Recent Advances in Zinc Hydroxystannate-Based Flame Retardant Polymer Blends
Abstract
:1. Introduction
2. Preparation of ZHS-Based Flame Retardant
2.1. Hydrothermal Method
2.2. Precipitation Method
2.3. Others
3. The Application of ZHS-Based Flame Retardant
3.1. In PVC
3.2. In EP
3.3. In Other Polymers
4. Prospect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-F.; Xiao, Y.-F.; Luo, X.; Liu, B.-W.; Guo, D.-M.; Chen, L.; Wang, Y.-Z. Flame-Retardant multifunctional epoxy resin with high performances. Chem. Eng. J. 2022, 427, 132031. [Google Scholar] [CrossRef]
- Gao, T.-Y.; Wang, F.-D.; Xu, Y.; Wei, C.-X.; Zhu, S.-E.; Yang, W.; Lu, H.-D. Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties. Chem. Eng. J. 2022, 428, 131173. [Google Scholar] [CrossRef]
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Cai, T.; Wang, J.; Zhang, C.; Cao, M.; Jiang, S.; Wang, X.; Wang, B.; Hu, W.; Hu, Y. Halogen and halogen-free flame retarded biologically-based polyamide with markedly suppressed smoke and toxic gases releases. Compos. Part B Eng. 2020, 184, 107737. [Google Scholar] [CrossRef]
- Zhu, S.-E.; Yang, W.-J.; Zhou, Y.; Pan, W.-H.; Wei, C.-X.; Yuen, A.C.Y.; Chen, T.B.Y.; Yeoh, G.H.; Lu, H.-D.; Yang, W. Synthesis of zinc porphyrin complex for improving mechanical, UV-resistance, thermal stability and fire safety properties of polystyrene. Chem. Eng. J. 2022, 442, 136367. [Google Scholar] [CrossRef]
- Xing, W.; Yang, W.; Yang, W.; Hu, Q.; Si, J.; Lu, H.; Yang, B.; Song, L.; Hu, Y.; Yuen, R.K.K. Functionalized Carbon Nanotubes with Phosphorus- and Nitrogen-Containing Agents: Effective Reinforcer for Thermal, Mechanical, and Flame-Retardant Properties of Polystyrene Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 26266–26274. [Google Scholar] [CrossRef]
- Ji, X.; Chen, D.; Wang, Q.; Shen, J.; Guo, S. Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos. Sci. Technol. 2018, 163, 49–55. [Google Scholar] [CrossRef]
- Huang, G.; Song, P.; Liu, L.; Han, D.; Ge, C.; Li, R.; Guo, Q. Fabrication of multifunctional graphene decorated with bromine and nano-Sb2O3 towards high-performance polymer nanocomposites. Carbon 2016, 98, 689–701. [Google Scholar] [CrossRef]
- Huang, G.; Huo, S.; Xu, X.; Chen, W.; Jin, Y.; Li, R.; Song, P.; Wang, H. Realizing simultaneous improvements in mechanical strength, flame retardancy and smoke suppression of ABS nanocomposites from multifunctional graphene. Compos. Part B Eng. 2019, 177, 107377. [Google Scholar] [CrossRef]
- Yu, B.; Yuen, A.C.Y.; Xu, X.; Zhang, Z.-C.; Yang, W.; Lu, H.; Fei, B.; Yeoh, G.H.; Song, P.; Wang, H. Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability. J. Hazard. Mater. 2021, 401, 123342. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Sun, J.; Gu, X.-Y.; Jiang, P.; Liu, X.-S.; Zhang, S. Preparation and characterization of flame retardant and low smoke releasing oil-resistant EVA/NBR blends. Chin. J. Polym. Sci. 2015, 33, 554–563. [Google Scholar] [CrossRef]
- Xu, W.-Z.; Li, C.-C.; Hu, Y.-X.; Liu, L.; Hu, Y.; Wang, P.-C. Synthesis of MoO3 with different morphologies and their effects on flame retardancy and smoke suppression of polyurethane elastomer. Polym. Adv. Technol. 2016, 27, 964–972. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Jiao, C. Influence of ferrocene on smoke suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. J. Therm. Anal. Calorim. 2015, 122, 437–447. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, Q.; Liu, J.; Wang, B.; Jiang, S.; Shi, Y.; Hu, Y.; Gui, Z. Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv. 2014, 4, 13205. [Google Scholar] [CrossRef]
