Crosslinked Elastomers: Structure–Property Relationships and Stress-Optical Law
Abstract
:1. Introduction
2. Basis of the Approach
2.1. Mechanical Experiments
2.2. Measurement of the Crosslink Density by Time-Domain Proton NMR
2.3. Measurement of the Crosslink Density by Equilibrium Swelling Experiments
2.4. X-ray Scattering
3. Materials and Methods
3.1. Samples
3.2. Time-Domain Proton DQ NMR
3.3. Stress–Strain Curves and In Situ Wide Angle X Scattering
4. Results
4.1. Crosslink Densities Measured by NMR
4.2. Equilibrium Swelling
4.3. Rheological Response during Curing
4.4. Mechanical Response: Stress–Strain Curves
4.5. Response in Terms of Segmental Orientation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kraus, G. Reinforcement of Elastomers; Interscience Publishers: New York, NY, USA, 1965. [Google Scholar]
- Medalia, A.I. Selecting carbon blacks for Dynamic properties. Rubber World 1973, 168, 49. [Google Scholar]
- Medalia, A.I. Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem. Technol. 1978, 51, 437–523. [Google Scholar] [CrossRef]
- Nielsen, L.E.; Landel, R.F. Mechanical Properties of Polymers and Composites; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- Heinrich, G.; Klüppel, M.; Vilgis, T.A. Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 2002, 6, 195–203. [Google Scholar] [CrossRef]
- Guy, L.; Bomal, Y.; Ladouce, L. Elastomer reinforcement by prcipitated silicas. Kautsch. Gummi Kunststoffe 2005, 58, 43–49. [Google Scholar]
- Jancar, J.; Douglas, J.; Starr, F.; Kumar, S.; Cassagnau, P.; Lesser, A.; Sternstein, S.; Buehler, M. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 2010, 51, 3321–3343. [Google Scholar] [CrossRef]
- Wang, M.J. Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates. Rubber Chem. Technol. 1998, 71, 520–589. [Google Scholar] [CrossRef]
- Payne, A.R. The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates. Part I. J. Appl. Polym. Sci. 1962, 6, 57–63. [Google Scholar] [CrossRef]
- Berriot, J.; Montes, H.; Lequeux, F.; Long, D.; Sotta, P. Gradient of glass transition temperature in filled elastomers. Europhys. Lett. 2003, 64, 50. [Google Scholar] [CrossRef]
- Kraus, G. Reinforcement of Elastomers by Carbon Black. Rubber Chem. Technol. 1978, 51, 297–321. [Google Scholar] [CrossRef]
- Reichert, W.F.; Göritz, D.; Duschl, E.J. The double network, a model describing filled elastomers. Polymer 1993, 34, 1216–1221. [Google Scholar] [CrossRef]
- Berriot, J.; Montes, H.; Lequeux, F.; Long, D.; Sotta, P. Evidence for the shift of the glass transition near the particles in model silica-filled elastomers. Macromolecules 2002, 35, 9756–9762. [Google Scholar] [CrossRef]
- Fukahori, Y. Generalized concept of the reinforcement of elastomers. Part 1: Carbon black reinforcement of rubbers. Rubber Chem. Technol. 2007, 80, 701–725. [Google Scholar] [CrossRef]
- Klüppel, M.; Schuster, R.H.; Heinrich, G. Structure and properties of reinforcing fractal filler networks in elastomers. Rubber Chem. Technol. 1997, 70, 243–255. [Google Scholar] [CrossRef]
- Fröhlich, J.; Niedermeier, W.; Luginsland, H.D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos. Part A Appl. Sci. Manuf. 2005, 36, 449–460. [Google Scholar] [CrossRef]
- Domurath, J.; Saphiannikova, M.; Ausias, G.; Heinrich, G. Modelling of stress and strain amplification effects in filled polymer melts. J. Non-Newton. Fluid Mech. 2012, 171–172, 8–16. [Google Scholar] [CrossRef]
