Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis
Abstract
:1. Introduction
2. System and Analysis Framework
2.1. Modelling and Simulation Approach
2.2. Development and Validation of Case Studies
2.2.1. Case 1 (Base Case)
2.2.2. Case 2 (Alternative Case)
2.3. Governing Equations for Technical Analysis
3. Results and Discussion
3.1. Technical Analysis
3.1.1. Syngas Production and Analysis
3.1.2. Overall Process Performance
3.1.3. CO2 Specific Emissions
3.1.4. Sensitivity Analysis on the Gasifier
3.1.4.1. Steam to Feed Ratio Effect on Syngas Composition
3.1.4.2. Temperature Effect on Syngas Composition
3.2. Economic Analysis
3.2.1. Estimation of CAPEX and OPEX
3.2.2. Cash Flow and Hydrogen Cost Analysis
3.2.3. Comparison of Hydrogen Cost with the Literature
4. Conclusions
- The H2/CO of the syngas for case 1 and case 2 is calculated as 1.86 and 2.23, respectively, whereas case 2 showed 19.78% higher values.
- The hydrogen production rate per unit of feedstock for case 1 and case 2 is calculated as 50% and 52.2%, respectively.
- The overall process efficiency for case 1 and case 2 is calculated as 64.24% and 68.37%, respectively, whereas case 2 shows 4.13% higher efficiency.
- The TIC per ton of H2 calculated for case 1 and case 2 is 76 and 59 EUR/ton, whereas case 2 has the potential to increase the revenue by 51.7%.
- Case 2 showed the potential to lower CO2 emissions by 1.0%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Gasification Reactor | |
Steam Methane Reforming Reactor | |
Water Gas Shift Reactor | |
Equations | Eq. No. |
---|---|
(A1) | |
(A2) | |
(A3) | |
(A4) | |
(A5) | |
(A6) | |
(A7) | |
(A8) | |
(A9) | |
(A10) | |
(A11) |
Economic Assumptions | |
---|---|
Waste plastics | Available free of charge |
Natural gas (EUR /GJ) | 5 |
Cooling water price EUR /ton | 0.01 |
Waste disposal (EUR /t) | 10 |
Plant construction time (year) | 3 |
Plant life (years) | 30 |
Maintenance | 3.5% of OPEX |
Discount rate | 0.08 |
Administration | 30% Labor Cost |
Labor cost EUR /person | 45,000 |
Offsite unit and utilities | 25% from equipment cost |
Stream factor | 0.95 |
Daily number of shifts | 3 |
Land and salvage (MMEUR) | 10% of FCI |
Working capital (MMEUR) | 10% of FCI |
Taxation rate (%) | 15 |
Ratio of recycling methanol solvent | 0.01 |
Price of methanol (EUR /ton) | 400 |
Price of boiling water 2017 MEUR /ton | 2.03 |
x | 0.60 |
CEPCI (2021) | 620 |
References
- Okunola, A.A.; Kehinde, I.O.; Oluwaseun, A.; Olufiropo, E.A. Public and Environmental Health Effects of Plastic Wastes Disposal: A Review. J. Toxicol. Risk Assess. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Thompson, R.C.; Moore, C.J.; Saal, F.S.V.; Swan, S.H. Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- d’Ambrières, W. Plastics Recycling Worldwide: Current Overview and Desirable Changes. Field Actions Sci. Rep. J. Field Act. 2019, 19, 12–21. [Google Scholar]
- Francis, R. (Ed.) Recycling of Polymers: Methods, Characterization and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Ahmad, N.; Ahmad, N.; Maafa, I.M.; Ahmed, U.; Akhter, P.; Shehzad, N.; Amjad, U.-E.; Hussain, M.; Javaid, M. Conversion of Poly-Isoprene Based Rubber to Value-Added Chemicals and Liquid Fuel via Ethanolysis: Effect of Operating Parameters on Product Quality and Quantity. Energy 2020, 191, 116543. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of Plastic Solid Waste: A State of Art Review and Future Applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Simões, C.L.; Pinto, L.M.C.; Bernardo, C.A. Environmental and Economic Analysis of End of Life Management Options for an HDPE Product Using a Life Cycle Thinking Approach. Waste Manag. Res. 2014, 32, 414–422. [Google Scholar] [CrossRef]