- Han, G.; Zhao, X.; Feng, Y.; Ma, J.; Zhou, K.; Shi, Y.; Liu, C.; Xie, X. Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling. Chem. Eng. J. 2021, 407, 127099. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Wang, X. Synergistic flame-retardant and smoke suppression effects of zinc borate in transparent intumes-cent fire-retardant coatings applied on wood substrates. J. Therm. Anal. Calorim. 2018, 136, 1563–1574. [Google Scholar] [CrossRef]
- Song, J.E.; Kim, J.S.; Lim, D.; Jeong, W. Zinc Hydroxystannate Coated by Aluminum Phosphate for Improving Its Compati-bility in Flame-retardant Poly(acrylonitrile-co-vinylidene chloride). Fibers Polym. 2021, 22, 2156–2162. [Google Scholar] [CrossRef]
- Wang, B.; Sheng, H.; Shi, Y.; Song, L.; Zhang, Y.; Hu, Y.; Hu, W. The influence of zinc hydroxystannate on reducing toxic gases (CO, NO(x) and HCN) generation and fire hazards of thermoplastic polyurethane composites. J. Hazard. Mater. 2016, 314, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Plubphon, N.; Thongtem, S.; Thongtem, T. Microwave-Assisted Synthesis of ZnSn(OH)6 Used for Photodegradation of Me-thyl Orange. J. Nanosci. Nanotechnol. 2017, 17, 8763–8771. [Google Scholar] [CrossRef]
- Fu, X.; Huang, D.; Qin, Y.; Li, L.; Jiang, X.; Chen, S. Effects of preparation method on the microstructure and photocatalytic performance of ZnSn(OH)6. Appl. Catal. B Environ. 2014, 148–149, 532–542. [Google Scholar] [CrossRef]
- Bains, R.S.; Cusack, P.A.; Monk, A.W. A Comparison of the Fire-Retardant Properties of Zinc Hydroxystannate and Antimony Trioxide in Brominated Polyester Resins Containing Inorganic Fillers. Eur. Polym. J. 1990, 26, 1221–1227. [Google Scholar] [CrossRef]
- Cusack, P.A.; Heer, M.S.; Monk, A.W. Zinc Hydroxystannate: A Combined Flame Retardant and Smoke Suppressant for Halogenated Polyesters. Polym. Degrad. Stab. 1991, 32, 177–190. [Google Scholar] [CrossRef]
- Baggaley, R.G.; Hornsby, P.R.; Yahya, R.; Cusack, P.A.; Monk, A.W. The Influence of Novel Zinc Hydroxystannate-Coated Fillers on the Fire Properties of Flexible PVC. Fire Mater. 1997, 21, 179–185. [Google Scholar] [CrossRef]
- Cusack, P.A. Evaluation of the Fire-retardant Properties of Zinc Hydroxystannate and Antimony Trioxide in Halogenated Polyester Resins Using the Cone Calorimeter Method. Fire Mater. 1993, 17, 1–6. [Google Scholar] [CrossRef]
- Cusack, P.A.; Heer, M.S.; Monk, A.W. Zinc hydroxystannate as an alternative synergist to antimony trioxide in polyester resins containing halogenated flame retardants. Polym. Degrad. Stab. 1997, 58, 229–237. [Google Scholar] [CrossRef]
- Wang, X.; Kalali, E.N.; Wan, J.-T.; Wang, D.-Y. Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 2017, 69, 22–46. [Google Scholar] [CrossRef]
- Yang, W.-J.; Wei, C.-X.; Yuen, A.C.Y.; Lin, B.; Yeoh, G.H.; Lu, H.-D.; Yang, W. Fire-retarded nanocomposite aerogels for multifunctional applications: A review. Compos. Part B Eng. 2022, 237, 109866. [Google Scholar] [CrossRef]
- He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame retardant polymeric nanocomposites through the combination of nano-materials and conventional flame retardants. Prog. Mater. Sci. 2020, 114, 100687. [Google Scholar] [CrossRef]
