PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement
Abstract
:1. Introduction
Mechanical and Physical Properties | PEEK | GFR-PEEK | CFR-PEEK | Ti6Al4V | Cortical Bone | Dentin |
---|---|---|---|---|---|---|
Specific gravity (g/cm3) | 1.31 | 1.51 | 1.41 | 4.34 | 1.92 | |
Young’s modulus (GPa) | 3–4 | 12 | 18 | 110–130 | 14 | 18.6 |
Tensile strength (MPa) | 110 | 97 | 131 | 976 | 104–121 | 104 |
Tensile modulus of elasticity (GPa) | 4.3 | 6.9 | 7.6 | 113 | 13.6–28.3 | |
Tensile elongation (at break) (%) | 40 | 2 | 5 | 6–10 | 1–3 | |
References | [7,21] | [21,22] | [31] | [7] |
2. Fixed Dental Prostheses
2.1. Crowns
2.2. Fixed Partial Dentures
2.3. Post-and-Core
2.4. Other Fixed Dental Prostheses
3. Strategies for Improving Adhesion
3.1. Acid Etching
3.2. Plasma Treatment
Strategies | Microscopic Analyses (SEM or AFM Images) | Mean Roughness Values (Ra, μm) | Wettability Assays, Surface Contact Angle (θ, ◦) Mean Values | Shear Bond Strength (SBS, MPa) | Reference, Author, Year |
---|---|---|---|---|---|
H, O, H/O (1:1) plasma treatment | After 30 min, no significant difference in Ra (O, 0.40 ± 0.07 μm; H, 0.42 ± 0.07 μm; H/O, 0.43 ± 0.06 μm; untreated, 0.41 ± 0.07 μm) | After 10 min, θ become stable: H plasma (41.67 ± 1.15°) < O plasma and H/O plasma (almost 0°) | Fu et al., 2021 [91] | ||
He plasma treatment 1 min for CFR-PEEK and GFR-PEEK in distilled water | In treated C-PEEK and G-PEEK, some pieces of broken adhesive resin were visible along the polishing streaks. | CFR-PEEK: a higher wettability (37.2 ± 2.6°) than control (88.6 ± 0.9°) GFR-PEEK: a higher wettability (37.3 ± 4.2°) than control (74.4 ± 3.0°) | Treated CFR- and GFR-PEEK exhibited significantly higher SBS than control | Okwa et al., 2020 [36] | |
N, Ar, O, Air plasma treatment 10 min | The surface of plasma treated PEEK transformed to a polar surface | An average surface roughness value of 1.01 ± 0.21 μm after polishing | N (10.04 ± 1.84 MPa) > Ar (9.56 ± 1.35 MPa) > Air (9.27 ± 1.33 MPa) > O (8.59 ± 1.64 MPa) > Untreated (5.38 ± 2.90 MPa) | Younis et al., 2019 [92] | |
O2 plasma and Ar/O2 (1:1) plasma 35 min treatment for unfilled PEEK veneered with composite (Gradia) | O2 plasma treated (0.76 ± 0.21 μm) > untreated (0.75 ± 0.14 μm); Ar/O2 plasma treated (0.68 ± 0.21 μm) < untreated (0.79 ± 0.22 μm) | Ar/O2 plasma treated (θ at 2.8 ± 1.3°) < O2 plasma treated (θ at 0.0 ± 0.0°) | O2 plasma treated (28.69 ± 4.20 MPa) > Ar/O2 plasma treated (24.48 ± 3.22 MPa) > untreated (18.25 ± 5.15 MPa) | Bötel et al., 2018 [90] | |
O2 plasma and Ar/O2 (1:1) plasma 35 min treatment for 20% TiO2-filled PEEK veneered with composite (Gradia) | O2 plasma treated (2.1 ± 0.78 μm) > untreated (2.08 ± 0.89 μm); Ar/O2 plasma treated (2.86 ± 0.21 μm) < untreated (3.13 ± 0.15 μm) | Ar/O2 plasma treated (θ at 2.0 ± 1.6°) < O2 plasma treated (θ at 0.0 ± 0.0°) | Ar/O2 plasma treated (31.54 ± 3.49 MPa) > O2 plasma treated (30.38 ± 5.56 MPa) > untreated (17.31 ± 1.93 MPa) | Bötel et al., 2018 [90] |
3.3. Sandblasting
Strategies | Microscopic Analyses (SEM or AFM Images) | Mean Roughness Values (Ra, μm) | Wettability Assays, Surface Contact Angle (θ, °) Mean Values | Shear Bond Strength (SBS, MPa) | Reference, Author, Year |
---|---|---|---|---|---|
