One-Pot Multicomponent Polymerization, Metal-, and Non-Metal-Catalyzed Synthesis of Organoselenium Compounds
Abstract
:1. Introduction
2. The One-Pot Multicomponent Combinatorial Synthesis of OSe Compounds
2.1. Metal-Catalyzed Synthesis of the OSe Compounds
2.2. Metal-Free Synthesis of the OSe Compounds
2.3. Multicomponent Polymerization Synthesis of OSe Compounds
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalimuthu, K.; Keerthana, C.K.; Mohan, M.; Arivalagan, J.; Christyraj, J.R.S.S.; Firer, M.A.; Choudry, M.H.A.; Anto, R.J.; Lee, Y.J. The emerging role of selenium metabolic pathways in cancer: New therapeutic targets for cancer. J. Cell. Biochem. 2022, 123, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Phadnis, P.P. Synthesis Strategies for Organoselenium Compounds and Their Potential Applications in Human Life. In Handbook on Synthesis Strategies for Advanced Materials; Springer: Berlin/Heidelberg, Germany, 2021; pp. 537–641. [Google Scholar] [CrossRef]
- Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawska, A.; Bielawski, K. Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity. Nutrients 2021, 13, 1649. [Google Scholar] [CrossRef] [PubMed]
- Handy, D.E.; Joseph, J.; Loscalzo, J. Selenium, a Micronutrient that Modulates Cardiovascular Health via Redox Enzymology. Nutrients 2021, 13, 3238. [Google Scholar] [CrossRef] [PubMed]
- Schomburg, L. The other view: The trace element selenium as a micronutrient in thyroid disease, diabetes, and beyond. Hormones 2020, 19, 15–24. [Google Scholar] [CrossRef]
- Xu, J.; Gong, Y.; Sun, Y.; Cai, J.; Liu, Q.; Bao, J.; Yang, J.; Zhang, Z. Impact of Selenium Deficiency on Inflammation, Oxidative Stress, and Phagocytosis in Mouse Macrophages. Biol. Trace Elem. Res. 2020, 194, 237–243. [Google Scholar] [CrossRef]
- Li, B.; Li, W.; Tian, Y.; Guo, S.; Qian, L.; Xu, D.; Cao, N. Selenium-Alleviated Hepatocyte Necrosis and DNA Damage in Cyclophosphamide-Treated Geese by Mitigating Oxidative Stress. Biol. Trace Elem. Res. 2020, 193, 508–516. [Google Scholar] [CrossRef]
- Singh, F.V.; Wirth, T. Selenium reagents as catalysts. Catal. Sci. Technol. 2019, 9, 1073–1091. [Google Scholar] [CrossRef]
- Sanmartín, C.; Ruberte, A.C.; Ibáñez, E.; Moreno, E.; Espuelas, S.; Plano, D. Selenium Entities: Promising Scaffolds for the Treatment of Cancer and Leishmania. Curr. Org. Synth. 2017, 14, 1075–1081. [Google Scholar] [CrossRef]
- Bevinakoppamath, S.; Ahmed, A.M.S.; Ramachandra, S.C.; Vishwanath, P.; Prashant, A. Chemopreventive and Anticancer Property of Selenoproteins in Obese Breast Cancer. Front. Pharmacol. 2021, 12, 618172. [Google Scholar] [CrossRef]
- Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol. 2021, 95, 1179–1226. [Google Scholar] [CrossRef]
- Shaaban, S.; Zarrouk, A.; Vervandier-Fasseur, D.; Al-Faiyz, Y.S.; El-Sawy, H.; Althagafi, I.; Andreoletti, P.; Cherkaoui-Malki, M. Cytoprotective organoselenium compounds for oligodendrocytes. Arab. J. Chem. 2021, 14, 103051. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, H.; Hou, L.; Chen, T. Rational design and action mechanisms of chemically innovative organoselenium in cancer therapy. Chem. Commun. 