- Li, D.; Yan, P.; Zhao, Q.; Wang, L.; Ma, X.; Xue, J.; Zhang, Y.; Liu, M. The hydrothermal synthesis of ZnSn(OH)6 and Zn2SnO4 and their photocatalytic performances. CrystEngComm 2020, 22, 4923–4932. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, S.; Li, Y.; Jia, T.; Chen, H.; Cao, J.; Bala, H.; Wang, X.; Wang, Y.; Zhang, Z. Solvothermal synthesis and char-acterization of porous zinc hydroxystannate microspheres. Mater. Lett. 2015, 150, 105–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, M.; Zhang, M.; Yang, C.; Ma, T.; Wang, X. Hydrothermal synthesis and characterization of single-crystalline zinc hydroxystannate microcubes. J. Cryst. Growth 2007, 308, 99–104. [Google Scholar] [CrossRef]
- Qin, Z.; Huang, Y.; Wang, Q.; Qi, J.; Xing, X.; Zhang, Y. Controllable synthesis of well-dispersed and uniform-sized single crystalline zinc hydroxystannate nanocubes. CrystEngComm 2010, 12, 4156. [Google Scholar] [CrossRef]
- Jose, M.; Nithya, G.; Robert, R.; Dhas, S.A.M.B. Formation and optical characterization of unique zinc hydroxy stannate nanostructures by a simple hydrothermal method. J. Mater. Sci. Mater. Electron. 2017, 29, 2628–2637. [Google Scholar] [CrossRef]
- Fan, H.; Ai, S.; Ju, P. Room temperature synthesis of zinc hydroxystannate hollow core-shell microspheres and their hydro-thermal growth of hollow core-shell polyhedral microcrystals. CrystEngComm 2011, 13, 113–117. [Google Scholar] [CrossRef]
- Sandesh, S.; Shanbhag, G.V.; Halgeri, A.B. Zinc hydroxystannate: A promising solid acid–base bifunctional catalyst. RSC Adv. 2014, 4, 974–977. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Y.; You, F.; Chen, Z. A novel method to prepare zinc hydroxystannate-coated inorganic fillers and its effect on the fire properties of PVC cable materials. Polym. Eng. Sci. 2007, 47, 1163–1169. [Google Scholar] [CrossRef]
- Kramer, J.W.; Isaacs, S.A.; Manivannan, V. Microwave-assisted metathesis synthesis of Schoenfliesite-type MSn(OH)6 (M = Mg, Ca, Zn, and Sr) materials. J. Mater. Sci. 2009, 44, 3387–3392. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; He, M.; Hu, Y.; Ruan, H.; Lin, Y.; Hu, J.; Zheng, Y.; Shao, Y. High photocatalytic performance of zinc hy-droxystannate toward benzene and methyl orange. Appl. Catal. B Environ. 2012, 113–114, 134–140. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, D.; Zhang, L.; Yu, M.; Wang, Z.; Fan, Y.; Zhang, D.; Zhang, Q.; Xie, J. ZnSn(OH)6 Photocatalyst for Methylene Blue Degradation: Electrolyte-Dependent Morphology and Performance. ChemistrySelect 2018, 3, 10849–10856. [Google Scholar] [CrossRef]
- Wang, M.; Cao, X.L.; Huang, Y.F.; Guo, C.S.; Huang, L.J.; Yin, S.; Sato, T. Solvent-free mechanochemical synthesis of well-dispersed single crystalline zinc hydroxystannate and their photocatalytic properties. CrystEngComm 2012, 14, 2950–2953. [Google Scholar] [CrossRef]
- He, Q.; Zi, J.; Huang, B.; Yan, L.; Fa, W.; Li, D.; Zhang, Y.; Gao, Y.; Zheng, Z. Controlled growth and thermal decomposition of well-dispersed and uniform ZnSn(OH)6 submicrocubes. J. Alloys Compd. 2014, 607, 193–197. [Google Scholar] [CrossRef]
- Wang, L.; Tang, K.; Liu, Z.; Wang, D.; Sheng, J.; Cheng, W. Single-crystalline ZnSn(OH)6 hollow cubes via self-templated synthesis at room temperature and their photocatalytic properties. J. Mater. Chem. 2011, 21, 4352. [Google Scholar] [CrossRef]
- Onwudiwe, D.C.; Oyewo, O.A. Facile synthesis and structural characterization of zinc stannate/tin oxide and zinc stan-nate/tin composites for the removal of methylene blue from water. Mater. Res. Express 2019, 6, 125025. [Google Scholar] [CrossRef]