- Ahmed, U.; Hussain, M.A.; Bilal, M.; Zeb, H.; Ahmad, N.; Ahmad, N.; Usman, M. Production of Hydrogen from Low Rank Coal Using Process Integration Framework between Syngas Production Processes: Techno-Economic Analysis. Chem. Eng. Process. -Process Intensif. 2021, 169, 108639. [Google Scholar] [CrossRef]
- Díaz de León, J.N.; Loera-Serna, S.; Zepeda, T.A.; Domínguez, D.; Pawelec, B.; Venezia, A.M.; Fuentes-Moyado, S. Noble Metals Supported on Binary γ-Al2O3-α-Ga2O3 Oxide as Potential Low-Temperature Water-Gas Shift Catalysts. Fuel 2020, 266, 117031. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G.; Alkhateeb, A.; Telalović, S.; Elbaz, A.M.; Roberts, W.L.; Sarathy, S.M. Environmental Challenges and Opportunities in Marine Engine Heavy Fuel Oil Combustion. Lect. Notes Civ. Eng. 2019, 22, 1047–1055. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G.; Han, Y.; Brignoli, O.; Telalović, S.; Elbaz, A.M.; Im, H.G.; Roberts, W.L.; Sarathy, S.M. Heavy Fuel Oil Pyrolysis and Combustion: Kinetics and Evolved Gases Investigated by TGA-FTIR. J. Anal. Appl. Pyrolysis 2017, 127, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Ordonez-Loza, J.; Chejne, F.; Jameel, A.G.A.; Telalovic, S.; Arrieta, A.A.; Sarathy, S.M. An Investigation into the Pyrolysis and Oxidation of Bio-Oil from Sugarcane Bagasse: Kinetics and Evolved Gases Using TGA-FTIR. J. Environ. Chem. Eng. 2021, 9, 106144. [Google Scholar] [CrossRef]
- Garba, M.D.; Usman, M.; Khan, S.; Shehzad, F.; Galadima, A.; Ehsan, M.F.; Ghanem, A.S.; Humayun, M. CO2 towards Fuels: A Review of Catalytic Conversion of Carbon Dioxide to Hydrocarbons. J. Environ. Chem. Eng. 2021, 9, 104756. [Google Scholar] [CrossRef]
- Al-Qadri, A.A.; Nasser, G.A.; Galadima, A.; Muraza, O. A Review on the Conversion of Synthetic Gas to LPG over Hybrid Nanostructure Zeolites Catalysts. ChemistrySelect 2022, 7, e202200042. [Google Scholar] [CrossRef]
- Farzad, S.; Mandegari, M.A.; Görgens, J.F. A Critical Review on Biomass Gasification, Co-Gasification, and Their Environmental Assessments. Biofuel Res. J. 2016, 3, 483–495. [Google Scholar] [CrossRef]
- Almohamadi, H.; Alamoudi, M.; Ahmed, U.; Shamsuddin, R.; Smith, K. Producing Hydrocarbon Fuel from the Plastic Waste: Techno-Economic Analysis. Korean J. Chem. Eng. 2021, 38, 2208–2216. [Google Scholar] [CrossRef]
- Tian, H.; Li, J.; Yan, M.; Tong, Y.W.; Wang, C.H.; Wang, X. Organic Waste to Biohydrogen: A Critical Review from Technological Development and Environmental Impact Analysis Perspective. Appl. Energy 2019, 256, 113961. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent Advances in the Gasification of Waste Plastics. A Critical Overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Barbarias, I.; Lopez, G.; Artetxe, M.; Arregi, A.; Santamaria, L.; Bilbao, J.; Olazar, M. Pyrolysis and In-Line Catalytic Steam Reforming of Polystyrene through a Two-Step Reaction System. J. Anal. Appl. Pyrolysis 2016, 122, 502–510. [Google Scholar] [CrossRef]
- Al-Haj Ibrahim, H. Introductory Chapter: Pyrolysis. In Recent Advances in Pyrolysis; IntechOpen: London, UK, 2020. [Google Scholar]
- Kern, S.J.; Pfeifer, C.; Hofbauer, H. Cogasification of Polyethylene and Lignite in a Dual Fluidized Bed Gasifier. Ind. Eng. Chem. Res. 2013, 52, 4360–4371. [Google Scholar] [CrossRef]
