Epoxyorganosilane Finishing Compositions for Fibrous Fillers of Thermosetting and Thermoplastic Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Materials
- -
- epoxy resin ED–20 (ER), С21Н24О4 (Propitay, Moscow, Russia);
- -
- aminoethylaminopropyltrimethoxysilane–diaminesilane (DAS), С8Н22N2O3Si (Arsenal-kama, Perm, Russia).
2.2. Optical Interferometry
2.3. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR–FTIR)
2.4. Differential Scanning Calorimetry (DSC)
2.5. Surface Free Energy Definition
3. Results and Discussion
3.1. Investigation of the Finishing Compositions
3.2. Post-Curing of the Finishing Compositions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Infed, F.; Handrick, K.E.; Lange, H.; Steinacher, A.; Weiland, S.; Wegmann, C. Development of thermal protective seal for hot structure control surface actuator rod. Acta Astronaut. 2012, 70, 122–138. [Google Scholar] [CrossRef]
- Brantseva, T.; Solodilov, V.I.; Antonov, S.V.; Gorbunova, I.Y.; Korohin, R.A.; Shapagin, A.V.; Smirnova, N.M. Epoxy modification with poly(vinyl acetate) and poly(vinyl butyral). I. Structure, thermal, and mechanical characteristics. J. Appl. Polym. Sci. 2016, 133, 44081. [Google Scholar] [CrossRef]
- Rezzoug, A.; Abdi, S.; Kaci, A.; Yandouzi, M. Thermal spray metallisation of carbon fibre reinforced polymer composites: Effect of top surface modification on coating adhesion and mechanical properties. Surf. Coat. Technol. 2018, 333, 13–23. [Google Scholar] [CrossRef]
- Korokhin, R.A.; Solodinov, В.; Zvereva, U.G.; Solomatin, D.V.; Gorbatkina, Y.A.; Shapagin, A.; Lebedeva, O.V.; Bamborin, M.Y. Epoxy polymers modified with polyetherimide. Part II: physicomechanical properties of modified epoxy oligomers and carbon fiber reinforced plastics based on them. Polym. Bull. 2020, 77, 2039–2057. [Google Scholar] [CrossRef]
- Tretyakov, I.V.; Vyatkina, M.A.; Cherevinskiy, A.P.; Solodilov, V.I.; Shapagin, A.V.; Korokhin, R.A.; Budylin, N.Y.; Kireinov, A.V.; Gorbatkina, Y.A. Effect of Polyethersulfone on the Properties of Epoxy Resin and Wound Unidirectional Glass Fiber Reinforced Plastics Based on It. Bull. Russ. Acad. Sci. Phys. 2021, 85, 876–880. [Google Scholar] [CrossRef]
- Liu, A.; Guo, M.; Gao, J.; Zhao, M. Influence of bond coat on shear adhesion strength of erosion and thermal resistant coating for carbon fiber reinforced thermosetting polyimide. Surf. Coat. Technol. 2006, 201, 2696–2700. [Google Scholar] [CrossRef]
- Schneck, T.K.; Brück, B.; Schulz, M.; Spörl, J.M.; Hermanutz, F.; Clauß, B.; Mueller, W.M.; Heidenreich, B.; Koch, D.; Horn, S.; et al. Carbon fiber surface modification for tailored fiber-matrix adhesion in the manufacture of C/C-SiC composites. Compos. Part A Appl. Sci. Manuf. 2019, 120, 64–72. [Google Scholar] [CrossRef]
- Vcherashnyaya, A.S.; Mikhailova, M.V.; Shapagin, A.V.; Poteryaev, A.A.; Stepanenko, V.Y.; Ponomarev, A.V. Radiation Modification of Adhesion Properties of Waste Plastics. High Energy Chem. 2021, 55, 295–299. [Google Scholar] [CrossRef]
- Luo, S.; Van Ooij, W.J. Surface modification of textile fibers for improvement of adhesion to polymeric matrices: a review. J. Adhes. Sci. Technol. 2002, 16, 1715–1735. [Google Scholar] [CrossRef]
- Van Krevelen, D.W. Properties of Polymers Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed.; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Korokhin, R.A.; Solodilov, V.I.; Gorbatkina, Y.A.; Shapagin, A.V. Rheological and Physicomechanical Properties of Epoxy-Polyetherimide Compositions. Mech. Compos. Mater. 2015, 51, 313–320. [Google Scholar] [CrossRef]