- Chazeau, L.; Brown, J.; Yanyo, L.; Sternstein, S. Modulus recovery kinetics and other insights into the Payne effect for filled elastomers. Polym. Compos. 2000, 21, 202–222. [Google Scholar] [CrossRef]
- Sternstein, S.S.; Zhu, A.J. Reinforcement Mechanism of Nanofilled Polymer Melts As Elucidated by Nonlinear Viscoelastic Behavior. Macromolecules 2002, 35, 7262–7273. [Google Scholar] [CrossRef]
- Witten, T.A.; Rubinstein, M.; Colby, R.H. Reinforcement of Rubber by Fractal Aggregates. J. Phys. II 1993, 3, 367383. [Google Scholar] [CrossRef]
- Dupres, S.; Long, D.R.; Albouy, P.A.; Sotta, P. Local Deformation in Carbon Black-Filled Polyisoprene Rubbers Studied by NMR and X-ray Diffraction. Macromolecules 2009, 42, 2634–2644. [Google Scholar] [CrossRef]
- Vieyres, A.; Pérez-Aparicio, R.; Albouy, P.A.; Sanseau, O.; Saalwächter, K.; Long, D.R.; Sotta, P. Sulfur-Cured Natural Rubber Elastomer Networks: Correlating Cross-Link Density, Chain Orientation, and Mechanical Response by Combined Techniques. Macromolecules 2013, 46, 889–899. [Google Scholar] [CrossRef]
- Le Gac, P.Y.; Albouy, P.A.; Sotta, P. Strain-induced crystallization in a carbon-black filled polychloroprene rubber: Kinetics and mechanical cycling. Polymer 2019, 173, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Aparicio, R.; Vieyres, A.; Albouy, P.A.; Sanséau, O.; Vanel, L.; Long, D.R.; Sotta, P. Reinforcement in Natural Rubber Elastomer Nanocomposites: Breakdown of Entropic Elasticity. Macromolecules 2013, 46, 8964–8972. [Google Scholar] [CrossRef]
- Sotta, P.; Albouy, P.A.; Abou Taha, M.; Grau, P.; Fayolle, C.; Papon, A. Non-entropic Reinforcement in Elastomer Nanocomposites. Macromolecules 2017, 50, 6314–6322. [Google Scholar] [CrossRef]
- Kraus, G.; Rollmann, K.W. Dynamic and Stress-Optical Properties of Polyblends of Butadiene-Styrene Copolymers Differing in Composition. Adv. Chem. Ser. 1971, 99, 189. [Google Scholar]
- Tosaka, M.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Hsiao, B.S. Molecular orientation and stress relaxation during strain-induced crystallization of vulcanized natural rubber. Polym. J. 2010, 42, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Jarry, J.P.; Monnerie, L. Fluorescence polarization measurements of orientation in labeled polyisoprene networks. J. Polym. Sci. Part B Polym. Phys. 1980, 18, 1879–1890. [Google Scholar] [CrossRef]
- Amram, B.; Bokobza, L.; Queslel, J.P.; Monnerie, L. Fourier-transform infra-red dichroism study of molecular orientation in synthetic high cis-1, 4-polyisoprene and in natural rubber. Polymer 1986, 27, 877–882. [Google Scholar] [CrossRef]
- Gronski, W.; Stadler, R.; Jacobi, M.M. Evidence of Nonaffine and Inhomogeneous Deformation of Network Chains in Strained Rubber-Elastic Networks by Deuterium Magnetic Resonance. Macromolecules 1984, 17, 741–748. [Google Scholar] [CrossRef]
- Sotta, P.; Deloche, B.; Herz, J.; Durand, D.; Rabadeux, J.C. Evidence for short-range orientational couplings between chain segments in strained rubbers: A deuterium NMR investigation. Macromolecules 1987, 20, 2769–2774. [Google Scholar] [CrossRef]
- Sotta, P.; Deloche, B. Uniaxiality induced in a strained Poly(dimethylsiloxane) network. Macromolecules 1990, 23, 1999–2007. [Google Scholar] [CrossRef]
- Sotta, P. Local order and induced orientation in PDMS model network, studied by 2H NMR. Macromolecules 1998, 31, 3872–3879. [Google Scholar] [CrossRef]