Sandblasting (S, 50 µm), Er:YAG laser treatment (L), oxygen plasma treatment (P), and their combination (PS, LS) | S: grooved fissured surface structure L and P: shallower irregular surfaces PS and LS: the most irregular surfaces | LS (2.9 ± 0.1 μm) and PS (2.7 ± 0.1 μm) > S > L (1.3 ± 0.1 μm) and P (1.4 ± 0.1 μm) > Untreated | LS (θ at 6.9 ± 0.7°) and PS (θ at 4.9 ± 0.2°) > S (θ at 8.8 ± 0.6°) > L (θ at 19.6 ± 0.8°) and P (θ at 21.5 ± 2.2°) > Untreated (θ at 34.6 ± 2.2°) | LS (22.0 ± 1.3 MPa) and PS (21.2 ± 0.8 MPa) > S (17.4 ± 2.4 MPa) > L (10.1 ± 1.2 MPa) and P (12.4 ± 0.7 MPa) > Untreated (8.3 ± 0.6 MPa) | Taha et al., 2022 [94] |
Sandblasting (S, 50 μm, at 0.28 MPa for 15 s); Silica-modified sandblasting (SS, 30 μm, at 0.28 MPa for 15 s) | No significant increase of Ra values after various treatment | No significant increase of SBS values after various treatment | Tosun et al., 2022 [97] | ||
110 µm alumina particles, 98% sulfuric acid etching, 10–20 µm synthetic diamond particles. | Alumina particles: increased roughness; Acid etching: dissolved the surface; Synthetic diamond particles: Failed to penetrate deep into the surface | 98% sulfuric acid (2.106 ± 0.186 μm) > alumina particles (1.706 ± 0.160 μm) > synthetic diamond particles (1.101 ± 0.167 μm) > Untreated (0.147 ± 0.024 μm) | 98% sulfuric acid (7.52 ± 1.20 MPa) > alumina particles (3.91 ± 0.59 MPa) > synthetic diamond particles (2.27 ± 0.39 MPa) > Untreated (−) | Parkar et al., 2021 [95] | |
Silica-modified sandblasting (SS, 30 μm, at 0.3 MPa for 15 s); Sandblasting (S, 50 μm, at 0.28 MPa for 15 s); Acetone treatment (99% for 60 s); Sulfuric acid etching (A, 98% for 60 s); Yb:PL laser irradiation (L, at 5 W, 4 Hz for 30 s). | Yb:PL laser (2.85 ± 0.20 μm) > Sandblasting (2.26 ± 0.33 μm) > Acetone (0.54 ± 0.17 μm) or Untreated (0.53 ± 0.15 μm) > Silica-modified sandblasting (0.42 ± 0.03 μm) > Sulfuric acid (0.35 ± 0.14 μm) | Silica-modified sandblasting (θ at 48.4 ± 6.28°) > Acetone (θ at 70.19 ± 4.49°) or Sulfuric acid (θ at 76.07 ± 6.61°) > Untreated (θ at 79.67 ± 4.97°) > Sandblasting (θ at 84.83 ± 4.56°) and Yb:PL laser (θ at 103.6 ± 4.88°) | Sulfuric acid (15.82 ± 4.23 MPa) > Yb:PL laser (11.46 ± 1.97 MPa) > Sandblasting (10.81 ± 3.06 MPa) > Silica-modified sandblasting (8.07 ± 2.54 MPa) > Acetone (5.98 ± 1.54 MPa) or Untreated (5.09 ± 2.14 MPa) | Çulhaoğlu et al., 2020 [98] |
3.4. Laser Treatment
Strategies | Microscopic Analyses (SEM or AFM Images) | Mean Roughness Values (Ra, μm) | Shear Bond Strength (SBS, MPa) | Reference, Author, Year |
---|---|---|---|---|
Er:YAG, Nd:YAG, and KTP lasers (3 W, 20 Hz for 30 s) | Er:YAG: rougher surfaces without any discernable defects; Nd:YAG: regular and deep pores with distinct pore borders and a relatively rough surface; KTP: carbonization on surfaces | Nd:YAG (16.35 ± 0.63 MPa) > Er:YAG (14.29 ± 0.49 MPa) > KTP (11.3 ± 0.41 MPa) > Untreated (8.09 ± 0.55 MPa) | Ulgey et al., 2021 [104] | |
Er:YAG laser (1.5 W, 20 s) and CO2 laser (4 W, 50 s). | Er:YAG (14.4 ± 1.7 MPa) > CO2 (10.6 ± 1.9 MPa) > Untreated (7.7 ± 1.8 MPa) | Jahandideh et al., 2020 [102] | ||
100-μm deep, 150-μm deep, and 200-μm deep Nd:YVO4 laser groove treatments | Nd:YVO4 laser: a surface lattice pattern with regular grooves and undercuts | 200-μm (19.9 ± 1.7 MPa) > 150-μm (19.6 ± 1.6 MPa) > 100-μm (15.9 ± 1.8 MPa) > Untreated (0.5 ± 0.1 MPa) | 200-μm (15.0 ± 5.3 MPa) > 150-μm (14.4 ± 4.8 MPa) > 100-μm (13.2 ± 5.4 MPa) > Untreated (4.5 ± 2.9 MPa) | Tsuka et al., 2019 [80] |