- Xu, L.; Xian, F.; Miao, J.; Kuang, W. Preparation of highly crystalline zinc hydroxystannate thin film and investigation of its structure and luminescence behavior with various annealing temperatures. Opt. Mater. 2020, 109, 110312. [Google Scholar] [CrossRef]
- Xu, X.; Duan, G.; Li, Y.; Zhang, H.; Liu, G.; Cai, W. Synthesis of nano-cubic ZnSn(OH)3 based on stannate reaction with liquid laser ablation-induced ZnO below room temperature. CrystEngComm 2013, 15, 6159. [Google Scholar] [CrossRef]
- Nikolić, N.; Ković, T.S.; Ristić, M.M. The influence of mechanical activation on zinc stannate spinel formation. J. Eur. Ceram. Soc. 2001, 21, 2071–2074. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.; Qu, H.; Tian, C. Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride). J. Appl. Polym. Sci. 2005, 98, 1469–1475. [Google Scholar] [CrossRef]
- Qu, H.; Wu, W.; Xie, J.; Xu, J. A novel intumescent flame retardant and smoke suppression system for flexible PVC. Polym. Adv. Technol. 2011, 22, 1174–1181. [Google Scholar] [CrossRef]
- Wu, W.; Qu, H.; Li, Z.; Yuan, H. Thermal behavior and flame retardancy of flexible poly(vinyl chloride) treated with zinc hydroxystannate and zinc stannate. J. Vinyl Addit. Technol. 2008, 14, 10–15. [Google Scholar] [CrossRef]
- Qu, H.; Wu, W.; Zheng, Y.; Xie, J.; Xu, J. Synergistic effects of inorganic tin compounds and Sb2O3 on thermal properties and flame retardancy of flexible poly(vinyl chloride). Fire Saf. J. 2011, 46, 462–467. [Google Scholar] [CrossRef]
- Qu, H.; Wu, W.; Xie, J.; Xu, J. Zinc hydroxystannate-coated metal hydroxides as flame retardant and smoke suppression for flexible poly vinyl chloride. Fire Mater. 2009, 33, 201–210. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Han, J. Zinc hydroxystannate microencapsulated to improve its safety and application to flame-retardant, smoke-suppressed polyvinyl chloride composites. J. Alloys Compd. 2017, 712, 768–780. [Google Scholar] [CrossRef]
- Zhang, B.; Han, J. Morphology control of zinc hydroxystannate microcapsules by sol–gel method and their enhanced flame retardancy properties for polyvinyl chloride composites. J. Sol-Gel Sci. Technol. 2016, 81, 442–451. [Google Scholar] [CrossRef]
- Gao, T.-T.; Li, Z.-W.; Yu, L.-G.; Zhang, Z.-J. Preparation of zinc hydroxystannate nanocomposites coated by organophosphorus and investigation of their effect on mechanical properties and flame retardancy of poly(vinyl chloride). RSC Adv. 2015, 5, 99291–99298. [Google Scholar] [CrossRef]
- Jiao, Y.; Xu, J.Z. Flame-retardant properties of magnesium hydroxystannate and strontium hydroxystannate coated calcium carbonate on soft poly(vinyl chloride). J. Appl. Polym. Sci. 2009, 112, 36–43. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, X.; Peng, F.; Xu, J.; Gao, J.; Meng, H. Increased Flame Retardant, Smoke Suppressant and Mechanical Proper-ties of Semi-Rigid Polyvinyl Chloride (PVC) Treated with Zinc Hydroxystannate Coated Dendritic Fibrillar Calcium Carbonate. J. Macromol. Sci. B 2014, 53, 541–554. [Google Scholar] [CrossRef]
- Liu, F.-Y.; Zhou, X.-L.; Gao, Q.; Wang, X.; Jiao, Y.-H.; Xu, J.-Z. Preparation of Zinc Hydroxystannate Coated Dendritic-Fibrillar Barium Carbonate and its Flame Retardant Effect on Soft Poly (Vinyl Chloride). J. Macromol. Sci. B 2020, 59, 659–671. [Google Scholar] [CrossRef]