- McLouhglin, K.; Szeto, C.; Duncan, T.M.; Cohen, C. End-linked poly (dimethylsiloxane) elastomer structure: 2H-NMR transverse dephasing data compared to predictions of statistical and thermodynamic models. Macromolecules 1996, 29, 5475–5483. [Google Scholar] [CrossRef]
- McLouhglin, K.; Waldbieser, J.K.; Cohen, C.; Duncan, T.M. End-linked poly (dimethylsiloxane) elastomers: 2H-nuclear magnetic resonance investigations of compression-induced segment anisotropy. Macromolecules 1997, 30, 1044–1052. [Google Scholar] [CrossRef]
- Deloche, B.; Sotta, P. Spectroscopy of Rubbers and Rubbery Materials; Litvinov, V.M., De, P.P., Eds.; Rapra Technology Ltd.: Shawbury, UK, 2002; pp. 557–596. [Google Scholar]
- Bastide, J.; Duplessix, R.; Picot, C.; Candau, S. Small angle neutron scattering and light spectroscopy investigation of polystyrene gels under osmotic deswelling. Macromolecules 1984, 17, 83–93. [Google Scholar] [CrossRef]
- Beltzung, M.; Picot, C.; Herz, J. Investigation of the chain conformation in uniaxially stretched poly (dimethylsiloxane) networks by small-angle neutron scattering. Macromolecules 1984, 17, 663–669. [Google Scholar] [CrossRef]
- Straube, E.; Urban, V.; Pyckhout-Hintzen, W.; Richter, D. SANS investigations of topological constraints and microscopic deformations in Rubber-Elastic networks. Macromolecules 1994, 27, 7681–7688. [Google Scholar] [CrossRef]
- Westermann, S.; Kreitschmann, M.; Pyckhout-Hintzen, W.; Richter, D.; Straube, E.; Farago, B.; Goerigk, G. Matrix Chain Deformation in Reinforced Networks: A SANS Approach. Macromolecules 1999, 32, 5793–5802. [Google Scholar] [CrossRef]
- Westermann, S.; Pyckhout-Hintzen, W.; Richter, D.; Straube, E.; Egelhaaf, S.; May, R. On the Length Scale Dependence of Microscopic Strain by SANS. Macromolecules 2001, 34, 2186–2194. [Google Scholar] [CrossRef] [Green Version]
- Pyckhout-Hintzen, W.; Westermann, S.; Wischnewski, A.; Monkenbusch, M.; Richter, D.; Straube, E.; Farago, B.; Lindner, P. Direct Observation of Nonaffine Tube Deformation in Strained Polymer Networks. Phys. Rev. Lett. 2013, 110, 196002. [Google Scholar] [CrossRef] [Green Version]
- Saalwächter, K.; Herrero, B.; López-Manchado, M.A. Chain order and cross-link density of elastomers as investigated by proton multiple-quantum NMR. Macromolecules 2005, 38, 9650–9660. [Google Scholar] [CrossRef]
- Saalwächter, K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 51, 1–35. [Google Scholar] [CrossRef]
- López Valentín, J.; Mora-Barrantes, I.; Carretero-González, J.; López-Manchado, M.; Sotta, P.; Long, D.; Saalwächter, K. Novel Experimental Approach To Evaluate Filler- Elastomer Interactions. Macromolecules 2010, 43, 334–346. [Google Scholar] [CrossRef]
- Papon, A.; Saalwächter, K.; Schäler, K.; Guy, L.; Lequeux, F.; Montes, H. Low-field NMR investigations of nanocomposites: Polymer dynamics and network effects. Macromolecules 2011, 44, 913–922. [Google Scholar] [CrossRef]
- Ott, M.; Pérez-Aparicio, R.; Schneider, H.; Sotta, P.; Saalwächter, K. Microscopic study of chain deformation and orientation in uniaxially strained polymer networks-NMR results vs. different network models. Macromolecules 2014, 47, 7597–7611. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical mechanics of cross-linked polymer networks II Swelling. J. Chem. Phys. 1943, 11, 521–526. [Google Scholar] [CrossRef]
