Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of PLA—Chitosan Films by Solvent Casting
2.2.2. Thermogravimetric Analysis (TGA)
2.2.3. Differential Scanning Calorimetry (DSC)
2.2.4. Mechanical Strength
2.2.5. Fourier-Transform Infrared Spectrophotometry (FTIR)
2.2.6. Scanning Electron Microscope (SEM)
2.2.7. Evaluation of the Antimicrobial Activity of the Film Samples
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Thermogravimetric Analysis (TGA)
3.2. Differential Scanning Calorimetry (DSC)
3.3. Mechanical Strength
3.4. Fourier-Transform Infrared Spectrophotometry (FTIR)
3.5. Scanning Electron Microscope (SEM)
3.6. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable Polymers from Renewable Resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Domenek, S.; Courgneau, C.; Ducruet, V. Plasticization of Poly(Lactide) by Sorption of Volatile Organic Compounds at Low Concentration. Polym. Degrad. Stab. 2012, 97, 1871–1880. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for Chitosan Based Antimicrobial Films in Food Applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Rodríguez-Nuñez, J.; López Cervantes, J.; Sánchez-Machado, D.; Ramírez-Wong, B.; Torres-Chavez, P.; Cortez-Rocha, M. Antimicrobial Activity of Chitosan-Based Films against Salmonella typhimurium and Staphylococcus aureus. Int. J. Food Sci. Technol. 2012, 47, 2127–2133. [Google Scholar] [CrossRef]
- Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Kumar, S.; Dutta, J. Chitosan-Based Antimicrobial Coating for Improving Postharvest Shelf Life of Pineapple. Coatings 2021, 11, 1366. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Van Den Broek, L.A.M.; Knoop, R.J.I.; Kappen, F.H.J.; Boeriu, C.G. Chitosan Films and Blends for Packaging Material. Carbohydr. Polym. 2015, 116, 237–242. [Google Scholar] [CrossRef]
- Dainelli, D.; Gontard, N.; Spyropoulos, D.; Zondervan-van den Beuken, E.; Tobback, P. Active and Intelligent Food Packaging: Legal Aspects and Safety Concerns. Trends Food Sci. Technol. 2008, 19, S103–S112. [Google Scholar] [CrossRef]
- Kerry, J.P. Advances in Meat, Poultry and Seafood Packaging; Woodhead Publishing: Cambridge, UK, 2012; ISBN 978-1-84569-751-8. [Google Scholar]
- Ahmed, J.; Arfat, Y.A.; Bher, A.; Mulla, M.; Jacob, H.; Auras, R. Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil. J. Food Sci. 2018, 83, 1299–1310. [Google Scholar] [CrossRef]
- Bonilla, J.; Fortunati, E.; Vargas, M.; Chiralt, A.; Kenny, J.M. Effects of Chitosan on the Physicochemical and Antimicrobial Properties of PLA Films. J. Food Eng. 2013, 119, 236–243. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef]
- Râpă, M.; Miteluţ, A.C.; Tănase, E.E.; Grosu, E.; Popescu, P.; Popa, M.E.; Rosnes, J.T.; Sivertsvik, M.; Darie-Niţă, R.N.; Vasile, C. Influence of Chitosan on Mechanical, Thermal, Barrier and Antimicrobial Properties of PLA-Biocomposites for Food Packaging. Compos. Part B Eng. 2016, 102, 112–121. [Google Scholar] [CrossRef]
- Rhim, J.W.; Mohanty, A.K.; Singh, S.P.; Ng, P.K.W. Effect of the Processing Methods on the Performance of Polylactide Films: Thermocompression versus Solvent Casting. J. Appl. Polym. Sci. 2006, 101, 3736–3742. [Google Scholar] [CrossRef]
- Velásquez, E.; Patiño Vidal, C.; Rojas, A.; Guarda, A.; Galotto, M.J.; López de Dicastillo, C. Natural Antimicrobials and Antioxidants Added to Polylactic Acid Packaging Films. Part I: Polymer Processing Techniques. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3388–3403. [Google Scholar] [CrossRef] [PubMed]
- Mayekar, P.C.; Castro-Aguirre, E.; Auras, R.; Selke, S.; Narayan, R. Effect of Nano-Clay and Surfactant on the Biodegradation of Poly(Lactic Acid) Films. Polymers 2020, 12, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kmetty, Á.; Litauszki, K. Development of Poly (Lactide Acid) Foams with Thermally Expandable Microspheres. Polymers 2020, 12, 463. [Google Scholar] [CrossRef] [Green Version]
- Martin, O.; Avérous, L. Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer 2001, 42, 6209–6219. [Google Scholar] [CrossRef]
- Courgneau, C.; Domenek, S.; Guinault, A.; Avérous, L.; Ducruet, V. Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). J. Polym. Environ. 2011, 19, 362–371. [Google Scholar] [CrossRef]
- Al-Manhel, A.J.; Al-Hilphy, A.R.S.; Niamah, A.K. Extraction of Chitosan, Characterisation and Its Use for Water Purification. J. Saudi Soc. Agric. Sci. 2018, 17, 186–190. [Google Scholar] [CrossRef] [Green Version]
- No, H.K.; Meyers, S.P.; Lee, K.S. Isolation and Characterization of Chitin from Crawfish Shell Waste. J. Agric. Food Chem. 1989, 37, 575–579. [Google Scholar] [CrossRef]
- Fischer, E.W.; Sterzel, H.J.; Wegner, G. Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions. Kolloid-Z. Z. Polym. 1973, 251, 980–990. [Google Scholar] [CrossRef]
- ASTM D-882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM: West Conshohocken, PA, USA, 2015.