Laser ablation with 200-μm holes spaced 400 μm apart (D2E4); laser ablation with 200-μm holes spaced 600 μm apart (D2E6); sulfuric acid etching; laser ablation (D2E4) followed by acid etching | CO2 laser: good quality and reproducible holes on surfaces, but the resin cement did not penetrate the holes; Sulfuric acid etching: increase roughness; Combination: acid etching smoothed the surface of the samples, decreasing the number of pores and irregularities | PEEK: Sulfuric acid > D2E4 or D2E6 > Combination; GFR-PEEK: D2E4 or D2E6 > Sulfuric acid; CFR-PEEK: D2E6 > Sulfuric acid | Henriques et al., 2018 [101] | |
Untreated group (C); Sandblasting (S); Silica-modified sandblasting(SS); Er:YAG laser (L); LS; LSS | C and SS: relatively smooth surfaces and minimal irregularities; L: irregular surface with deeper and narrow pits; S, LS and LSS: irregularities with larger but not deeper valleys and pits | LSS (θ at 2.31 ± 0.52°) > LS (θ at 2.20 ± 0.23°) > L (θ at 1.79 ± 0.29°) or S (θ at 1.58 ± 0.15°) > SS (θ at 1.31 ± 0.25°) or C (θ at 1.03 ± 0.11°) | LSS (13.14 ± 1.45 MPa) > LS (6.35 ± 1.21 MPa) or SS (12.07 ± 2.82 MPa) > S (10.97 ± 2.88 MPa) > L (6.03 ± 1.04 MPa) or C (6.35 ± 1.21 MPa) | Ates et al., 2018 [103] |
3.5. Adhesive Systems
4. Conclusions
5. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, T.Y.; Ogawa, Y.; Akebono, H.; Iwaguro, S.; Sugeta, A.; Shimoe, S. Finite-element analysis and optimization of the mechanical properties of polyetheretherketone (PEEK) clasps for removable partial dentures. J. Prosthodont. Res. 2020, 64, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Xie, J.; Yang, J.; Zhuo, C.; Fu, J.; Zhao, P. Research on the Fused Deposition Modeling of Polyether Ether Ketone. Polymers 2021, 13, 2344. [Google Scholar] [CrossRef] [PubMed]
- Blanch-Martínez, N.; Arias-Herrera, S.; Martínez-González, A. Behavior of polyether-ether-ketone (PEEK) in prostheses on dental implants. A review. J. Clin. Exp. Dent. 2021, 13, e520–e526. [Google Scholar] [CrossRef] [PubMed]
- Alamoush, R.A.; Salim, N.A.; Silikas, N.; Satterthwaite, J.D. Long-term hydrolytic stability of CAD/CAM composite blocks. Eur. J. Oral Sci. 2022, 130, e12834. [Google Scholar] [CrossRef] [PubMed]
- Buck, E.; Li, H.; Cerruti, M. Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromol. Biosci. 2020, 20, e1900271. [Google Scholar] [CrossRef]
- Rauch, A.; Hahnel, S.; Günther, E.; Bidmon, W.; Schierz, O. Tooth-Colored CAD/CAM Materials for Application in 3-Unit Fixed Dental Prostheses in the Molar Area: An Illustrated Clinical Comparison. Materials 2020, 13, 5588. [Google Scholar] [CrossRef]
- Adem, N.; Bal, B.; Kazazoğlu, E. Comparative Study of Chemical and Mechanical Surface Treatment Effects on The Shear Bond Strength of Polyether-Ether-Ketone to Veneering Resin. Int. J. Prosthodont. 2021, 35, 2. [Google Scholar] [CrossRef]
- Da Cruz, M.B.; Marques, J.F.; Peñarrieta-Juanito, G.M.; Costa, M.; Souza, J.C.M.; Magini, R.S.; Miranda, G.; Silva, F.S.; Caramês, J.M.M.; da Mata, A. Bioactive-Enhanced Polyetheretherketone Dental Implant Materials: Mechanical Characterization and Cellular Responses. J. Oral Implantol. 2021, 47, 9–17. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Ismail, S.O.; Omigbodun, F.T. 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material—A review. Colloids Surf. B Biointerfaces 2021, 203, 111726. [Google Scholar] [CrossRef]