2020, 56, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Bartolini, D.; Sancineto, L.; de Bem, A.F.; Tew, K.D.; Santi, C.; Radi, R.; Toquato, P.; Galli, F. Selenocompounds in Cancer Therapy: An Overview. Adv. Cancer Res. 2017, 136, 259–302. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.; Fu, L.; Lu, Y.; Jiang, W.; Jee, M.H.; Liu, R.; Li, Z.; Che, G.; Woo, H.Y.; Liu, C. NIR-Absorbing Electron Acceptor Based on a Selenium-Heterocyclic Core Attaching to Phenylalkyl Side Chains for Polymer Solar Cells with 17.3% Efficiency. ACS Appl. Mater. Interfaces 2022, 14, 7082–7092. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, Y.; Tang, H.; Wang, L.; Yu, H.; Cao, D. Selenium-containing D-A-D-type dopant-free hole transport materials for perovskite solar cells. Dye. Pigment. 2021, 191, 109339. [Google Scholar] [CrossRef]
- Thomas, J.; Dong, Z.; Dehaen, W.; Smet, M. Selenium/Tellurium-Containing Hyperbranched Polymers: Effect of Molecular Weight and Degree of Branching on Glutathione Peroxidase-Like Activity. Macromol. Rapid Commun. 2012, 33, 2127–2132. [Google Scholar] [CrossRef]
- Pons, D.G.; Moran, C.; Alorda-Clara, M.; Oliver, J.; Roca, P.; Sastre-Serra, J. Micronutrients Selenomethionine and Selenocysteine Modulate the Redox Status of MCF-7 Breast Cancer Cells. Nutrients 2020, 12, 865. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, B.R.; Roberts, B.R.; Bush, A.I.; Hare, D.J. Selenium, selenoproteins and neurodegenerative diseases. Metallomics 2015, 7, 1213–1228. [Google Scholar] [CrossRef] [Green Version]
- Metanis, N.; Hilvert, D. Natural and synthetic selenoproteins. Curr. Opin. Chem. Biol. 2014, 22, 27–34. [Google Scholar] [CrossRef]
- Benelli, J.L.; Poester, V.R.; Munhoz, L.S.; Melo, A.M.; Trápaga, M.R.; Stevens, D.A.; Xavier, M.O. Ebselen and diphenyl diselenide against fungal pathogens: A systematic review. Med. Mycol. 2021, 59, 409–421. [Google Scholar] [CrossRef]
- Weglarz-Tomczak, E.; Tomczak, J.M.; Talma, M.; Brul, S. Ebselen as a highly active inhibitor of PLProCoV2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z.; Fu, J.; Yin, H.; Xiong, K.; Tan, Q.; Jin, H.; Li, J.; Wang, T.; Tang, W.; et al. Ethaselen: A potent mammalian thioredoxin reductase 1 inhibitor and novel organoselenium anticancer agent. Free Radic. Biol. Med. 2012, 52, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; Ashmawy, A.M.; Negm, A.; Wessjohann, L.A. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur. J. Med. Chem. 2019, 179, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; Vervandier-Fasseur, D.; Andreoletti, P.; Zarrouk, A.; Richard, P.; Negm, A.; Manolikakes, G.; Jacob, C.; Cherkaoui-Malki, M. Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes. Bioorganic Chem. 2018, 80, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; Negm, A.; Sobh, M.A.; Wessjohann, L.A. Organoselenocyanates and symmetrical diselenides redox modulators: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2015, 97, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Kinney, A.E.P.; Zheng, C. Selenium-Ligated Palladium (II) Complexes as Highly Active Catalysts for Carbon−Carbon Coupling Reactions: The Heck Reaction. Org. Lett. 2004, 6, 2997–2999. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; Diestel, R.; Hinkelmann, B.; Muthukumar, Y.; Verma, R.P.; Sasse, F.; Jacob, C. Novel peptidomimetic compounds containing redox active chalcogens and quinones as potential anticancer agents. Eur. J. Med. Chem. 2012, 58, 192–205. [Google Scholar] [CrossRef]