- Gao, T.; Chen, L.; Li, Z.; Yu, L.; Wu, Z.; Zhang, Z. Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride). Nanoscale Res. Lett. 2016, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Huo, Z.; Wu, H.; Song, Q.; Zhou, Z.; Wang, T.; Xie, J.; Qu, H. Synthesis of zinc hydroxystannate/reduced graphene oxide composites using chitosan to improve poly(vinyl chloride) performance. Carbohydr. Polym. 2021, 256, 117575. [Google Scholar] [CrossRef] [PubMed]
- Sang, B.; Li, Z.; Yu, L.; Li, X.; Zhang, Z. Preparation of zinc hydroxystannate-titanate nanotube flame retardant and evaluation its smoke suppression efficiency for flexible polyvinyl chloride matrix. Mater. Lett. 2017, 204, 133–137. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Yuan, Y.; Pan, Y.T.; Wang, D.Y.; Yang, R. Confined Dispersion of Zinc Hydroxystannate Nanoparticles into Layered Bimetallic Hydroxide Nanocapsules and Its Application in Flame-Retardant Epoxy Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 40951–40960. [Google Scholar] [CrossRef]
- Xu, W.; Li, W.; Wang, X.; Zhang, X.; Cheng, Z. Effect of different ionic layered compounds decorated with zinc hydroxystannate on flame retardancy and smoke performance of epoxy resin. Polym. Adv. Technol. 2019, 31, 731–740. [Google Scholar] [CrossRef]
- Lu, J.; Wang, B.; Jia, P.; Cheng, W.; Liao, C.; Xu, Z.; Cheng, L.; Hu, Y. Designing advanced 0D–2D hierarchical structure for Epoxy resin to accomplish exceeding thermal management and safety. Chem. Eng. J. 2022, 427, 132046. [Google Scholar] [CrossRef]
- Wang, X.; Chen, T.; Peng, C.; Hong, J.; Lu, Z.; Yuan, C.; Zeng, B.; Luo, W.; Dai, L. Synergistic Effect of Mesoporous Nano-composites with Different Pore Sizes and Structures on Fire Safety and Smoke Suppression of Epoxy Resin. Macromol. Mater. Eng. 2019, 305, 1900640. [Google Scholar] [CrossRef]
- Li, P.; Zheng, Y.; Li, M.; Fan, W.; Shi, T.; Wang, Y.; Zhang, A.; Wang, J. Enhanced flame-retardant property of epoxy compo-sites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos. Part A Appl. Sci. Manuf. 2016, 81, 172–181. [Google Scholar] [CrossRef]
- Xu, W.; Chen, R.; Xu, J.; Zhong, D.; Cheng, Z. Nickel hydroxide and zinc hydroxystannate dual modified graphite carbon nitride for the flame retardancy and smoke suppression of epoxy resin. Polym. Degrad. Stab. 2020, 182, 109366. [Google Scholar] [CrossRef]
- Liu, X.; Wu, W.; Qi, Y.; Qu, H.; Xu, J. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin. J. Therm. Anal. Calorim. 2016, 126, 553–559. [Google Scholar] [CrossRef]
- Wang, W.; Kan, Y.; Liu, J.; Liew, K.M.; Liu, L.; Hu, Y. Self-assembly of zinc hydroxystannate on amorphous hydrous TiO2 solid sphere for enhancing fire safety of epoxy resin. J. Hazard. Mater. 2017, 340, 263–271. [Google Scholar] [CrossRef]
- Liu, L.; Wang, W.; Shi, Y.; Fu, L.; Xu, L.; Yu, B. Electrostatic-Interaction-Driven Assembly of Binary Hybrids towards Fire-Safe Epoxy Resin Nanocomposites. Polymers 2019, 11, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, T.; Sang, B.; Shao, B.; Li, R.; Li, Z. Flame Retardancy and Mechanical Properties of a Novel Zinc Hydroxystannate/Epoxy Resin Nanocomposite. J. Nanosci. Nanotechnol. 2017, 17, 8856–8863. [Google Scholar] [CrossRef]
- Petsom, A.; Roengsumran, S.; Ariyaphattanakul, A.; Sangvanich, P. An oxygen index evaluation of flammability for zinc hydroxystannate and zinc stannate as synergistic flame retardants for acrylonitrile–butadiene–styrene copolymer. Polym. Degrad. Stab. 2003, 80, 17–22. [Google Scholar] [CrossRef]