- Zaccariello, L.; Mastellone, M. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal. Energies 2015, 8, 8052–8068. [Google Scholar] [CrossRef] [Green Version]
- Gil, J.; Corella, J.; Aznar, M.P.; Caballero, M.A. Biomass Gasification in Atmospheric and Bubbling Fluidized Bed: Effect of the Type of Gasifying Agent on the Product Distribution. Biomass Bioenergy 1999, 17, 389–403. [Google Scholar] [CrossRef]
- Xiao, R.; Jin, B.; Zhou, H.; Zhong, Z.; Zhang, M. Air Gasification of Polypropylene Plastic Waste in Fluidized Bed Gasifier. Energy Convers. Manag. 2007, 48, 778–786. [Google Scholar] [CrossRef]
- Erkiaga, A.; Lopez, G.; Amutio, M.; Bilbao, J.; Olazar, M. Syngas from Steam Gasification of Polyethylene in a Conical Spouted Bed Reactor. Fuel 2013, 109, 461–469. [Google Scholar] [CrossRef]
- Dieterich, V.; Buttler, A.; Hanel, A.; Spliethoff, H.; Fendt, S. Power-to-Liquid via Synthesis of Methanol, DME or Fischer–Tropsch-Fuels: A Review. Energy Environ. Sci. 2020, 13, 3207–3252. [Google Scholar] [CrossRef]
- Usman, M.; Zeb, Z.; Ullah, H.; Suliman, M.H.; Humayun, M.; Ullah, L.; Shah, S.N.A.; Ahmed, U.; Saeed, M. A Review of Metal-Organic Frameworks/Graphitic Carbon Nitride Composites for Solar-Driven Green H2 Production, CO2 Reduction, and Water Purification. J. Environ. Chem. Eng. 2022, 10, 107548. [Google Scholar] [CrossRef]
- Arslan, M.T.; Qureshi, B.A.; Gilani, S.Z.A.; Cai, D.; Ma, Y.; Usman, M.; Chen, X.; Wang, Y.; Wei, F. Single-Step Conversion of H2-Deficient Syngas into High Yield of Tetramethylbenzene. ACS Catal. 2019, 9, 2203–2212. [Google Scholar] [CrossRef]
- Yao, Z.; Yu, S.; Su, W.; Wu, W.; Tang, J.; Qi, W. Kinetic Studies on the Pyrolysis of Plastic Waste Using a Combination of Model-Fitting and Model-Free Methods. Waste Manag. Res. 2020, 38, 77–85. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Sebastian, J. Pyrolysis Process to Produce Fuel from Different Types of Plastic—A Review. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2018; Volume 396. [Google Scholar]
- Deng, N.; Li, D.; Zhang, Q.; Zhang, A.; Cai, R.; Zhang, B. Simulation Analysis of Municipal Solid Waste Pyrolysis and Gasification Based on Aspen Plus. Front. Energy 2019, 13, 64–70. [Google Scholar] [CrossRef]
- Kannan, P.; Al, A.; Srinivasak, C. Optimization of Waste Plastics Gasification Process Using Aspen-Plus. In Gasification for Practical Applications; IntechOpen: London, UK, 2012. [Google Scholar]
- Devasahayam, S.; Bhaskar Raju, G.; Mustansar Hussain, C. Utilization and Recycling of End of Life Plastics for Sustainable and Clean Industrial Processes Including the Iron and Steel Industry. Mater. Sci. Energy Technol. 2019, 2, 634–646. [Google Scholar] [CrossRef]
- Devasahayam, S. Catalytic Actions of MgCO3/MgO System for Efficient Carbon Reforming Processes. Sustain. Mater. Technol. 2019, 22, e00122. [Google Scholar] [CrossRef]
- Devasahayam, S. Decarbonising the Portland and Other Cements—Via Simultaneous Feedstock Recycling and Carbon Conversions sans External Catalysts. Polymers 2021, 13, 2462. [Google Scholar] [CrossRef]
- Devasahayam, S. Review: Opportunities for Simultaneous Energy/Materials Conversion of Carbon Dioxide and Plastics in Metallurgical Processes. Sustain. Mater. Technol. 2019, 22, e00119. [Google Scholar] [CrossRef]
- Devasahayam, S.; Strezov, V. Thermal Decomposition of Magnesium Carbonate with Biomass and Plastic Wastes for Simultaneous Production of Hydrogen and Carbon Avoidance. J. Clean. Prod. 2018, 174, 1089–1095. [Google Scholar] [CrossRef]
- Fivga, A.; Dimitriou, I. Pyrolysis of Plastic Waste for Production of Heavy Fuel Substitute: A Techno-Economic Assessment. Energy 2018, 149, 865–874. [Google Scholar] [CrossRef]