- Shaaban, S.; Arafat, M.A.; Gaffer, H.E.; Hamama, W.S. Synthesis and anti-tumor evaluation of novel organoselenocyanates and symmetrical diselenides dyestuffs. Pharma Chem. 2014, 6, 186–193. [Google Scholar]
- El-Lateef, H.M.A.; Shaaban, S.; Khalaf, M.M.; Toghan, A.; Shalabi, K. Synthesis, experimental, and computational studies of water soluble anthranilic organoselenium compounds as safe corrosion inhibitors for J55 pipeline steel in acidic oilfield formation water. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 625, 126894. [Google Scholar] [CrossRef]
- Ma, Y.T.; Liu, M.C.; Zhou, Y.B.; Wu, H.Y. Synthesis of Organoselenium Compounds with Elemental Selenium. Adv. Synth. Catal. 2021, 363, 5386–5406. [Google Scholar] [CrossRef]
- Zhao, X.; Liao, L. Modern Organoselenium Catalysis: Opportunities and Challenges. Synlett 2021, 32, 1262–1268. [Google Scholar] [CrossRef]
- Lenardão, E.J.; Santi, C.; Sancineto, L. New Frontiers in Organoselenium Compounds; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Jain, V.K.; Priyadarsini, K.I. Organoselenium Compounds in Biology and Medicine; The Royalty Society of Chemistry: London, UK, 2017. [Google Scholar]
- Shaaban, S.; Arafat, M.A.; Hamama, W.S. Vistas in the domain of organo selenocyanates. Arkivoc 2014, i, 470–505. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Ahmad, R.; Azad, I.; Raza, S.; Joshi, S.; Khan, A.R. Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone. Comput. Biol. Chem. 2018, 75, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; Abdel-Wahab, B.F. Groebke-Blackburn-Bienaymé multicomponent reaction: Emerging chemistry for drug discovery. Mol. Divers. 2016, 20, 233–254. [Google Scholar] [CrossRef]
- Wang, S.-L.; Zhang, G.; Jie, D.; Jiang, B.; Wang, X.-H.; Tu, S.-J. Microwave-Assisted Multicomponent Reactions: Rapid and Regioselective Formation of New Extended Angular Fused Aza-Heterocycles. Comb. Chem. High Throughput Screen. 2012, 15, 400–410. [Google Scholar] [CrossRef]
- Dömling, A.; Beck, B.; Fuchs, T.; Yazbak, A. Parallel Synthesis of Arrays of Amino-Acid-Derived Isocyanoamides Useful as Starting Materials in IMCR. J. Comb. Chem. 2006, 8, 872–880. [Google Scholar] [CrossRef]
- Ulaczyk-Lesanko, A.; Hall, D.G. Wanted: New multicomponent reactions for generating libraries of polycyclic natural products. Curr. Opin. Chem. Biol. 2005, 9, 266–276. [Google Scholar] [CrossRef]
- Pirrung, M.C.; Das Sarma, K. Multicomponent Reactions Are Accelerated in Water. J. Am. Chem. Soc. 2004, 126, 444–445. [Google Scholar] [CrossRef]
- Kolb, J.; Beck, B.; Almstetter, M.; Heck, S.; Herdtweck, E.; Domling, A. New MCRs: The first 4-component reaction leading to 2,4-disubstituted thiazoles. Mol. Divers. 2003, 6, 297–313. [Google Scholar] [CrossRef]
- Ugi, I.; Heck, S. The multicomponent reactions and their libraries for natural and preparative chemistry. Comb. Chem. High Throughput Screen. 2001, 4, 1–34. [Google Scholar] [CrossRef]
- Burchak, O.N.; Mugherli, L.; Ostuni, M.; Lacapère, J.J.; Balakirev, M.Y. Combinatorial Discovery of Fluorescent Pharmacophores by Multicomponent Reactions in Droplet Arrays. J. Am. Chem. Soc. 2011, 133, 10058–10061. [Google Scholar] [CrossRef] [PubMed]