- Chistyakov, E.M.; Terekhov, I.V.; Shapagin, A.V.; Filatov, S.N.; Chuev, V. Curing of Epoxy Resin DER-331 by Hexakis(4-acetamidophenoxy)cyclotriphosphazene and Properties of the Prepared Composition. Polymers 2019, 11, 1191. [Google Scholar] [CrossRef] [Green Version]
- Shapagin, A.V.; Budylin, N.Y.; Chalykh, A.E.; Solodilov, V.I.; Korokhin, R.A.; Poteryaev, A.A. Phase Equilibrium, Morphology, and Physico-Mechanics in Epoxy–Thermoplastic Mixtures with Upper and Lower Critical Solution Temperatures. Polymers 2020, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Korokhin, R.A.; Shapagin, A.; Solodilov, V.I.; Zvereva, U.G.; Solomatin, D.V.; Gorbatkina, Y.A. Epoxy polymers modified with polyetherimide. Part I: rheological and thermomechanical characteristics. Polym. Bull. 2021, 78, 1573–1584. [Google Scholar] [CrossRef]
- Farooq, U.; Teuwen, J.; Dransfeld, C. Toughening of Epoxy Systems with Interpenetrating Polymer Network (IPN): A Review. Polymers 2020, 12, 1908. [Google Scholar] [CrossRef]
- Rosetti, Y.; Alcouffe, P.; Pascault, J.-P.; Gérard, J.-F.; Lortie, F. Polyether Sulfone-Based Epoxy Toughening: From Micro- to Nano-Phase Separation via PES End-Chain Modification and Process Engineering. Materials 2018, 11, 1960. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Luo, J.; Huang, Z.; Cai, C.; Tusiime, R.; Li, Z.; Wang, H.; Cheng, C.; Liu, Y.; Sun, Z.; et al. Synergistic toughen epoxy resin by incorporation of polyetherimide and amino groups grafted MWCNTs. Compos. Commun. 2020, 21, 100377. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, L.; Chen, Z.; Wang, Y.; Tusiime, R.; Cheng, C.; Zhou, S.; Liu, Y.; Yu, M.; Zhang, H. Enhancing the Mechanical and Thermal Properties of Epoxy Resin via Blending with Thermoplastic Polysulfone. Polymers 2019, 11, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapagin, A.V.; Budylin, N.Y.; Chalykh, A.E. Regulation of a phase structure at the interface in epoxy–polysulfone systems. Russ. Chem. Bull. 2018, 67, 2172–2177. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, Y.; Cheng, C.; Zhou, J.; Liu, B.; Yu, M.; Zhang, H. Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone. Polym. Test. 2018, 69, 302–309. [Google Scholar] [CrossRef]
- Mimura, K.; Ito, H.; Fujioka, H. Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins. Polymer 2000, 41, 4451–4459. [Google Scholar] [CrossRef]
- Won, J.S.; Lee, J.E.; Park, J.K.; Lee, M.Y.; Kang, S.H.; Lee, S.G. Cure Behavior and Toughness Properties of Polyethersulfone/Multifunctional Epoxy Resin Blends. Polym. Korea 2019, 43, 60–68. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Song, C.; Zhang, Y.; Fang, Y.; Yang, B.; Wang, X. An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropylene composites. Mater. Des. 2015, 88, 810–819. [Google Scholar] [CrossRef]
- Sa, R.; Yan, Y.; Wei, Z.; Zhang, L.; Wang, W.; Tian, M. Surface Modification of Aramid Fibers by Bio-Inspired Poly(dopamine) and Epoxy Functionalized Silane Grafting. ACS Appl. Mater. Interfaces 2014, 6, 21730–21738. [Google Scholar] [CrossRef] [PubMed]
- Poteryaev, A.A.; Aliev, A.D.; Chalykh, A.E.; Shapagin, A.V. Phase Equilibrium, Phase Structure, and Interdiffusion in Polystyrene–Polyphenylmethylsiloxane Polymer Mixtures. Russ. J. Phys. Chem. A 2021, 95, 225–231. [Google Scholar] [CrossRef]