- Emad, N.; Vahid, B. Hydrogen Production from Co-Gasification of Asphaltene and Plastic. Pet. Sci. Technol. 2019, 37, 1905–1909. [Google Scholar] [CrossRef]
- AlNouss, A.; McKay, G.; Al-Ansari, T. Enhancing Waste to Hydrogen Production through Biomass Feedstock Blending: A Techno-Economic-Environmental Evaluation. Appl. Energy 2020, 266, 114885. [Google Scholar] [CrossRef]
- Namioka, T.; Saito, A.; Inoue, Y.; Park, Y.; Min, T.J.; Roh, S.A.; Yoshikawa, K. Hydrogen-Rich Gas Production from Waste Plastics by Pyrolysis and Low-Temperature Steam Reforming over a Ruthenium Catalyst. Appl. Energy 2011, 88, 2019–2026. [Google Scholar] [CrossRef]
- Chai, Y.; Gao, N.; Wang, M.; Wu, C. H2 Production from Co-Pyrolysis/Gasification of Waste Plastics and Biomass under Novel Catalyst Ni-CaO-C. Chem. Eng. J. 2020, 382, 122947. [Google Scholar] [CrossRef]
- Hafiz Kamarudin, M.; Yaakob, M.Y.; Salit, M.S.; Haery, H.; Pieter, I.; Badarulzaman, N.A.; Sohaimi, R.M. A Review on Different Forms and Types of Waste Plastic Used in Concrete Structure for Improvement of Mechanical Properties. J. Adv. Res. Appl. Mech. J. Homepage 2016, 28, 9–30. [Google Scholar]
- Jin, J.; Wei, X.; Liu, M.; Yu, Y.; Li, W.; Kong, H.; Hao, Y. A Solar Methane Reforming Reactor Design with Enhanced Efficiency. Appl. Energy 2018, 226, 797–807. [Google Scholar] [CrossRef]
- Aspen Plus®. Aspen Plus User Guide; AspenTech: Bedford, MA, USA, 1981. [Google Scholar]
- Saebea, D.; Ruengrit, P.; Arpornwichanop, A.; Patcharavorachot, Y. Gasification of Plastic Waste for Synthesis Gas Production. Energy Rep. 2020, 6, 202–207. [Google Scholar] [CrossRef]
- Wu, C.; Williams, P.T. Hydrogen Production by Steam Gasification of Polypropylene with Various Nickel Catalysts. Appl. Catal. B Environ. 2009, 87, 152–161. [Google Scholar] [CrossRef]
- Ghoneim, S.A.; El-Salamony, R.A.; El-Temtamy, S.A. Review on Innovative Catalytic Reforming of Natural Gas to Syngas. World J. Eng. Technol. 2016, 4, 116–139. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, U. Techno-Economic Analysis of Dual Methanol and Hydrogen Production Using Energy Mix Systems with CO2 Capture. Energy Convers. Manag. 2021, 228, 113663. [Google Scholar] [CrossRef]
- Garrett, D.E. Chemical Engineering Economics; Springer Science & Business Media: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Motta, I.L.; Miranda, N.T.; Maciel Filho, R.; Wolf Maciel, M.R. Biomass Gasification in Fluidized Beds: A Review of Biomass Moisture Content and Operating Pressure Effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Sorrels, J.L.; Walton, T.G. Section 1 Introduction-2-Chapter 2 Cost Estimation: Concepts and Methodology; EPA: Washington, DC, USA, 2017. [Google Scholar]
- Panneerselvam, R. Engineering Economics; Prentice-Hall of India: Delhi, India, 2001; ISBN 9788120317437. [Google Scholar]
- Hydrogen Basics-Production. Available online: http://www.fsec.ucf.edu/en/consumer/hydrogen/basics/production.htm (accessed on 11 October 2021).
- Linde, Hydrogen Utopia to Deploy Plastic Waste-to-Hydrogen Technology in Poland|S&P Global Platts. Available online: https://www.spglobal.com/platts/en/market-insights/latest-news/electric-power/090621-linde-hydrogen-utopia-to-deploy-plastic-waste-to-hydrogen-technology-in-poland (accessed on 11 October 2021).
- Technical Contact, N.; Ruth, M. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review. 2010. Available online: https://www.osti.gov/biblio/1028523 (accessed on 15 March 2022).