- Ahmed, J.; Mulla, M.Z.; Arfat, Y.A. Thermo-Mechanical, Structural Characterization and Antibacterial Performance of Solvent Casted Polylactide/Cinnamon Oil Composite Films. Food Control 2016, 69, 196–204. [Google Scholar] [CrossRef]
- Mania, S.; Partyka, K.; Pilch, J.; Augustin, E.; Cieślik, M.; Ryl, J.; Jinn, J.R.; Wang, Y.J.; Micha\lowska, A.; Tylingo, R. Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation. Molecules 2019, 24, 4532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kervran, M.; Vagner, C.; Cochez, M.; Ponçot, M.; Saeb, M.R.; Vahabi, H. A Review on Thermal Degradation of Polylactic Acid (PLA)/Polyhydroxybutyrate (PHB) Blends. Polym. Degrad. Stab. 2022, 109995. [Google Scholar] [CrossRef]
- Diab, M.A.; El-Sonbati, A.Z.; Bader, D.M.D. Thermal Stability and Degradation of Chitosan Modified by Benzophenone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1057–1062. [Google Scholar] [CrossRef]
- Atiqah, M.A.N.; Sharifah, I.S.S.; Yose, F.B.; Maizatulnisa, O.; Norhashimah, S. Characterization of Poly (Lactic Acid)/Poly (Ethylene) Glycol Blends Prepared for Melt Drawn Spinning Process. Mater. Today Proc. 2019, 17, 889–897. [Google Scholar] [CrossRef]
- Wongphan, P.; Khowthong, M.; Supatrawiporn, T.; Harnkarnsujarit, N. Novel Edible Starch Films Incorporating Papain for Meat Tenderization. Food Packag. Shelf Life 2022, 31, 100787. [Google Scholar] [CrossRef]
- Peesan, M.; Supaphol, P.; Rujiravanit, R. Effect of Casting Solvent on Characteristics of Hexanoyl Chitosan/Polylactide Blend Films. J. Appl. Polym. Sci. 2007, 105, 1844–1852. [Google Scholar] [CrossRef]
- Martel-Estrada, S.A.; Martínez-Pérez, C.A.; Chacón-Nava, J.G.; García-Casillas, P.E.; Olivas-Armendariz, I. Synthesis and Thermo-Physical Properties of Chitosan/Poly(Dl-Lactide-Co-Glycolide) Composites Prepared by Thermally Induced Phase Separation. Carbohydr. Polym. 2010, 81, 775–783. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Harnkarnsujarit, N. Morphology and Permeability of Bio-Based Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Butylene Succinate) (PBS) and Linear Low-Density Polyethylene (LLDPE) Blend Films Control Shelf-Life of Packaged Bread. Food Control 2022, 132, 108541. [Google Scholar] [CrossRef]
- Han, W.; Ren, J.; Xuan, H.; Ge, L. Controllable Degradation Rates, Antibacterial, Free-Standing and Highly Transparent Films Based on Polylactic Acid and Chitosan. Colloids Surf. Physicochem. Eng. Asp. 2018, 541, 128–136. [Google Scholar] [CrossRef]
- Salazar, R.; Domenek, S.; Ducruet, V. Interactions of Flavoured Oil In-Water Emulsions with Polylactide. Food Chem. 2014, 148, 138–146. [Google Scholar] [CrossRef]
- Kalita, N.K.; Nagar, M.K.; Mudenur, C.; Kalamdhad, A.; Katiyar, V. Biodegradation of Modified Poly(Lactic Acid) Based Biocomposite Films under Thermophilic Composting Conditions. Polym. Test. 2019, 76, 522–536. [Google Scholar] [CrossRef]
- Suyatma, N.E.; Copinet, A.; Tighzert, L.; Coma, V. Mechanical and Barrier Properties of Biodegradable Films Made from Chitosan and Poly (Lactic Acid) Blends. J. Polym. Environ. 2004, 12, 1–6. [Google Scholar] [CrossRef]