- Flory, P.J. Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950, 18, 108–111. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell Univeristy Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Valentín, J.; Carretero-Gonzalez, J.; Mora-Barrantes, I.; Chassé, W.; Saalwächter, K. Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules 2008, 41, 4717–4729. [Google Scholar] [CrossRef]
- Flory, P.J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1941, 9, 660. [Google Scholar] [CrossRef]
- Huggins, M. Solutions of long chain compounds. J. Chem. Phys. 1941, 9, 440. [Google Scholar] [CrossRef]
- Katz, J. Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturwissenschaften 1925, 19, 410–416. [Google Scholar] [CrossRef]
- Wang, C.; Yeh, G. DRDF analysis of wide-angle X-ray scattering of natural rubber. J. Macromol. Sci. Phys. B Phys. 1978, 15, 107–118. [Google Scholar] [CrossRef]
- Mitchell, G.R. A Wide-Angle X-ray Study of the Development of Molecular-Orientation in Crosslinked Natural-Rubber. Polymer 1984, 25, 1562–1572. [Google Scholar] [CrossRef]
- Toki, S.; Fujimaki, T.; Okuyama, M. Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique. Polymer 2000, 41, 5423–5429. [Google Scholar] [CrossRef]
- Trabelsi, S.; Albouy, P.A.; Rault, J. Crystallization and melting processes in vulcanized stretched natural rubber. Macromolecules 2003, 36, 7624–7639. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Yamao, H.; Sekimoto, K. Crystallization and melting of polyisoprene rubber under uniaxial deformation. Macromolecules 2003, 36, 6462–6471. [Google Scholar] [CrossRef]
- Chenal, J.M.; Chazeau, L.; Guy, L.; Bomal, Y.; Gauthier, C. Molecular weight between physical entanglements in natural rubber: A critical parameter during strain-induced crystallization. Polymer 2007, 48, 1042–1046. [Google Scholar] [CrossRef]
- Poompradub, S.; Tosaka, M.; Kojiya, S.; Ikeda, Y.; Toki, S.; Sics, I.; Hsiao, B.S. Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates. J. Appl. Phys. 2005, 97, 103529. [Google Scholar] [CrossRef] [Green Version]
- Huneau, B. Strain-induced crystallization of natural rubber: A review of X-ray diffraction investigations. Rubber Chem. Technol. 2011, 84, 425–452. [Google Scholar] [CrossRef] [Green Version]
- Brüning, K.; Schneider, K.; Roth, S.V.; Heinrich, G. Kinetics of Strain-Induced Crystallization in Natural Rubber Studied by WAXD: Dynamic and Impact Tensile Experiments. Macromolecules 2012, 45, 7914–7919. [Google Scholar] [CrossRef]
- Candau, N.; Laghmach, R.; Chazeau, L.; Chenal, J.M.; Gauthier, C.; Biben, T.; Munch, E. Strain-induced crystallization of natural rubber and crosslink densities heterogeneities. Macromolecules 2014, 47, 5815–5824. [Google Scholar] [CrossRef]
- Toki, S. The effect of strain-induced crystallization (SIC) on the physical properties of natural rubber. In Manufacture and Applications of Natural Rubber; Kohjiya, S., Ikeda, Y., Eds.; WoodHead Publishing: Sawston, UK, 2014. [Google Scholar]
- Albouy, P.A.; Vieyres, A.; Peérez-Aparicio, R.; Sanséau, O.; Sotta, P. The impact of strain induced crystallization on strain during mechanical cycling of cross-linked natural rubber. Polymer 2014, 55, 4022–4031. [Google Scholar] [CrossRef]
- Albouy, P.A.; Sotta, P. Strain-Induced Crystallization in Natural Rubber. In Polymer Crystallization: From Chain Microstructure to Processing; Auriemma, F., Alfonso, G.C., De Rosa, C., Eds.; Springer: Cham, Switzerland, 2017; Volume 277, pp. 167–205. [Google Scholar]