- Song, J.E.; Kim, J.S.; Lim, D.; Jeong, W. Preparation and Characterization of Zinc Hydroxystannate Coated by Aluminum Phosphate and Its Application in Poly(acrylonitrile-co-vinylidene chloride). Polymers 2020, 12, 1365. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Qian, Y.; Chen, X.; Liu, Y. Flame retardant ethylene-vinyl acetate composites based on layered double hydroxides with zinc hydroxystannate. Polym. Eng. Sci. 2014, 54, 2918–2924. [Google Scholar] [CrossRef]
- Hamzah, M.S.; Jaafar, M.; Mohd Jamil, M.K. Electrical insulation performance of flame retardant fillers filled with poly-propylene/ethylene propylene diene monomer composites. Polym. Adv. Technol. 2014, 25, 784–790. [Google Scholar] [CrossRef]
- Li, S.; Li, T.; Wang, X.; Zhong, Y.; Zhang, L.; Wang, B.; Feng, X.; Sui, X.; Xu, H.; Chen, Z.; et al. Polyphosphazene micro-spheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate. Polym. Adv. Technol. 2020, 31, 1194–1207. [Google Scholar] [CrossRef]
- Andre, F.; Cusack, P.A.; Monk, A.W. The effect of zinc hydroxystannate and zinc stannate on the fire properties of polyester resins containing additive-type halogenated flame retardants. Polym. Degrad. Stab. 1993, 40, 267–273. [Google Scholar] [CrossRef]
- Kim, J.S.; Song, J.E.; Lim, D.; Ahn, H.; Jeong, W. Flame-Retardant Mechanism and Mechanical Properties of Wet-Spun Poly(acrylonitrile-co-vinylidene chloride) Fibers with Antimony Trioxide and Zinc Hydroxystannate. Polymers 2020, 12, 2442. [Google Scholar] [CrossRef]
- Lee, S.H.; Yi, G.R.; Lim, D.Y.; Jeong, W.Y.; Youk, J.H. Study on the Flame Retardant and Mechanical Properties of Wet-spun Poly(acrylonitrile-co-vinylchloride) Fibers with Antimony Trioxide and Zinc Hydroxystannate. Fiber Polym. 2019, 20, 779–786. [Google Scholar] [CrossRef]
- Hamzah, M.S.; Mariatti, M. Properties of flame-retardant fillers in polypropylene/ethylene propylene diene monomer composites. J. Thermoplast. Compos. Mater. 2012, 26, 1223–1236. [Google Scholar] [CrossRef]
- Su, X.; Yi, Y.; Tao, J.; Qi, H. Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 2012, 97, 2128–2135. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Guo, Z.; Jiang, F.; Ouyang, R.; Ding, P. Machine Learning and Structural Design to Optimize the Flame Retardancy of Polymer Nanocomposites with Graphene Oxide Hydrogen Bonded Zinc Hydroxystannate. ACS Appl. Mater. Interfaces 2021, 13, 53425–53438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, H.; Han, J. Synthesis of zinc hydroxystannate microcapsule for improving flame retardancy and smoke sup-pression of poly(lactic acid). Mater. Lett. 2018, 213, 35–39. [Google Scholar] [CrossRef]
- Yu, B.; Tawiah, B.; Wang, L.-Q.; Yin Yuen, A.C.; Zhang, Z.-C.; Shen, L.-L.; Lin, B.; Fei, B.; Yang, W.; Li, A.; et al. Interface dec-oration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elasto-mer. J. Hazard. Mater. 2019, 374, 110–119. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, S.; Liang, R.; Sun, P.; Hai, Y.; Zhang, L. Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating. Chem. Eng. J. 2020, 391, 123621. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, C.; Duan, Z.; Yu, B.; Liu, M.; Song, P. Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 2020, 399, 125829. [Google Scholar] [CrossRef]
- Xue, Y.; Feng, J.; Huo, S.; Song, P.; Yu, B.; Liu, L.; Wang, H. Polyphosphoramide-intercalated MXene for simultaneously en-hancing thermal stability, flame retardancy and mechanical properties of polylactide. Chem. Eng. J. 2020, 397, 125336. [Google Scholar] [CrossRef]
- Liang, C.; Qiu, H.; Song, P.; Shi, X.; Kong, J.; Gu, J. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622. [Google Scholar] [CrossRef] [Green Version]