- Fathima, P.E.; Panda, S.K.; Ashraf, P.M.; Varghese, T.O.; Bindu, J. Polylactic Acid/Chitosan Films for Packaging of Indian White Prawn (Fenneropenaeus indicus). Int. J. Biol. Macromol. 2018, 117, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Chatkitanan, T.; Harnkarnsujarit, N. Effects of Nitrite Incorporated Active Films on Quality of Pork. Meat Sci. 2021, 172, 108367. [Google Scholar] [CrossRef]
- Quiroz-Castillo, J.M.; Rodríguez-Félix, D.E.; Grijalva-Monteverde, H.; Lizárraga-Laborín, L.L.; Castillo-Ortega, M.M.; del Castillo-Castro, T.; Rodríguez-Félix, F.; Herrera-Franco, P.J. Preparation and Characterization of Films Extruded of Polyethylene/Chitosan Modified with Poly(Lactic Acid). Materials 2015, 8, 137–148. [Google Scholar] [CrossRef] [Green Version]
- El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. Extraction, Chemical Modification and Characterization of Chitin and Chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. [Google Scholar] [CrossRef]
- Kucukgulmez, A.; Celik, M.; Yanar, Y.; Sen, D.; Polat, H.; Kadak, A.E. Physicochemical Characterization of Chitosan Extracted from Metapenaeus stebbingi Shells. Food Chem. 2011, 126, 1144–1148. [Google Scholar] [CrossRef] [Green Version]
- Raafat, D.; Sahl, H.-G. Chitosan and Its Antimicrobial Potential—A Critical Literature Survey. Microb. Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- No, H.K.; Young Park, N.; Ho Lee, S.; Meyers, S.P. Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights. Int. J. Food Microbiol. 2002, 74, 65–72. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2012, 3, 203–230. [Google Scholar] [CrossRef] [Green Version]
- Ardila, N.; Daigle, F.; Heuzey, M.C.; Ajji, A. Antibacterial Activity of Neat Chitosan Powder and Flakes. Molecules 2017, 22, 100. [Google Scholar] [CrossRef] [PubMed]
- Zivanovic, S.; Davis, R.H.; Golden, D.A. 8 - Chitosan as an Antimicrobial in Food Products. In Handbook of Natural Antimicrobials for Food Safety and Quality; Taylor, T.M., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 153–181. ISBN 978-1-78242-034-7. [Google Scholar]
- Katekhong, W.; Wongphan, P.; Klinmalai, P.; Harnkarnsujarit, N. Thermoplastic Starch Blown Films Functionalized by Plasticized Nitrite Blended with PBAT for Superior Oxygen Barrier and Active Biodegradable Meat Packaging. Food Chem. 2022, 374, 131709. [Google Scholar] [CrossRef]
- Chatkitanan, T.; Harnkarnsujarit, N. Development of Nitrite Compounded Starch-Based Films to Improve Color and Quality of Vacuum-Packaged Pork. Food Packag. Shelf Life 2020, 25, 100521. [Google Scholar] [CrossRef]
Serie * | PLA (%) | PEG (%) ** | Synthesized CH (%) ** | Commercial CH (%) ** |
---|---|---|---|---|
PLA-PG | 100 | 10 | - | - |
PLA-PG-50F | 100 | 10 | 0.5 | - |
PLA-PG-100F | 100 | 10 | 1.0 | - |
PLA-PG-200F | 100 | 10 | 2.0 | - |
PLA-PG-50C | 100 | 10 | - | 0.5 |
PLA-PG-100C | 100 | 10 | - | 1.0 |
PLA-PG-200C | 100 | 10 | - | 2.0 |
Serie | Ti (°C) | Tmax (°C) | T01 | T05 | T09 |
---|---|---|---|---|---|
PLA-PG | 239.55 | 332.27 | 282.32 | 327.89 | 358.76 |
PLA-PG-50F | 220.26 | 321.65 | 278.6 | 317.05 | 344.82 |
PLA-PG-100F | 227.07 | 322.28 | 279.42 | 315.67 | 342.91 |
PLA-PG-200F | 228.20 | 332.96 | 290.38 | 327.06 | 344.82 |