- Mourhly, A.; Kacimi, M.; Halim, M.; Arsalane, S. New Low Cost Mesoporous Silica (MSN) as a Promising Support of Ni-Catalysts for High-Hydrogen Generation via Dry Reforming of Methane (DRM). Int. J. Hydrogen Energy 2020, 45, 11449–11459. [Google Scholar] [CrossRef]
- Xu, D.; Xiong, Y.; Ye, J.; Su, Y.; Dong, Q.; Zhang, S. Performances of Syngas Production and Deposited Coke Regulation during Co-Gasification of Biomass and Plastic Wastes over Ni/γ-Al2O3 Catalyst: Role of Biomass to Plastic Ratio in Feedstock. Chem. Eng. J. 2020, 392, 123728. [Google Scholar] [CrossRef]
Plastic Composition Analysis | ||
---|---|---|
Proximate Analysis (Weight %) | ||
PE | PP | |
Moisture | 0.02 | 0 |
Ash | 0.15 | 0.7 |
Volatile matter | 99.83 | 99.30 |
Total | 100 | 100 |
LHV (MJ/kg) | 38.04 | 44.70 |
Ultimate analysis (weight %) | ||
Carbon | 85.81 | 86.23 |
Hydrogen | 13.86 | 12.28 |
Nitrogen | 0.12 | 0.62 |
Sulfur | 0.06 | 0.17 |
Ash | 0.15 | 0.7 |
Total | 100 | 100 |
Natural gas composition (mol %) | ||
CH4 | 93.9 | |
C2H6 | 3.2 | |
C3H8 | 0.7 | |
C4H10 | 0.4 | |
CO2 | 1.0 | |
N2 | 0.8 | |
Total | 100 | |
LHV(MJ/kg) | 47.76 |
Equipment | Aspen Model | Assumption |
---|---|---|
Plastic Flow Rate | RYield/RGibbs | Plastics = 100 kg/h Entrained flow gasifier; steam:plastic = 1.25; Temperature = 900 °C; P = 1 atm |
Pre-reformer | RStoic (reactor) | Heavier hydrocarbon hydrocracking |
Reformer | RGibbs (reactor) | Temperature = 894.3 , pressure = 3 bar, Steam: NG = 1.6; nickel-based catalyst |
Water Gas Shift (WGS) | REquil (reactor) | Two equilibrium reactors Steam:CO = 2:1 (molar basis) |
Acid Gas Removal (AGR) | RadFrac and flash drums | Rectisol process; temperature = −30 , P = 1 bar CO2 removal = 99%; H2S removal = 10 ppm |
Validation of Polypropylene Gasification | |||
Component | Reference Case | Base Case | Difference |
H2 | 68.3 | 66.4 | 1.9 |
CO | 26.1 | 27.5 | −1.4 |
CO2 | 3.9 | 5.7 | −1.8 |
CH4 | 1.3 | 0.3 | 1.0 |
Others | 0.3 | 0.1 | 0.2 |
Validation of Polyethylene Gasification | |||
Component | Reference Case | Base Case | Difference |
H2 | 68.6 | 67.4 | 1.2 |
CO | 25.5 | 28.8 | −3.3 |
CO2 | 1.1 | 3.7 | −2.6 |
CH4 | 3.6 | 0.0 | 3.6 |
Others | 1.2 | 0.0 | 1.2 |
Plastics | Steam (Gasifier) | Gasifier | Reformer | Cooling and Syngas Mixing | WGS Unit | AGR Unit (H2 Storage) | CO2 Storage | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Case 1 and 2 | Case 1 and 2 | Case 1 and 2 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | |
T (°C) | 300 | 300 | 900 | 894.3 | 220 | 220 | 10 | 10 | 25 | 25 | 25 | 25 |
P (bar) | 1.013 | 1.013 | 1.013 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Mass Flow (kg/h) | 100 | 125 | 225 | 109 | 224.58 | 333.58 | 469.38 | 578.38 | 49.58 | 75.22 | 226.40 | 337.53 |
Mole (%) | ||||||||||||
H2 | - | 0.636 | 0.683 | 0.636 | 0.653 | 0.579 | 0.654 | 0.976 | 0.978 | 0.0026 | 0.0026 | |
CO | - | 0.341 | 0.206 | 0.341 | 0.292 | 0.001 | 0.004 | 0.002 | 0.006 | 0.341 | 0.206 | |
CO2 | - | 0.002 | 0.020 | 0.002 | 0.008 | 0.202 | 0.206 | 0.003 | 0.003 | 0.993 | 0.994 | |
H2O | 1 | 0.004 | 0.089 | 0.004 | 0.034 | 0.206 | 0.128 | 0 | 0 | 0 | ||
