PCL | VIPS & SK | Nanopores & SKs | 3T3MFs | Viab +, Prol + | 4 |
[38] | PCL | VIPS & SK | Nanopores & SKs | HUVECs | SKs: Viab +. Prol + NPs: Viab ++, Prol++ | 4 |
[48] | PCL | SK | SKs + | 3T3MFs | Viab +, Prol = | 1 |
[51] | PCL | 2D/3D SKs | SKs + | 3T3MFs & HFs | 2D: Prol = 3D: Prol + | 1 |
[53] | PCL | SKs | SKs + | MC3T3-E1 | Prol + | 1 |
[50] | PCL | SK | SKs + | HEF1s | Viab =, Prol + | 2 |
[57] | PLLA | VIPS | Roughness + & Nanopores | vSMCs | Adh +, Prol + | 1 |
[54] | PLGA | VIPS, NSIPS Polymer ratio | Roughness + & Nanopores | A-172 | Prol + | 2 |
[33] | PEOT/PBT | VIPS | Roughness + | hMSCs | Viab =, ost. diff + Chond. Diff = | 2 |
[56] | PU | O2 plasma | Roughness + | RBCs | Adh = (↓) | 3 |
[41] | PEOT/PBT | O2 plasma | Roughness + | hMSCs | Prol =, Diff + | 3 |
[34] | PCL | LFO2 plasma | Roughness + | MG63OCs | Adh +, Prol + | 4 |
[32] | PLLA | O2 plasma | Roughness + | MC3T3-E1 | Viab = | 4 |
[42] | PCL/Cs | Air plasma | Roughness + | MFs | Prol+ | 4 |
[43] | PVAC/Cs | DBD O2, Ar plasma | Ar: Roughness + O2: Roughness ++ | MFs | Ar: Viab + (↓) O2: Viab ++ (↓) | 4 |
[45] | PCL/Cs | Ar, air plasma | Ar: Roughness + Air: flat fibers | MRC5 HFs | Ar: Viab =, Prol + Air: Viab +, Prol + | 4 |
[44] | PLLA | NSIPS | Grooves + | RAW264.7 | Viab =, Adh= | 1 |
[36] | PCL/PEO | PEO ratio variations | Hierarchical structures | RAW264.7 | Viab =, Adh= | 3 |
[46] | PCL/PEO | PEO ratio variations | Nano-topography | HUVECs | Adh +, Prol + | 3 |
[55] | PU | O2, Ar, H2 plasma | Topography variations | SA121 hESCs | O2, H2 RONs: Prol+ Ar RONs: Prol ++ ANs: Prol = Diff = | 4 |
[55] | PU | O2, Ar, H2 plasma | Topography variations | RNSCs | Prol =, Diff = | 4 |
[52] | PLA/Cs | TIPS | Cs Islands | POMCs | Prol +, Diff= | 4 |
Outcome | Number of Studies | Quality of Evidence (GRADE) | Anticipated Effect |
---|---|---|---|
Viability | 3 [37,38,49] | (+) (−) (−) (−) LOW Due to study−level bias, indirectness 1, imprecision | Improvement |
Adhesion | 3 [35,47,57] | (+) (−) (−) MODERATE Due to indirectness 1, imprecision | Improvement |
Proliferation | 8 [37,38,39,40,47,49,54,57] | (+) (−) HIGH Due to indirectness 1 | Improvement |
Differentiation | 1 [33,37] | (−) (−) (−) VERY LOW Due to study−level bias, indirectness 1, imprecision | No Change |
Outcome | Number of Studies | Quality of Evidence (GRADE) | Anticipated Effect |
---|---|---|---|
Viability | [38,48,50] | (+) (−) (−) (−) LOW Due to study−level bias, indirectness 1, imprecision | Improvement |
Adhesion | 0 | N/A | N/A |
Proliferation | 5 [38,48,50,51,53] | (+) (−) (−) MODERATE Due to inconsistency, indirectness 1 | Improvement |
Differentiation | 0 | N/A | N/A |
Outcome | Number of Studies | Quality of Evidence (GRADE) | Anticipated Effect |
---|---|---|---|
Viability | 4 [32,33,43,45] | (+) (−) (−) (−) (−) VERY LOW Due to study−level bias, inconsistency, indirectness 1, imprecision | No Change |
Adhesion | 3 [34,56,57] | (+) (−) (−) (−) LOW Due to study−level bias, indirectness 1, imprecision | Improvement |
Proliferation | 6 [34,41,42,45,54,57] | (+) (−) (−) MODERATE Due to study−level bias, indirectness 1 | Improvement |
Differentiation | 2 [33,41] | (−) (−) (−) (−) VERY LOW Due to study−level bias, inconsistency, indirectness 1, imprecision | No Change |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez Marquez, A.; Gareis, I.E.; Dias, F.J.; Gerhard, C.; Lezcano, M.F. How Fiber Surface Topography Affects Interactions between Cells and Electrospun Scaffolds: A Systematic Review. Polymers 2022, 14, 209. https://doi.org/10.3390/polym14010209
Lopez Marquez A, Gareis IE, Dias FJ, Gerhard C, Lezcano MF. How Fiber Surface Topography Affects Interactions between Cells and Electrospun Scaffolds: A Systematic Review. Polymers. 2022; 14(1):209. https://doi.org/10.3390/polym14010209
Chicago/Turabian StyleLopez Marquez, Alex, Iván Emilio Gareis, Fernando José Dias, Christoph Gerhard, and María Florencia Lezcano. 2022. "How Fiber Surface Topography Affects Interactions between Cells and Electrospun Scaffolds: A Systematic Review" Polymers 14, no. 1: 209. https://doi.org/10.3390/polym14010209
APA StyleLopez Marquez, A., Gareis, I. E., Dias, F. J., Gerhard, C., & Lezcano, M. F. (2022). How Fiber Surface Topography Affects Interactions between Cells and Electrospun Scaffolds: A Systematic Review. Polymers, 14(1), 209. https://doi.org/10.3390/polym14010209