- Domling, A. The discovery of new isocyanide-based multi-component reactions. Curr. Opin. Chem. Biol. 2000, 4, 318–323. [Google Scholar] [CrossRef]
- Suay-García, B.; Bueso-Bordils, J.I.; Falcó, A.; Antón-Fos, G.M.; Alemán-López, P.A. Virtual Combinatorial Chemistry and Pharmacological Screening: A Short Guide to Drug Design. Int. J. Mol. Sci. 2022, 23, 1620. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.P.; Williams, L.; Bridges, T.M.; Daniels, R.N.; Weaver, D.; Lindsley, C.W. Application of Combinatorial Chemistry Science on Modern Drug Discovery. J. Comb. Chem. 2008, 10, 345–354. [Google Scholar] [CrossRef]
- Semreen, M.H.; El-Awady, R.; Abu-Odeh, R.A.; Saber-Ayad, M.; Al-Qawasmeh, R.; Chouaib, S.; Voelter, W.; Al-Tel, T.H. Tandem Multicomponent Reactions Toward the Design and Synthesis of Novel Antibacterial and Cytotoxic Motifs. Curr. Med. Chem. 2013, 20, 1445–1459. [Google Scholar] [CrossRef]
- Chéron, N.; Ramozzi, R.; El Kaïm, L.; Grimaud, L.; Fleurat-Lessard, P. Challenging 50 Years of Established Views on Ugi Reaction: A Theoretical Approach. J. Org. Chem. 2012, 77, 1361–1366. [Google Scholar] [CrossRef]
- Gulevich, A.V.; Zhdanko, A.G.; Orru, R.V.A.; Nenajdenko, V.G. Synthetic Application of Isocyanoacetic Acid Derivatives. In Isocyanide Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 109–158. [Google Scholar]
- de Oliveira, I.M.; Pimenta, D.C.; Zukerman-Schpector, J.; Stefani, H.A.; Manarin, F. Copper(i)/succinic acid cooperatively catalyzed one-pot synthesis of organoselenium-propargylamines via A3-coupling. New J. Chem. 2018, 42, 10118–10123. [Google Scholar] [CrossRef]
- Liu, H.; Fang, Y.; Yin, L.; Wang, S.-Y.; Ji, S.-J. Copper(I)-Catalyzed Ligand-Promoted Multicomponent Reactions of Isocyanides, Selenium, Amines, and Iodoarenes: Access to Highly Functionalized Carbamimidoselenoates. J. Org. Chem. 2017, 82, 10866–10874. [Google Scholar] [CrossRef]
- Aquino, T.B.; do Nascimento, J.E.R.; Dias, Í.F.C.; de Oliveira, D.H.; Barcellos, T.; Lenardão, E.J.; Perin, G.; Alves, D.; Jacob, R.G. Synthesis of (arylselanyl)- and (arylsulfenyl)-alkyl-1,2,3-triazolo-1,3,6-triazonines via a copper-catalyzed multicomponent reaction. Tetrahedron Lett. 2018, 59, 1080–1083. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Li, Y.-T.; Gao, T.; Guo, S.-S.; Yang, B.; Meng, Z.-H.; Dai, Q.-P.; Xu, Z.-B.; Wu, Q.-P. Efficient Synthesis of Diverse 5-Thio- or 5-Selenotriazoles: One-Pot Multicomponent Reaction from Elemental Sulfur or Selenium. Synthesis 2019, 51, 4170–4182. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Tang, L.; Huang, L.; Huang, Z.-S.; Ma, Y.; Wu, G. Oxidative Aminoarylselenation of Maleimides via Copper-Catalyzed Four-Component Cross-Coupling. Org. Lett. 2019, 21, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Begini, F.; Balaguez, R.A.; Larroza, A.; Lopes, E.F.; Lenardão, E.J.; Santi, C.; Alves, D. Synthesis of 4-Arylselanyl-1H-1,2,3-triazoles from Selenium-Containing Carbinols. Molecules 2021, 26, 2224. [Google Scholar] [CrossRef] [PubMed]