- Albouy, P.A.; Guillier, G.; Petermann, D.; Vieyres, A.; Sanseau, O.; Sotta, P. A stroboscopic X-ray apparatus for the study of the kinetics of strain-induced crystallization in natural rubber. Polymer 2012, 53, 3313–3324. [Google Scholar] [CrossRef]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Cohen-Addad, J.P. Effect of Anisotropic chain Motion in Molten Polymers—Solid-like Contribution of Nonzero Average Dipolar Coupling to NMR Signals—Theoretical Description. J. Chem. Phys. 1974, 60, 2440–2453. [Google Scholar] [CrossRef]
- Erman, B.; Mark, J.E. Structures and Properties of Rubberlike Networks; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Lang, M. Monomer fluctuations and the Distribution of Residual Bond Orientations in Polymer Networks. Macromolecules 2013, 46, 9782–9797. [Google Scholar] [CrossRef]
- Erman, B.; Flory, P.J. Theory of Strain Birefringence of Amorphous Polymer Networks. Macromolecules 1983, 16, 1601–1606. [Google Scholar] [CrossRef]
- Kloczkowski, A.; Mark, J.E. A Diffused-Constraint Theory for the Elasticity of Amorphous Polymer Networks.2. Molecular Deformation Tensors and Srain Birefringence. Comput. Polym. Sci. 1995, 5, 37–45. [Google Scholar]
- Kość, M. Segmental orientation in entangled chains. Colloid Polym. Sci. 1992, 270, 106–112. [Google Scholar] [CrossRef]
- Zaghdoudi, M.; Albouy, P.A.; Tourki, Z.; Vieyres, A.; Sotta, P. Relation Between Stress and Segmental Orientation during Mechanical Cycling of a Natural Rubber-Based Compound. J. Polym. Sci. Part B Polym. Phys. 2014, 53, 943–950. [Google Scholar] [CrossRef]
- James, H.M.; Guth, E. Theory of the Elasticity of Rubber. J. Appl. Phys. 1944, 15, 294–303. [Google Scholar] [CrossRef]
- Wall, F.T.; Flory, P.J. Statistical Thermodynamics of Rubber Elasticity. J. Chem. Phys. 1951, 19, 1435–1439. [Google Scholar] [CrossRef]
- Treloar, L.R.G. The Physics of Rubber Elasticity; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Ronca, G.; Allegra, G. An approach to rubber elasticity with internal constraints. J. Chem. Phys. 1975, 63, 4990–4997. [Google Scholar] [CrossRef]
- Erman, B. Chain dimensions in deformed networks: Theory and comparison with experiment. Macromolecules 1987, 20, 1917–1924. [Google Scholar] [CrossRef]
- Edwards, S.F.; Vilgis, T.A. The tube model theory of rubber elasticity. Rep. Prog. Phys. 1988, 51, 243. [Google Scholar] [CrossRef]
- Heinrich, G.; Straube, E. Rubber elasticity of polymer networks: Theories. Adv. Polym. Sci. 1988, 85, 33–87. [Google Scholar]
- Sommer, J.U.; Heinrich, G.; Straube, E. Theoretical investigation of the segment-segment correlation in topological constrained networks. Colloid Polym. Sci. 1990, 268, 148–154. [Google Scholar] [CrossRef]
- Rubinstein, M.; Panyukov, S. Nonaffine Deformation and Elasticity of Polymer Networks. Macromolecules 1997, 30, 8036–8044. [Google Scholar] [CrossRef]
- Rubinstein, M.; Panyukov, S. Elasticity of Polymer Networks. Macromolecules 2002, 35, 6670–6686. [Google Scholar] [CrossRef]
- Oyerokun, F.T.; Schweizer, K.S. Microscopic theory of rubber elasticity. J. Chem. Phys. 2004, 120, 9359–9370. [Google Scholar] [CrossRef]
- Darabi, E.; Itskov, M. A generalized tube model of rubber elasticity. Soft Matter 2021, 17, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Mooney, J. A theory of large elastic deformation. J. Appl. Phys. 1940, 11, 582–591. [Google Scholar] [CrossRef]
- Rivlin, R.S. Large elastic deformations of isotropic materials. I. Fundamental concepts. Phil. Trans. Royal Soc. Lond. Ser. A Math. Phys. Sci. 1948, A240, 459–490. [Google Scholar]