- Özarslan, M.; Büyükkaplan, U.; Özarslan, M.M. Comparison of the fracture strength of endodontically treated teeth restored with polyether ether ketone, zirconia and glass-fibre post-core systems. Int. J. Clin. Pract. 2021, 75, e14440. [Google Scholar] [CrossRef]
- Pampaloni, N.P.; Giugliano, M.; Scaini, D.; Ballerini, L.; Rauti, R. Advances in Nano Neuroscience: From Nanomaterials to Nanotools. Front. Neurosci. 2019, 12, 953. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Bds, Z.K.; Bds, S.Z.; Bds, M.S. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review. J. Oral Implantol. 2016, 42, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Nahar, R.; Mishra, S.K.; Chowdhary, R. Evaluation of stress distribution in an endodontically treated tooth restored with four different post systems and two different crowns—A finite element analysis. J. Oral Biol. Craniofacial Res. 2020, 10, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.A.; Shokry, T.E.; Abdel-Aziz, M. Effect of different surface treatments on the bond strength of milled polyetheretherketone posts. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
- Alexakou, E.; Damanaki, M.; Zoidis, P.; Bakiri, E.; Mouzis, N.; Smidt, G.; Kourtis, S. PEEK High Performance Polymers: A Review of Properties and Clinical Applications in Prosthodontics and Restorative Dentistry. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 113–121. [Google Scholar] [CrossRef]
- Li, M.; Bai, J.; Tao, H.; Hao, L.; Yin, W.; Ren, X.; Gao, A.; Li, N.; Wang, M.; Fang, S.; et al. Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy. Bioact. Mater. 2022, 8, 309–324. [Google Scholar] [CrossRef]
- Gheisarifar, M.; Thompson, G.A.; Drago, C.; Tabatabaei, F.; Rasoulianboroujeni, M. In vitro study of surface alterations to polyetheretherketone and titanium and their effect upon human gingival fibroblasts. J. Prosthet. Dent. 2021, 125, 155–164. [Google Scholar] [CrossRef]
- Peng, T.Y.; Shih, Y.H.; Hsia, S.M.; Wang, T.H.; Li, P.J.; Lin, D.J.; Sun, K.T.; Chiu, K.C.; Shieh, T.M. In Vitro Assessment of the Cell Metabolic Activity, Cytotoxicity, Cell Attachment, and Inflammatory Reaction of Human Oral Fibroblasts on Polyetheretherketone (PEEK) Implant-Abutment. Polymers 2021, 13, 2995. [Google Scholar] [CrossRef]
- Peng, T.Y.; Lin, D.J.; Mine, Y.; Tasi, C.Y.; Li, P.J.; Shih, Y.H.; Chiu, K.C.; Wang, T.H.; Hsia, S.M.; Shieh, T.M. Biofilm Formation on the Surface of (Poly)Ether-Ether-Ketone and In Vitro Antimicrobial Efficacy of Photodynamic Therapy on Peri-Implant Mucositis. Polymers 2021, 13, 940. [Google Scholar] [CrossRef]
- Ma, J.; Liang, Q.; Qin, W.; Lartey, P.O.; Li, Y.; Feng, X. Bioactivity of nitric acid and calcium chloride treated carbon-fibers reinforced polyetheretherketone for dental implant. J. Mech. Behav. Biomed. Mater. 2020, 102, 103497. [Google Scholar] [CrossRef]
- Fabris, D.; Moura, J.P.A.; Fredel, M.C.; Souza, J.C.M.; Silva, F.S.; Henriques, B. Biomechanical analyses of one-piece dental implants composed of titanium, zirconia, PEEK, CFR-PEEK, or GFR-PEEK: Stresses, strains, and bone remodeling prediction by the finite element method. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Tamrakar, S.K.; Mishra, S.K.; Chowdhary, R.; Rao, S. Comparative analysis of stress distribution around CFR-PEEK implants and titanium implants with different prosthetic crowns: A finite element analysis. Dent. Med. Probl. 2021, 58, 359–367. [Google Scholar] [CrossRef] [PubMed]