- Rather, R.A.; Ara, T. Copper catalyzed synthesis of 3-((arylethynyl)selanyl)-1H-indoles via selenium insertion reaction by using elemental selenium. Tetrahedron 2021, 96, 132386. [Google Scholar] [CrossRef]
- Lara, R.G.; Rosa, P.C.; Soares, L.K.; Silva, M.S.; Jacob, R.G.; Perin, G. A simple and stereoselective synthesis of (Z)-1,2-bis-arylselanyl alkenes from alkynes using KF/Al2O3. Tetrahedron 2012, 68, 10414–10418. [Google Scholar] [CrossRef]
- de Oliveira, I.M.; Vasconcelos, S.S.N.; Barbeiro, C.S.; Correra, T.C.; Shamim, A.; Pimenta, D.C.; Caracelli, I.; Zukerman-Schpector, J.; Stefani, H.A.; Manarin, F. Ytterbium(iii)-catalyzed three-component reactions: Synthesis of 4-organoselenium-quinolines. New J. Chem. 2017, 41, 9884–9888. [Google Scholar] [CrossRef]
- Sakai, N.; Horikawa, S.; Ogiwara, Y. Indium-Catalyzed Direct Conversion of Lactones into Thiolactones and Selenolactones in the Presence of Elemental Sulfur and Selenium. Synthesis 2017, 50, 565–574. [Google Scholar] [CrossRef]
- Attia, Y.A.; Abdel-Hafez, S.H. Reusable photoresponsive Ag/AgCl nanocube-catalyzed one-pot synthesis of seleno[2,3-b]pyridine derivatives. Res. Chem. Intermed. 2020, 46, 3165–3177. [Google Scholar] [CrossRef]
- Attia, Y.A.; Abdel-Hafez, S.H. Nano-Co3O4-catalyzed microwave-assisted one-pot synthesis of some seleno [2,3-b] pyridine/quinoline derivatives. Res. Chem. Intermed. 2021, 47, 3719–3732. [Google Scholar] [CrossRef]
- Trofimov, B.; Artem’Ev, A.; Gusarova, N.; Malysheva, S.; Kraikivskii, P.; Belogorlova, N. Efficient General Synthesis of Alkylammonium Diselenophosphinates via Multicomponent One-Pot Reaction of Secondary Phosphines with Elemental Selenium and Amines. Synthesis 2010, 2010, 3724–3730. [Google Scholar] [CrossRef]
- Artem’Ev, A.V.; Gusarova, N.K.; Malysheva, S.F.; Trofimov, B.A. Three-component reaction of secondary phosphines with elemental selenium and amines. Russ. J. Org. Chem. 2010, 46, 592–593. [Google Scholar] [CrossRef]
- Artem’Ev, A.V.; Gusarova, N.K.; Malysheva, S.F.; Mamatyuk, V.I.; Gatilov, Y.V.; Ushakov, I.A.; Trofimov, B.A. One-Pot Atom-Economic Synthesis of Thioselenophosphinates via a New Multicomponent Reaction of Secondary Phosphanes with Elemental Sulfur, Selenium, and Amines. Eur. J. Org. Chem. 2010, 2010, 6157–6160. [Google Scholar] [CrossRef]
- Artem’Ev, A.V.; Gusarova, N.K.; Malysheva, S.F.; Gatilov, Y.V.; Mamatyuk, V.I. Efficient Synthesis of Lupininium, Anabasinium and Quininium Thioselenophosphinates via a Multi-component Reaction between Secondary Phosphines, Sulfur, Selenium and Alkaloids. Org. Prep. Proced. Int. 2012, 44, 262–270. [Google Scholar] [CrossRef]
- de la Torre, A.F.; Ali, A.; Galetto, F.Z.; Braga, A.L.; Delgado, J.A.C.; Paixão, M.W. One-pot organocatalytic/multicomponent approach for the preparation of novel enantioenriched non-natural selenium-based peptoids and peptide–peptoid conjugates. Mol. Divers. 2020, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mosslemin, M.H.; Hassanabadi, A. Synthesis of 5-Aryl-1,3-Dimethyl-7-Selenoxopyrimidino [4,5-d] Pyrimidine-2,4 (1H,3H)-Dione. J. Chem. Res. 2018, 42, 264–266. [Google Scholar] [CrossRef]
- Liu, H.; Fang, Y.; Wang, S.-Y.; Ji, S.-J. TEMPO-Catalyzed Aerobic Oxidative Selenium Insertion Reaction: Synthesis of 3-Selenylindole Derivatives by Multicomponent Reaction of Isocyanides, Selenium Powder, Amines, and Indoles under Transition-Metal-Free Conditions. Org. Lett. 2018, 20, 930–933. [Google Scholar] [CrossRef]