PLA-PG-50C | 222.53 | 322.97 | 277.90 | 318.1 | 353.76 |
PLA-PG-100C | 237.28 | 337.82 | 294.19 | 330.87 | 356.56 |
PLA-PG-200C | 215.72 | 317.22 | 281.71 | 314.73 | 341.1 |
Serie | Tg (°C) | Tc (°C) | Tm (°C) | Xc (%) |
---|---|---|---|---|
PLA | 59.78 ± 0.16 a | 115.48 ± 2.98 a | 149.71 ± 0.75 a | 1.23 ± 0.14 a |
PLA-PG | 35.95 ± 0.72 b,c | 88.00 ± 0.86 b | 150.33 ± 0.13 a,b | 2.90 ± 0.66 a |
PLA-PG-50F | 35.98 ± 0.20 b,c | 87.15 ± 1.18 b | 150.58 ± 0.01 a,b | 1.61 ± 0.35 a |
PLA-PG-100F | 36.25 ± 0.94 b | 89.74 ± 1.48 b | 150.50 ± 0.41 a,b | 2.86 ± 1.31 a |
PLA-PG-200F | 36.74 ± 0.35 b | 89.28 ± 0.29 b | 150.39 ± 0.35 a,b | 2.30 ± 0.74 a |
PLA-PG-50C | 36.48 ± 0.04 b | 88.00 ± 0.02 b | 150.38 ± 0.27 a,b | 2.57 ± 0.28 a |
PLA-PG-100C | 34.67 ± 0.91 c | 87.62 ± 1.77 b | 150.13 ± 0.75 a,b | 2.27 ± 0.44 a |
PLA-PG-200C | 37.31 ± 0.57 b | 89.75 ± 0.14 b | 151.01 ± 0.10 b | 1.71 ± 1.04 a |
Serie | Mean Maximum Stress (MPa) | Mean Strain at Break (%) | Modulus of Elasticity (MPa) |
---|---|---|---|
PLA | 17.53 ± 3.09 a,b | 2.16 ± 0.36 a | 1233.33 ± 159.48 a |
PLA-PG | 24.27 ± 4.74 a | 7.11 ± 3.14 b | 3050.00 ± 440.34 b |
PLA-PG-50C | 13.99 ± 5.70 b | 3.48 ± 0.96 a | 1783.33 ± 698.95 a |
PLA-PG-100C | 11.88 ± 8.91 b | 2.92 ± 1.20 a | 1406.33 ± 1168.51 a |
PLA-PG-200C | 14.10 ± 4.29 b | 3.02 ± 1.06 a | 1773.33 ± 637.91 a |
PLA-PG-50F | 13.63 ± 0.68 b | 4.46 ± 0.61 a | 1110.00 ± 65.57 a |
PLA-PG-100F | 15.87 ± 2.93 a,b | 3.15 ± 1.04 a | 1946.67 ± 358.52 a |
PLA-PG-200F | 10.99 ± 0.98 b | 3.29 ± 1.27 a | 1463.33 ± 119.30 a |
Serie | Average Cell Number (CFU/mL) | Log Reduction | ||
---|---|---|---|---|
S. aureus | S. typhimurium | S. aureus | S. typhimurium | |
Control | 6.42 × 1010 | 3.22 × 1010 | ||
CH 1% | 4.68 × 108 | 3.05 × 109 | 2.14 ± 0.06 d | 1.02 ± 0.06 b |
PLA | 6.74 × 1010 | 2.91 × 1010 | −0.02 ± 0.10 a | 0.05 ± 0.02 a |
PLA-PG | 5.76 × 1010 | 2.33 × 1010 | 0.05 ± 0.04 a | 0.14 ± 0.05 a |
PL-PG-50F | 3.33 × 1010 | 2.67 × 1010 | 0.29 ± 0.31 a,b | 0.05 ± 0.01 a |
PL-PG-100F | 5.14 × 109 | 1.04 × 1010 | 1.10 ± 0.76 b,c | 0.11 ± 0.09 a |
PL-PG-200F | 3.62 × 109 | 2.46 × 1010 | 1.29 ± 0.57 c,d | 0.09 ± 0.23 a |
PL-PG-50C | 4.12 × 1010 | 2.90 × 1010 | 0.19 ± 0.03 a | 0.09 ± 0.32 a |
PL-PG-100C | 3.08 × 109 | 2.59 × 1010 | 1.32 ± 0.17 c,d | 0.48 ± 0.15 a |
PL-PG-200C | 4.64 × 109 | 2.58 × 1010 | 1.14 ± 0.43 b,c | 0.17 ± 0.46 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, R.; Salas-Gomez, V.; Alvarado, A.A.; Baykara, H. Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films. Polymers 2022, 14, 2266. https://doi.org/10.3390/polym14112266
Salazar R, Salas-Gomez V, Alvarado AA, Baykara H. Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films. Polymers. 2022; 14(11):2266. https://doi.org/10.3390/polym14112266
Chicago/Turabian StyleSalazar, Rómulo, Veronica Salas-Gomez, Adriana A. Alvarado, and Haci Baykara. 2022. "Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films" Polymers 14, no. 11: 2266. https://doi.org/10.3390/polym14112266
APA StyleSalazar, R., Salas-Gomez, V., Alvarado, A. A., & Baykara, H. (2022). Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films. Polymers, 14(11), 2266. https://doi.org/10.3390/polym14112266