- D’Ercole, S.; Cellini, L.; Pilato, S.; Di Lodovico, S.; Iezzi, G.; Piattelli, A.; Petrini, M. Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology. J. Mater. Sci. Mater. Med. 2020, 31, 84. [Google Scholar] [CrossRef] [PubMed]
- Rozeik, A.S.; Chaar, M.S.; Sindt, S.; Wille, S.; Selhuber-Unkel, C.; Kern, M.; El-Kholy, S.; Dörfer, C.; Fawzy El-Sayed, K.M. Cellular properties of human gingival fibroblasts on novel and conventional implant-abutment materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2022, 38, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Sun, Y.; Zhou, X.; Mao, Y.; Liu, Y.; Ye, L.; Kuang, L.; Yang, J.; Deng, Y. Ag and peptide co-decorate polyetheretherketone to enhance antibacterial property and osteogenic differentiation. Colloids Surf. B Biointerfaces 2021, 198, 111492. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Jiao, Z.; Wang, Y.; Wu, Z.; Wang, H.; Ji, Q.; Liu, Y.; Wang, Z.; Zhang, P. Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. Regen. Biomater. 2021, 8, rbab013. [Google Scholar] [CrossRef]
- Gouveia, D.; Razzoog, M.E.; Sierraalta, M.; Alfaro, M.F. Effect of surface treatment and manufacturing process on the shear bond strength of veneering composite resin to polyetherketoneketone (PEKK) and polyetheretherketone (PEEK). J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
- Jovanović, M.; Živić, M.; Milosavljević, M. A potential application of materials based on a polymer and CAD/CAM composite resins in prosthetic dentistry. J. Prosthodont. Res. 2021, 65, 137–147. [Google Scholar] [CrossRef]
- Barto, A.; Vandewalle, K.S.; Lien, W.; Whang, K. Repair of resin-veneered polyetheretherketone after veneer fracture. J. Prosthet. Dent. 2021, 125, 704.e701–704.e708. [Google Scholar] [CrossRef]
- Tsuka, H.; Morita, K.; Kato, K.; Kawano, H.; Abekura, H.; Tsuga, K. Evaluation of shear bond strength between PEEK and resin-based luting material. J. Oral Biosci. 2017, 59, 231–236. [Google Scholar] [CrossRef]
- Yoon, H.G.; Oh, H.K.; Lee, D.Y.; Shin, J.H. 3-D finite element analysis of the effects of post location and loading location on stress distribution in root canals of the mandibular 1st molar. J. Appl. OralSci. Rev. FOB 2018, 26, e20160406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raedel, M.; Priess, H.-W.; Bohm, S.; Walter, M.H. Six-year survival of single crowns—A massive data analysis. J. Dent. 2020, 101, 103459. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Y.; Su, B.; Arola, D.; Zhang, D. The effect of adhesive failure and defects on the stress distribution in all-ceramic crowns. J. Dent. 2018, 75, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel-Upshaw, J.F.; Kim, M.J.; Hsu, S.M.; Abdulhameed, N.; Jenkins, R.; Neal, D.; Ren, F.; Clark, A.E. Randomized clinical study of wear of enamel antagonists against polished monolithic zirconia crowns. J. Dent. 2018, 68, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kongkiatkamon, S.; Booranasophone, K.; Tongtaksin, A.; Kiatthanakorn, V.; Rokaya, D. Comparison of Fracture Load of the Four Translucent Zirconia Crowns. Molecules 2021, 26, 5308. [Google Scholar] [CrossRef]
- Okawa, S.; Taka, N.; Aoyagi, Y. Effect of Modification with Helium Atmospheric-Pressure Plasma and Deep-Ultraviolet Light on Adhesive Shear Strength of Fiber-Reinforced Poly(ether-ether-ketone) Polymer. J. Funct. Biomater. 2020, 11, 27. [Google Scholar] [CrossRef]