- Liu, H.-W.; Fang, Y.; Wang, S.-Y.; Ji, S.-J. Base-Promoted Multicomponent Reactions: A Synthesis of 2-Amino-1,3-selenazole Derivatives. J. Org. Chem. 2020, 85, 3508–3516. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Shao, Y.; Xiong, W.; Li, R.; Chen, J. Synthesis of 3-Selenylindoles through Organoselenium-Promoted Selenocyclization of 2-Vinylaniline. J. Org. Chem. 2020, 85, 15015–15025. [Google Scholar] [CrossRef]
- Liu, H.; Cai, Z.-J.; Ji, S.-J. Access to 3-alkylselenindoles by multicomponent reaction of indoles, selenium powder and unactivated alkyl halides under transition-metal-free conditions (in press). Chin. Chem. Lett. 2022. [Google Scholar] [CrossRef]
- Li, L.; Peng, X.; Lu, J.-M.; Jiang, X. One-pot four-component assembly for diselenocarbamates. Org. Chem. Front. 2021, 8, 6642–6647. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, S.-Y.; Shen, X.-B.; Ji, S.-J. Base-promoted cascade reaction of isocyanides, selenium and amines: A practical approach to 2-aminobenzo[d][1,3]selenazines under metal-free conditions. Org. Chem. Front. 2015, 2, 1338–1341. [Google Scholar] [CrossRef]
- Fang, Y.; Zhu, Z.-L.; Xu, P.; Wang, S.-Y.; Ji, S.-J. Aerobic radical-cascade cycloaddition of isocyanides, selenium and imidamides: Facile access to 1,2,4-selenadiazoles under metal-free conditions. Green Chem. 2017, 19, 1613–1618. [Google Scholar] [CrossRef]
- Heredia, A.A.; Peñéñory, A.B. Transition-metal-free one-pot synthesis of alkynyl selenides from terminal alkynes under aerobic and sustainable conditions. Beilstein J. Org. Chem. 2017, 13, 910–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, C.P.; Phadnis, P.P.; Wadawale, A.; Priyadarsini, K.I.; Jain, V.K. One-pot synthesis of phenylseleno N-acetyl α-amino acids: Supra-molecular self-assembling in organoselenium compounds. J. Organomet. Chem. 2013, 745–746, 140–147. [Google Scholar] [CrossRef]
- Armstrong, A.; Emmerson, D.P.G. Enantioselective Synthesis of α-Alkyl, α-Vinyl Amino Acids via [2,3]-Sigmatropic Rearrangement of Selenimides. Org. Lett. 2011, 13, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhu, J.; Zou, J.; Zhang, Z.; Cheng, Z.; Zhou, N.; Zhang, W.; Zhu, X. Straightforward and Highly Efficient Synthesis of Diselenocarbamates. Org. Lett. 2012, 14, 6170–6173. [Google Scholar] [CrossRef]
- Ahn, H.R.; Cho, Y.A.; Kim, D.-S.; Chin, J.; Gyoung, Y.-S.; Lee, S.; Kang, H.; Ham, J. A Facile One-Pot Preparation of Organoselanyltrifluoroborates from Dihalobenzenes and Their Cross-Coupling Reaction. Org. Lett. 2009, 11, 361–364. [Google Scholar] [CrossRef]
- Sands, K.N.; Gelfand, B.S.; Back, T.G. One-Pot Synthesis of Aryl Selenonic Acids and Some Unexpected Byproducts. J. Org. Chem. 2021, 86, 9938–9944. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Wei, L.; Lu, J.; Jiang, X. One-Pot Four-Component Assembling for Selenoureas. J. Org. Chem. 2021, 86, 446–454. [Google Scholar] [CrossRef]
- El-Senduny, F.F.; Shabana, S.M.; Rösel, D.; Brabek, J.; Althagafi, I.; Angeloni, G.; Manolikakes, G.; Shaaban, S. Urea-functionalized organoselenium compounds as promising anti-HepG2 and apoptosis-inducing agents. Future Med. Chem. 2021, 13, 1655–1677. [Google Scholar] [CrossRef]