- Ji, W.-G.; Hu, J.-M.; Liu, L.; Zhang, J.-Q.; Cao, C.-N. Water uptake of epoxy coatings modified with γ-APS silane monomer. Prog. Org. Coat. 2006, 57, 439–443. [Google Scholar] [CrossRef]
- Asumani, O.; Reid, R.G.; Paskaramoorthy, R. The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1431–1440. [Google Scholar] [CrossRef]
- Rajan, R.; Rainosalo, E.; Thomas, S.P.; Ramamoorthy, S.K.; Zavašnik, J.; Vuorinen, J.; Skrifvars, M. Modification of epoxy resin by silane-coupling agent to improve tensile properties of viscose fabric composites. Polym. Bull. 2018, 75, 167–195. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Gladkikh, N.; Petrunin, M.; Maksaeva, L.; Yurasova, T. Adsorption of Organosilanes on the Surface of Aluminium and the Formation of Organosilane Films to Protect It from Corrosion. Materials 2021, 14, 5757. [Google Scholar] [CrossRef]
- Moriguchi, K.; Utagava, S. Silane: Chemistry, Applications, and Performance; Nova Science Publishers Incorporated: New York, NY, USA, 2013; p. 176. [Google Scholar]
- Petrunin, M.A.; Gladkikh, N.A.; Maleeva, M.A.; Maksaeva, L.B.; Yurasova, T.A. The use of organosilanes to inhibit metal corrosion. A review. Int. J. Corros. Scale Inhib. 2019, 8, 882–907. [Google Scholar] [CrossRef]
- Makarychev, Y.; Gladkikh, N.; Arkhipushkin, I.; Kuznetsov, Y. Corrosion Inhibition of Low-Carbon Steel by Hydrophobic Organosilicon Dispersions. Metals 2021, 11, 1269. [Google Scholar] [CrossRef]
- Gladkikh, N.; Makarychev, Y.; Maleeva, M.; Petrunin, M.; Maksaeva, L.; Rybkina, A.; Marshakov, A.; Kuznetsov, Y. Synthesis of thin organic layers containing silane coupling agents and azole on the surface of mild steel. Synergism of inhibitors for corrosion protection of underground pipelines. Prog. Org. Coat. 2019, 132, 481–489. [Google Scholar] [CrossRef]
- Gladkikh, N.; Makarychev, Y.; Chirkunov, A.; Shapagin, A.; Petrunin, M.; Maksaeva, L.; Maleeva, M.; Yurasova, T.; Marshakov, A. Formation of polymer-like anticorrosive films based on organosilanes with benzotriazole, carboxylic and phosphonic acids. Protection of copper and steel against atmospheric corrosion. Prog. Org. Coat. 2020, 141, 105544. [Google Scholar] [CrossRef]
- Gladkikh, N.; Makarychev, Y.; Petrunin, M.; Maleeva, M.; Maksaeva, L.; Marshakov, A. Synergistic effect of silanes and azole for enhanced corrosion protection of carbon steel by polymeric coatings. Prog. Org. Coat. 2020, 138, 105386. [Google Scholar] [CrossRef]
- Chikhi, N.; Fellahi, S.; Bakar, M. Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur. Polym. J. 2002, 38, 251–264. [Google Scholar] [CrossRef]
- Chruściel, J.; Leśniak, E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog. Polym. Sci. 2015, 41, 67–121. [Google Scholar] [CrossRef]
- Karzov, I.M.; Alent’Ev, A.Y.; Bogdanova, Y.G.; Kostina, Y.V.; Shapagin, A.V. Influence of energy characteristics of the fiber-binder interface on polymer composite strength. Mosc. Univ. Chem. Bull. 2010, 65, 384–391. [Google Scholar] [CrossRef]
- Plueddemann, E.P. Silane Coupling Agents; Springer: Singapore, 1982; p. 238. [Google Scholar]
- Ji, W.-G.; Hu, J.-M.; Liu, L.; Zhang, J.-Q.; Cao, C.-N. Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers. Surf. Coat. Technol. 2007, 201, 4789–4795. [Google Scholar] [CrossRef]
- Ratna, D. Modification of epoxy resins for improvement of adhesion: a critical review. J. Adhes. Sci. Technol. 2003, 17, 1655–1668. [Google Scholar] [CrossRef]
- Sreekumar, P.; Thomas, S.P.; Saiter, J.M.; Joseph, K.; Unnikrishnan, G.; Thomas, S. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1777–1784. [Google Scholar] [CrossRef]