- Gkantidis, N.; Dritsas, K.; Ren, Y.; Halazonetis, D.; Katsaros, C. An accurate and efficient method for occlusal tooth wear assessment using 3D digital dental models. Sci. Rep. 2020, 10, 10103. [Google Scholar] [CrossRef] [PubMed]
- Abhay, S.S.; Ganapathy, D.; Veeraiyan, D.N.; Ariga, P.; Heboyan, A.; Amornvit, P.; Rokaya, D.; Srimaneepong, V. Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging. Polymers 2021, 13, 3761. [Google Scholar] [CrossRef] [PubMed]
- Gou, M.; Chen, H.; Kang, J.; Wang, H. Antagonist enamel wear of tooth-supported monolithic zirconia posterior crowns in vivo: A systematic review. J. Prosthet. Dent. 2019, 121, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Aljanobi, G.; Al-Sowygh, Z.H. The Effect of Thermocycling on the Translucency and Color Stability of Modified Glass Ceramic and Multilayer Zirconia Materials. Cureus 2020, 12, e6968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmeiser, F.; Arbogast, F.; Ruppel, H.; Mayinger, F.; Reymus, M.; Stawarczyk, B. Methodology investigation: Impact of crown geometry, crown, abutment and antagonist material and thermal loading on the two-body wear of dental materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2022, 38, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Schönhoff, L.M.; Mayinger, F.; Eichberger, M.; Reznikova, E.; Stawarczyk, B. 3D printing of dental restorations: Mechanical properties of thermoplastic polymer materials. J. Mech. Behav. Biomed. Mater. 2021, 119, 104544. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.K.; Hasan, M.S.; Zahid, M.; Suhaim, K.S.; Mohammad, F.; Fayaz, T. Evaluation of Fracture Resistance and Color Stability of Crowns Obtained by Layering Composite Over Zirconia and Polyetheretherketone Copings Before and After Thermocycling to Simulate Oral Environment: An In Vitro Study. J. Pharm. Bioallied Sci. 2020, 12, S523–s529. [Google Scholar] [CrossRef] [PubMed]
- Tekin, S.; Adiguzel, O.; Cangul, S.; Atas, O.; Erpacal, B. Evaluation of the use of PEEK material in post-core and crown restorations using finite element analysis. Am. J. Dent. 2020, 33, 251–257. [Google Scholar]
- Mizusawa, K.; Shin, C.; Okada, D.; Ogura, R.; Komada, W.; Saleh, O.; Huang, L.; Miura, H. The investigation of the stress distribution in abutment teeth for connected crowns. J. Dent. Sci. 2021, 16, 929–936. [Google Scholar] [CrossRef]
- Benli, M.; Eker-Gümüş, B.; Kahraman, Y.; Huck, O.; Özcan, M. Can polylactic acid be a CAD/CAM material for provisional crown restorations in terms of fit and fracture strength? Dent. Mater. J. 2021, 40, 772–780. [Google Scholar] [CrossRef]
- Sulaya, K.; Guttal, S.S. Clinical evaluation of performance of single unit polyetheretherketone crown restoration—A pilot study. J. Indian Prosthodont. Soc. 2020, 20, 38–44. [Google Scholar] [CrossRef]
- Amalorpavam, V.; Sreelal, T.; Chandramohan, G.; Jithin, G.N.; Ponjayanthi, K. Comparison of Marginal Fit and Internal Adaptation of Copings Fabricated with Polyetheretherketone and Zirconia—An In vitro Study. J. Pharm. Bioallied Sci. 2021, 13, S1199–S1205. [Google Scholar] [CrossRef]
- Zacher, J.; Bauer, R.; Strasser, T.; Rosentritt, M. Laboratory performance and fracture resistance of CAD/CAM implant-supported tooth-coloured anterior FDPs. J. Dent. 2020, 96, 103326. [Google Scholar] [CrossRef]