CH4 | - | 0.017 | 0.001 | 0.017 | 0.011 | 0.010 | 0.008 | 0.016 | 0.011 | 0.0018 | 0.0012 | |
N2 | - | 0.0008 | 0.0018 | 0.0008 | 0.0011 | 0.0004 | 0.0008 | 0.0007 | 0.0012 | 0.0008 | 0.0018 | |
H2S | - | 0.0002 | - | 0.0002 | 0.0001 | 0.0001 | 0.0001 | - | 0.0002 | - | ||
CH3OH | - | 0.0000 | - | 0.0000 | - | 0.0018 | 0.0018 | 0.0000 | - | |||
Molar H2/CO | - | - | - | 3.32 | 1.86 | 2.23 | - | - | - | - | - | - |
Molar H2/CO2 | - | - | - | 33.34 | 389.50 | 77.43 | 2.86 | 3.18 | - | - | - | - |
Characteristic/Model Type | Case 1 | Case 2 |
---|---|---|
Hydrogen per feedstock HPF (mass %) | 50 | 52.8 |
Hydrogen purity (mole %) | 97.62 | 97.77 |
Syngas gross heating value GHV (MJ/kg) | 26.18 | 27.67 |
Syngas net heating value LHV (MJ/kg) | 23.55 | 24.73 |
Feed stock energy (kWth) | 1198.61 | 1757.07 |
Thermal energy of produced H2 (kWth) | 1385.25 | 2060.59 |
Minimum hot utilities required (kW) | 757.06 | 1069.75 |
Minimum cold utilities required (kW) | 200.80 | 187.06 |
Total energy required after heat integration (kW) | 957.86 | 1256.81 |
Process efficiency(ηnet) (%) | 64.24 | 68.37 |
Capital Expenditure | ||
Equipment | Case 1 EUR (103) | Case 2 EUR (103) |
Gasification price | 110 | 110 |
Acid gas removal unit | 1339 | 1624 |
Solid handling facility | 522 | 522 |
Syngas processing unit | 646 | 690 |
Reformer cost | 0 | 128 |
Equipment and installation cost | 2617 | 3074 |
Offsite unit and utilities | 654 | 768 |
Contingency cost | 393 | 461 |
Permitting | 131 | 154 |
Total investment cost | 3795 | 4457 |
TIC per ton of H2 MMEUR /ton | 76.53 | 59.25 |
Operational expenditure | ||
Cost sector/designed case | Case 1 EUR (103)/Year | Case 2 EUR (103)/Year |
Maintenance cost (2% of equipment and installed cost) | 52.3 | 61.5 |
Labor cost | 459.4 | 472.9 |
Administrative, support and overhead cost | 137.8 | 141.9 |
Total fixed manufacturing cost | 649.6 | 676.2 |
Natural gas | 0.0 | 16.5 |
WGS catalyst | 16.6 | 18.0 |
Reforming catalyst | 0.0 | 0.5 |
Solvent | 39.0 | 57.8 |
Waste disposal | 7.1 | 7.1 |
Utility costs | 677.9 | 693.2 |
Total OPEX/year | 1390.0 | 1469.3 |
Total OPEX/ton H2 | 3.4 | 2.3 |
Revenue (MMEUR /year) | 4.804 | 7.289 |
NPV | 22.450 | 39.978 |
PVR | 6.401 | 9.288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Qadri, A.A.; Ahmed, U.; Abdul Jameel, A.G.; Zahid, U.; Usman, M.; Ahmad, N. Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis. Polymers 2022, 14, 2056. https://doi.org/10.3390/polym14102056
Al-Qadri AA, Ahmed U, Abdul Jameel AG, Zahid U, Usman M, Ahmad N. Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis. Polymers. 2022; 14(10):2056. https://doi.org/10.3390/polym14102056
Chicago/Turabian StyleAl-Qadri, Ali A., Usama Ahmed, Abdul Gani Abdul Jameel, Umer Zahid, Muhammad Usman, and Nabeel Ahmad. 2022. "Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis" Polymers 14, no. 10: 2056. https://doi.org/10.3390/polym14102056
APA StyleAl-Qadri, A. A., Ahmed, U., Abdul Jameel, A. G., Zahid, U., Usman, M., & Ahmad, N. (2022). Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis. Polymers, 14(10), 2056. https://doi.org/10.3390/polym14102056