- Zeng, D.; Liu, Z.; Zou, L.; Wu, H. Corrosion Resistance of Epoxy Coatings Modified by Bis-Silane Prepolymer on Aluminum Alloy. Coatings 2021, 11, 842. [Google Scholar] [CrossRef]
- Nikulova, U.V.; Chalykh, A.E. Phase Equilibrium and Interdiffusion in Poly(Vinyl Methyl Ether)-Water System. Polymers 2020, 12, 2445. [Google Scholar] [CrossRef]
- Chalykh, A.; Tverskoy, V.; Aliev, A.; Gerasimov, V.; Nikulova, U.; Stepanenko, V.; Khasbiullin, R. Mechanism of Post-Radiation-Chemical Graft Polymerization of Styrene in Polyethylene. Polymers 2021, 13, 2512. [Google Scholar] [CrossRef]
- Cong, P.; Luo, W.; Xu, P.; Zhang, Y. Chemical and physical properties of hot mixing epoxy asphalt binders. Constr. Build. Mater. 2019, 198, 1–9. [Google Scholar] [CrossRef]
- Achilias, D.S.; Karabela, M.M.; Varkopoulou, E.A.; Sideridou, I.D. Cure Kinetics Study of Two Epoxy Systems with Fourier Tranform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). J. Macromol. Sci. Part A 2012, 49, 630–638. [Google Scholar] [CrossRef]
- Cañavate, J.; Colom, X.; Pagès, P.; Carrasco, F. Study of the Curing Process of an Epoxy Resin by Ftir Spectroscopy. Polym. Technol. Eng. 2000, 39, 937–943. [Google Scholar] [CrossRef]
Component | The Mass Fractions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 wt% | 5 wt% | 10 wt% | 15 wt% | 20 wt% | 25 wt% | 30 wt% | 35 wt% | 40 wt% | 45 wt% | 100 wt% | |
ER | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 55 | 0 |
DAS | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 100 |
Test Fluids | ρ, g/sm3 | Tboil, °С | γPlv, mJ/m2 | γDlv, mJ/m2 | γlv, mJ/m2 |
Water | 1.00 | 100.0 | 50.2 | 22.0 | 72.2 |
Glycerine | 1.26 | 290.0 | 30.0 | 34.0 | 64.0 |
Formamide | 1.1334 | 210.7 | 26.0 | 32.3 | 58.3 |
Dimethylsulfoxide | 1.096 | 189.0 | 8.7 | 34.9 | 43.6 |
o-Tricresilphosphate | 1.165 | 263.0 | 1.7 | 39.2 | 40.9 |
Used Components | γP, mJ/m2 | γD, mJ/m2 | γ, mJ/m2 |
---|---|---|---|
ER | 25.4 | 30.3 | 55.7 |
DAS | 0.1 | 35.0 | 35.1 |
Hydrolysed DAS | 69.4 | 7.6 | 77.0 |
Test Surfaces | γP, mJ/m2 | γD, mJ/m2 | γ, mJ/m2 |
---|---|---|---|
Polytetrafluoroethylene | 0.5 | 18.6 | 19.1 |
Polyethylene | 1.1 | 31.1 | 32.2 |
Polyamidoimide | 8.4 | 36.5 | 44.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapagin, A.V.; Gladkikh, N.A.; Poteryaev, A.A.; Stepanenko, V.Y.; Nikulova, U.V.; Khasbiullin, R.R. Epoxyorganosilane Finishing Compositions for Fibrous Fillers of Thermosetting and Thermoplastic Binders. Polymers 2022, 14, 59. https://doi.org/10.3390/polym14010059
Shapagin AV, Gladkikh NA, Poteryaev AA, Stepanenko VY, Nikulova UV, Khasbiullin RR. Epoxyorganosilane Finishing Compositions for Fibrous Fillers of Thermosetting and Thermoplastic Binders. Polymers. 2022; 14(1):59. https://doi.org/10.3390/polym14010059
Chicago/Turabian StyleShapagin, Alexey V., Natalia A. Gladkikh, Arkadiy A. Poteryaev, Valentina Yu. Stepanenko, Uliana V. Nikulova, and Ramil R. Khasbiullin. 2022. "Epoxyorganosilane Finishing Compositions for Fibrous Fillers of Thermosetting and Thermoplastic Binders" Polymers 14, no. 1: 59. https://doi.org/10.3390/polym14010059
APA StyleShapagin, A. V., Gladkikh, N. A., Poteryaev, A. A., Stepanenko, V. Y., Nikulova, U. V., & Khasbiullin, R. R. (2022). Epoxyorganosilane Finishing Compositions for Fibrous Fillers of Thermosetting and Thermoplastic Binders. Polymers, 14(1), 59. https://doi.org/10.3390/polym14010059