- Lang, M.; Sommer, J.U. Analysis of Entanglement Length and Segmental Order Parameter in Polymer Networks. Phys. Rev. Lett. 2010, 104, 177801. [Google Scholar] [CrossRef]
- De Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University: Ithaca, NY, USA, 1979. [Google Scholar]
- Simard, G.; Warren, B. X-ray study of amorphous rubber. J. Am. Chem. Soc. 1936, 58, 507–509. [Google Scholar] [CrossRef]
- Michell, G.R.; Windle, A.H. Conformational analysis of oriented non-crystalline polymers using wide-angle X-ray scattering. Colloid Polym. Sci. 1982, 260, 754–761. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Valentín, J.L.; Posadas, P.; Fernández-Torres, A.; Malmierca, M.A.; González, L.; Chassé, W.; Saalwächter, K. Inhomogeneities and Chain Dynamics in Diene Rubbers Vulcanized with Different Cure Systems. Macromolecules 2010, 43, 4210–4222. [Google Scholar] [CrossRef]
Samples | Sulfur (g) | CBS (g) | DPG (g) | Ratio Acc/S | Ratio CBS/S |
---|---|---|---|---|---|
S0 | 0 | 0 | 0 | 0 | |
S1 | 0.4 | 0.4 | 0.3 | 1.75 | 1 |
S2 | 1.1 | 1.1 | 0.83 | 1.75 | 1 |
S2b | 1.1 | 1.1 | 0.83 | 1.75 | 1 |
S3 | 1.6 | 1.6 | 1.2 | 1.75 | 1 |
S4 | 2.2 | 2.2 | 1.65 | 1.75 | 1 |
S5 | 0.4 | 0.73 | 0.55 | 3.18 | 1.82 |
S6 | 1.1 | 2 | 1.5 | 3.18 | 1.82 |
S7 | 1.6 | 2.91 | 2.18 | 3.18 | 1.82 |
S8 | 2.2 | 4 | 3 | 3.18 | 1.82 |
S9 | 0.4 | 1 | 0.75 | 4.38 | 2.5 |
S10 | 1.1 | 2.8 | 2.06 | 4.38 | 2.5 |
S11 | 1.6 | 4 | 3 | 4.38 | 2.5 |
S12 | 2.2 | 5.5 | 4.13 | 4.38 | 2.5 |
Samples | Q | |||
---|---|---|---|---|
(kHz) | (%) | (dN·m) | (mol/g) | |
S0 | 0.340 | - | - | - |
S1 | 0.422 | 896 | 9.8 | 0.000110 |
S2 | 0.564 | 426 | 24 | 0.000526 |
S2b | 0.585 | 391 | 25.7 | 0.000526 |
S3 | 0.680 | 364 | 30.4 | 0.000756 |
S4 | 0.793 | 319 | 35 | 0.00104 |
S5 | 0.454 | 711 | 12 | 0.000175 |
S6 | 0.638 | 376 | 27.5 | 0.000701 |
S7 | 0.737 | 331 | 34.3 | 0.000947 |
S8 | 0.867 | 286 | 38.5 | 0.00136 |
S9 | 0.461 | 609 | 14.4 | 0.000241 |
S10 | 0.665 | 353 | 31 | 0.000813 |
S11 | 0.758 | 311 | 35.4 | 0.00110 |
S12 | 0.859 | 276 | 39.8 | 0.00148 |
Samples | ||||
---|---|---|---|---|
(MPa) | (MPa) | |||
S1 | 0.0656 | 0.414 | 0.000165 | 0.00115 |
S2 | 0.254 | 0.319 | 0.000774 | 0.000316 |
S3 | 0.406 | 0.305 | 0.00104 | 0.00115 |
S4 | 0.555 | 0.224 | 0.00129 | 0.00116 |
S5 | 0.157 | 0.313 | 0.000551 | 0.000493 |
S6 | 0.406 | 0.218 | 0.000865 | 0.00151 |
S7 | 0.463 | 0.171 | 0.00121 | 0.00065 |
S8 | 0.693 | 0.0482 | 0.00171 | 0.000409 |
S9 | 0.172 | 0.353 | 0.000552 | 0.000592 |
S10 | 0.414 | 0.2681 | 0.000877 | 0.00102 |
S11 | 0.5683 | 0.135 | 0.00133 | 0.000534 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotta, P.; Albouy, P.-A.; Abou Taha, M.; Moreaux, B.; Fayolle, C. Crosslinked Elastomers: Structure–Property Relationships and Stress-Optical Law. Polymers 2022, 14, 9. https://doi.org/10.3390/polym14010009
Sotta P, Albouy P-A, Abou Taha M, Moreaux B, Fayolle C. Crosslinked Elastomers: Structure–Property Relationships and Stress-Optical Law. Polymers. 2022; 14(1):9. https://doi.org/10.3390/polym14010009
Chicago/Turabian StyleSotta, Paul, Pierre-Antoine Albouy, Mohammad Abou Taha, Benoit Moreaux, and Caroline Fayolle. 2022. "Crosslinked Elastomers: Structure–Property Relationships and Stress-Optical Law" Polymers 14, no. 1: 9. https://doi.org/10.3390/polym14010009
APA StyleSotta, P., Albouy, P. -A., Abou Taha, M., Moreaux, B., & Fayolle, C. (2022). Crosslinked Elastomers: Structure–Property Relationships and Stress-Optical Law. Polymers, 14(1), 9. https://doi.org/10.3390/polym14010009