Study on the Flame Retardancy and Hazard Evaluation of Poly(acrylonitrile-co-vinylidene chloride) Fibers by the Addition of Antimony-Based Flame Retardants
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Wet Spinning of PANVDC Flame-Retardant Fibers
2.3. Characterization
- Flame-Retardant Mechanisms
- Flame Retardancy of PANVDC Film
- Morphology and Mechanical properties of PANVDC Fiber
- Thermal Properties of PANVDC Fiber
- Migration of antimony in the PANVDC fibers
3. Results and Discussion
3.1. Flame Retardant Mechanism of PANVDC Films with Flame Retardants
3.2. Flame Retardancy of PANVDC Films with Flame Retardants
3.3. Morphology and Mechanical Properties of the PANVDC Fibers with Flame Retardants
3.4. Thermal Properties of the PANVDC Fibers with the Flame Retardants
3.5. Migration of Antimony from PANVDC Fibers with the Flame Retardants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsai, J.-S. The effect of flame-redatardants on the properties of acrylic and modacrylic fibres. J. Mater. Sci. 1993, 28, 1161–1167. [Google Scholar] [CrossRef]
- Bajaj, P. Fire-retardant materials. Bull. Mater. Sci. 1992, 15, 67–76. [Google Scholar] [CrossRef]
- Bajaj, P.; Agrawal, A.K.; Dhand, A.; Kasturia, N.; Hansaraj. Flame retardation of acrylic fibers: An overview. J. Macromol. Sci. Part C Polym. Rev. 2000, 40, 309–337. [Google Scholar] [CrossRef]
- König, S.; Kreis, P.; Herbert, C.; Wego, A.; Steinmann, M.; Wang, D.; Frank, E.; Bucheiser, M.R. Melt-spinning of an intrinsically flame-retardant polyacrylonitrile copolymer. Materials 2020, 13, 4826. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.E.; Zhang, J.; Richard, H.A. The flammability of polyacrylonitirile and its copolymers III. Effect of flame retardants. Fire Mater. 1994, 18, 231–241. [Google Scholar] [CrossRef]
- Horrocks, A.; Kandola, B.K.; Davies, P.; Zhang, S.; Padbury, S. Developments in flame retardant textiles—A review. Polym. Degrad. Stab. 2005, 88, 3–12. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Yoon, H. Fire-safe polymer composites: Flame-retardant effect of nanofillers. Polymers 2021, 13, 540. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, A.R. The potential for bio-sustainable organobromine-containing flame retardant formulations for textile applications—A review. Polymers 2020, 12, 2160. [Google Scholar] [CrossRef] [PubMed]
- McPartlin, M.W.; Italiano, B.R.; Tiano, T.M.; Pilkenton, S.J.; Lawton, T.J. An approach to identifying fibers and evolved compounds from flame resistant fabrics. J. Anal. Appl. Pyrolysis 2021, 159, 105327. [Google Scholar] [CrossRef]
- Riyazuddin; Bano, S.; Husain, F.M.; Khan, R.A.; Alsalme, A.; Siddique, J.A. Influence of antimony oxide on epoxy based intumescent flame retardation coating system. Polymers 2020, 12, 2721. [Google Scholar] [CrossRef] [PubMed]
- Chin, H.S.; Cheong, K.Y.; Razak, K.A. Review on oxides of antimony nanoparticles: Synthesis, properties, and applications. J. Mater. Sci. 2010, 45, 5993–6008. [Google Scholar] [CrossRef]
- Hazardous Substances Data Bank. Available online: https://www.nlm.nih.gov/toxnet/index.html (accessed on 27 September 2021).
- Saerens, A.; Ghosh, M.; Verdonck, J.; Godderis, L. Risk of cancer for workers exposed to antimony compounds: A systematic review. Int. J. Environ. Public Health 2019, 16, 4474. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, S.; Celik, E. Production and characterization of the halogen-free and nanostructured flame retaradant reinforced composite coating. J. Aust. Ceram. Soc. 2020, 56, 68–695. [Google Scholar] [CrossRef]
- Lee, S.H.; Yi, G.R.; Lim, D.Y.; Jeong, W.Y.; Youk, J.H. Study on the flame retardant and mechanical properties of wet-spun poly(acrylonitrile-co-vinylchloride) Fibers with antimony trioxide and zinc hydroxystannate. Fiber. Polym. 2019, 20, 779–786. [Google Scholar] [CrossRef]
- Kim, J.S.; Song, J.E.; Lim, D.Y.; Ahn, H.; Jeong, W. Flame-retardant mechanism and mechanical properties of wet-spun poly(acrylonitrile-co-vinylidene choloride) fibers with antimony trioxide and zinc hydroxystannate. Polymers 2020, 12, 2442. [Google Scholar] [CrossRef] [PubMed]