- Shaaban, S.; Negm, A.; Ashmawy, A.M.; Ahmed, D.; Wessjohann, L.A. Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma. Eur. J. Med. Chem. 2016, 122, 55–71. [Google Scholar] [CrossRef]
- Shaaban, S.; Sasse, F.; Burkholz, T.; Jacob, C. Sulfur, selenium and tellurium pseudopeptides: Synthesis and biological evaluation. Bioorganic Med. Chem. 2014, 22, 3610–3619. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; Negm, A.; Sobh, M.A.; Wessjohann, L.A. Expeditious Entry to Functionalized Pseudo-peptidic Organoselenide Redox Modulators via Sequential Ugi/SN Methodology. AntiCancer Agents Med. Chem. 2016, 16, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; Shabana, S.M.; Al-Faiyz, Y.S.; Manolikakes, G.; El-Senduny, F.F. Enhancing the chemosensitivity of HepG2 cells towards cisplatin by organoselenium pseudopeptides. Bioorg. Chem. 2021, 109, 104713. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-J.; Kulkarni, M.V.; Sun, C.-M. Regioselective one-pot three component synthesis of chiral 2-iminoselenazolines under sonication. RSC Adv. 2015, 5, 97113–97120. [Google Scholar] [CrossRef]
- Chen, H.; Ding, R.; Tang, H.; Pan, Y.; Xu, Y.; Chen, Y. Simultaneous Construction of C−Se and C−S Bonds via the Visible-Light-Mediated Multicomponent Cascade Reaction of Diselenides, Alkynes, and SO2. Chem.-Asian J. 2019, 14, 3264–3268. [Google Scholar] [CrossRef]
- Tuten, B.T.; Bloesser, F.R.; Marshall, D.L.; Michalek, L.; Schmitt, C.W.; Blanksby, S.J.; Barner-Kowollik, C. Polyselenoureas via Multicomponent Polymerizations Using Elemental Selenium as Monomer. ACS Macro Lett. 2018, 7, 898–903. [Google Scholar] [CrossRef]
- Wu, X.; Lin, H.; Dai, F.; Hu, R.; Tang, B.Z. Functional Polyselenoureas for Selective Gold Recovery Prepared from Catalyst-Free Multicomponent Polymerizations of Elemental Selenium. CCS Chem. 2020, 2, 191–202. [Google Scholar] [CrossRef]
- Wu, X.; He, J.; Hu, R.; Tang, B.Z. Room-Temperature Metal-Free Multicomponent Polymerizations of Elemental Selenium toward Stable Alicyclic Poly(oxaselenolane)s with High Refractive Index. J. Am. Chem. Soc. 2021, 143, 15723–15731. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaaban, S.; El-Lateef, H.M.A.; Khalaf, M.M.; Gouda, M.; Youssef, I. One-Pot Multicomponent Polymerization, Metal-, and Non-Metal-Catalyzed Synthesis of Organoselenium Compounds. Polymers 2022, 14, 2208. https://doi.org/10.3390/polym14112208
Shaaban S, El-Lateef HMA, Khalaf MM, Gouda M, Youssef I. One-Pot Multicomponent Polymerization, Metal-, and Non-Metal-Catalyzed Synthesis of Organoselenium Compounds. Polymers. 2022; 14(11):2208. https://doi.org/10.3390/polym14112208
Chicago/Turabian StyleShaaban, Saad, Hany M. Abd El-Lateef, Mai M. Khalaf, Mohamed Gouda, and Ibrahim Youssef. 2022. "One-Pot Multicomponent Polymerization, Metal-, and Non-Metal-Catalyzed Synthesis of Organoselenium Compounds" Polymers 14, no. 11: 2208. https://doi.org/10.3390/polym14112208
APA StyleShaaban, S., El-Lateef, H. M. A., Khalaf, M. M., Gouda, M., & Youssef, I. (2022). One-Pot Multicomponent Polymerization, Metal-, and Non-Metal-Catalyzed Synthesis of Organoselenium Compounds. Polymers, 14(11), 2208. https://doi.org/10.3390/polym14112208