Materials | Examples | Advantages | Disadvantages |
---|---|---|---|
Tin-based | ZnSn(OH)6 | Great smoke suppression effect; non-toxic | Cubic-shaped ZHS affects the mechanical properties of the polymers |
Boron-based | ZnB, boron nitride nanosheets (BNNS) | Non-toxic and environmental-friendly | ZnB shows poor thermal stability and moderate flame retardancy with high loading; BNNS is expensive |
Molybdenum-based | MoO3 | Low content | High cost |
Iron-based | Ferrocene | Low toxic | Negative influence on crystallization property of polymer |
Polymer | Material | Size and Shape of ZHS | LOI(%) | Reduction of PHRR | Reduction of THR | Reduction of TSR | Ref. |
---|---|---|---|---|---|---|---|
PVC | 15% ZHS coated CaCO3 | Cubic-shaped ranged from 1 to 10 μm | 35.5 | −34.0% | - | - | [58] |
5% DOPO-VTS–ZHS | A diameter of 30–40 nm | 30.2 | −39.0% | −50.0% | −59.0% | [56] | |
5% ZHS/GO | Range of 50–60 nm | 28.5 | −50.0% | −59.7% | −42.3% | [60] | |
2.5% ZHS-TNT | Haw-like structure | 29.6 | −19.6% | −7.8% | −40.0% | [62] | |
10% Sn-4Zn-1CS/rGO | ZHS grain size is larger than that of Sn-4Zn-1CS, up to a grain size of 450 nm | 29.7 | −36.0% | −24.0% | - | [61] | |
EP | 6% ZHS@NCH | ZHS grain size around 50 nm. Hollow nanocages with nanosheet-constituted shells. | 27.2 | −69.1% | −14.0% | −36.1% | [63] |
2% ZHS@ Mg-Al-LDH | Cubic structure | 25.7 | −48.2% | −20.8% | −21.6% | [64] | |
2% MnO2@ZHS | Cubic-shaped | - | −40.0% | - | [71] | ||
2% GNS-ZHS-M2070 | Several ZHS boxes are deposited on GNS | 25.2 | −21.8% | −13.4% | −34.6% | [67] | |
3% g-C3N4/β-Ni(OH)2/ZHS | ZHS nanoparticles (about 50 nm) | 26.2 | −39.2% | −15.5% | −14.2% | [68] | |
2% AHTSS@PEI@ZHS | The 450 nm solid spheres are uniformly covered by tiny particles | - | - | −29.1% | −33.5% | [70] | |
10% CEPPA-ZHS | The diameters of pristine ZHS are 40 nm | 24.5 | −45.0% | −20.4% | −28.4% | [72] | |
3% SBA-15-RGO-ZHS | 29.4 | −55.0% | −27.0% | - | [66] | ||
3% ZHS/RGO | Cubic-shaped with an average edge length of around 100 nm | - | −50.3% | −39.0% | −31.0% | [69] | |
Others | EVA50%/LDH45%/ZHS5% | Cubic-shaped | - | −81.5% | −27.1% | - | [75] |
PANVDC/15%ALP-ZHS (1:1) | a particle diameter of 150 nm to 160 nm | 33.2 | −42.5% | −7.7% | - | [74] | |
PP75%/IFR24%/ZHS1% | 50 nm to 200 nm | 32.0 | −65.0% | 26.5% | - | [82] | |
TPU85%/APP14%/ZHS1% | The average edge length is approximately 1.5 μm | 28.5 | −88.0% | −50.0% | - | [20] | |
PLA90%/AlP-ZHS10% | AlP/ZHS microcapsule the average diameter was about 700–800 nm | 29.5 | −61.3% | - | - | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, W.-H.; Yang, W.-J.; Wei, C.-X.; Hao, L.-Y.; Lu, H.-D.; Yang, W. Recent Advances in Zinc Hydroxystannate-Based Flame Retardant Polymer Blends. Polymers 2022, 14, 2175. https://doi.org/10.3390/polym14112175
Pan W-H, Yang W-J, Wei C-X, Hao L-Y, Lu H-D, Yang W. Recent Advances in Zinc Hydroxystannate-Based Flame Retardant Polymer Blends. Polymers. 2022; 14(11):2175. https://doi.org/10.3390/polym14112175
Chicago/Turabian StylePan, Wei-Hao, Wen-Jie Yang, Chun-Xiang Wei, Ling-Yun Hao, Hong-Dian Lu, and Wei Yang. 2022. "Recent Advances in Zinc Hydroxystannate-Based Flame Retardant Polymer Blends" Polymers 14, no. 11: 2175. https://doi.org/10.3390/polym14112175
APA StylePan, W. -H., Yang, W. -J., Wei, C. -X., Hao, L. -Y., Lu, H. -D., & Yang, W. (2022). Recent Advances in Zinc Hydroxystannate-Based Flame Retardant Polymer Blends. Polymers, 14(11), 2175. https://doi.org/10.3390/polym14112175