- Song, J.E.; Kim, J.S.; Lim, D.; Jeong, W. Preparation and characterization of zinc hydroxystannate coated by aluminum phosphate and its application in poly(acrylonitrile-co-vinylidene choloride). Polymers 2020, 12, 1365. [Google Scholar] [CrossRef] [PubMed]
- Song, J.E.; Kim, J.S.; Lim, D.; Jeong, W. Zinc hydroxystannate coated by alumimum phosphate for improving its compatibility in falme-retardant poly(acrylonitrile-co-vinylidene choloride). Fiber. Polym. 2021, 22, 2156–2162. [Google Scholar] [CrossRef]
- Surianarayanan, M.; Vijayaraghavan, R.; Raghavan, K.V. Spectroscopic investigations of polyacrylonitirile thermal degradation. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 2503–2512. [Google Scholar] [CrossRef]
PANVDC | PANVDC-ATO(3) | PANVDC-ATO(4) | |||
---|---|---|---|---|---|
Retention Time (Min) | Pyrolysis Products | Retention Time (Min) | Pyrolysis Products | Retention Time (Min) | Pyrolysis Products |
1.469 | hydrogen chloride * | 1.469 | hydrogen chloride * | 1.770 | hydrogen chloride * |
1.679 | Acrylonitrile * | 1.679 | Acrylonitrile * | 2.017 | Acrylonitrile * |
1.908 | Methylacrylonitrile * | 1.908 | Methylacrylonitrile * | 2.264 | Methylacrylonitrile * |
2.923 | 2,4-pentadienenitrile | 2.923 | 2,4-pentadienenitrile | 3.380 | 2,4-pentadienenitrile |
4.313 | cyanopentadiene | 4.313 | cyanopentadiene | - | - |
5.319~5.466 | chloropyridine isomers * | 5.319~5.466 | chloropyridine isomers * | - | - |
5.694 | 2-pentenedinitrile | 5.694 | 2-pentenedinitrile | 6.225 | 2-pentenedinitrile |
7.404 | 2-methylenepentanedinitrile * | 7.404 | 2-methylenepentanedinitrile * | 7.935 | 2-methylenepentanedinitrile |
7.651 | 2-methylpentanedinitrile | 7.651 | 2-methylpentanedinitrile | 8.054 | 2-methylpentanedinitrile |
7.917 | 3-methylbenzonitrile | 7.917 | 3-methylbenzonitrile | - | - |
8.529 | 3-chlorobenzonitrile | 8.529 | 3-chlorobenzonitrile | - | - |
- | - | 9.856 | Antimony compound | 10.057 | Antimony compound |
10.551 | isophthalonitrile | 10.551 | isophthalonitrile | 11.090 | isophthalonitrile |
13.935 | hexane-1,3,5-tricarbonitrile * | 13.935 | hexane-1,3,5-tricarbonitrile * | 14.456 | hexane-1,3,5-tricarbonitrile * |
14.282 | pentane-1,3,5-tricarbonitrile | 14.282 | pentane-1,3,5-tricarbonitrile | 14.794 | pentane-1,3,5-tricarbonitrile |
15.389 | hexane-1,3-5-tricarbonitrile | 15.389 | hexane-1,3-5-tricarbonitrile | 15.910 | hexane-1,3-5-tricarbonitrile |
Sample | UL-94 | LOI (%) |
---|---|---|
Pure PANVDC | - a | 26.4 |
PANVDC-ATO(3) | V-0 | 29.0 |
PANVDC-ATO(4) | V-0 | 31.2 |
Sample | Tenacity (g/Den) | Fineness (Denier) | Elongation (%) |
---|---|---|---|
Pure PANVDC | 4.42 ± 0.25 | 5.39 ± 0.44 | 12.52 ± 0.34 |
PANVDC-ATO(3) | 3.11 ± 0.41 | 5.31 ± 0.45 | 9.34 ± 1.02 |
PANVDC-ATO(4) | 3.73 ± 0.16 | 4.29 ± 0.20 | 11.32 ± 0.59 |
Sample | First Stage | Second Stage | ||
---|---|---|---|---|
TMR1 * (°C) | Mass Loss (%) | TMR2 * (°C) | Mass Loss (%) | |
Pure PANVDC | 255 | 35 | 612 | 64 |
PANVDC-ATO(3) | 224 | 41 | 576 | 56 |
PANVDC-ATO(4) | 251 | 32 | 569 | 52 |
Sample | Sb Element (mg/kg) | |
---|---|---|
Alkaline Solution (pH 8) | Acidic Solutions (pH 1.2) | |
PANVDC-ATO(3) | 60 | 114 |
PANVDC-ATO(4) | 60 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, J.-S.; Jeong, W. Study on the Flame Retardancy and Hazard Evaluation of Poly(acrylonitrile-co-vinylidene chloride) Fibers by the Addition of Antimony-Based Flame Retardants. Polymers 2022, 14, 42. https://doi.org/10.3390/polym14010042
Kim H, Kim J-S, Jeong W. Study on the Flame Retardancy and Hazard Evaluation of Poly(acrylonitrile-co-vinylidene chloride) Fibers by the Addition of Antimony-Based Flame Retardants. Polymers. 2022; 14(1):42. https://doi.org/10.3390/polym14010042
Chicago/Turabian StyleKim, Hyelim, Ji-Su Kim, and Wonyoung Jeong. 2022. "Study on the Flame Retardancy and Hazard Evaluation of Poly(acrylonitrile-co-vinylidene chloride) Fibers by the Addition of Antimony-Based Flame Retardants" Polymers 14, no. 1: 42. https://doi.org/10.3390/polym14010042
APA StyleKim, H., Kim, J. -S., & Jeong, W. (2022). Study on the Flame Retardancy and Hazard Evaluation of Poly(acrylonitrile-co-vinylidene chloride) Fibers by the Addition of Antimony-Based Flame Retardants. Polymers, 14(1), 42. https://doi.org/10.3390/polym14010042