- Tanner, J.; Niemi, H.; Ojala, E.; Tolvanen, M.; Närhi, T.; Hjerppe, J. Zirconia single crowns and multiple-unit FDPs—An up to 8-year retrospective clinical study. J. Dent. 2018, 79, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Borges, A.L.S.; Souza, R.; Bottino, M.A. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2018, 34, 1342–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niem, T.; Youssef, N.; Wöstmann, B. Energy dissipation capacities of CAD-CAM restorative materials: A comparative evaluation of resilience and toughness. J. Prosthet. Dent. 2019, 121, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Campaner, L.M.; Silveira, M.P.M.; de Andrade, G.S.; Borges, A.L.S.; Bottino, M.A.; Dal Piva, A.M.O.; Lo Giudice, R.; Ausiello, P.; Tribst, J.P.M. Influence of Polymeric Restorative Materials on the Stress Distribution in Posterior Fixed Partial Dentures: 3D Finite Element Analysis. Polymers 2021, 13, 758. [Google Scholar] [CrossRef]
- Rodríguez, V.; Tobar, C.; López-Suárez, C.; Peláez, J.; Suárez, M.J. Fracture Load of Metal, Zirconia and Polyetheretherketone Posterior CAD-CAM Milled Fixed Partial Denture Frameworks. Materials 2021, 14, 959. [Google Scholar] [CrossRef] [PubMed]
- López-Suárez, C.; Castillo-Oyagüe, R.; Rodríguez-Alonso, V.; Lynch, C.D.; Suárez-García, M.J. Fracture load of metal-ceramic, monolithic, and bi-layered zirconia-based posterior fixed dental prostheses after thermo-mechanical cycling. J. Dent. 2018, 73, 97–104. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Beuer, F.; Wimmer, T.; Jahn, D.; Sener, B.; Roos, M.; Schmidlin, P.R. Polyetheretherketone—A suitable material for fixed dental prostheses? J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Eichberger, M.; Uhrenbacher, J.; Wimmer, T.; Edelhoff, D.; Schmidlin, P.R. Three-unit reinforced polyetheretherketone composite FDPs: Influence of fabrication method on load-bearing capacity and failure types. Dent. Mater. J. 2015, 34, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Raj, D.A.; Chander, N.G.; Reddy, J.R.; Balasubramaniam, M. Clinical acceptability of PEEK fixed dental prosthesis in partially edentulous patient—A one year single arm pilot study. J. Oral Biol. Craniofacial Res. 2020, 10, 523–528. [Google Scholar] [CrossRef]
- Cekic-Nagas, I.; Egilmez, F.; Ergun, G.; Vallittu, P.K.; Lassila, L.V.J. Load-bearing capacity of novel resin-based fixed dental prosthesis materials. Dent. Mater. J. 2018, 37, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Tasopoulos, T.; Pachiou, A.; Kouveliotis, G.; Karaiskou, G.; Ottenga, M.; Zoidis, P. An 8-Year Clinical Outcome of Posterior Inlay Retained Resin Bonded Fixed Dental Prosthesis Utilizing High Performance Polymer Materials: A Clinical Report. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2021, 30, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Hallak, A.G.; Caldas, R.A.; Silva, I.D.; Miranda, M.E.; Brandt, W.C.; Vitti, R.P. Stress distribution in restorations with glass fiber and polyetheretherketone intraradicular posts: An in silico analysis. Dent. Mater. J. 2022, 41, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Meira, J.B.; Espósito, C.O.; Quitero, M.F.; Poiate, I.A.; Pfeifer, C.S.; Tanaka, C.B.; Ballester, R.Y. Elastic modulus of posts and the risk of root fracture. Dent. Traumatol. Off. Publ. Int. Assoc. Dent. Traumatol. 2009, 25, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Sarkis-Onofre, R.; Amaral Pinheiro, H.; Poletto-Neto, V.; Bergoli, C.D.; Cenci, M.S.; Pereira-Cenci, T. Randomized controlled trial comparing glass fiber posts and cast metal posts. J. Dent. 2020, 96, 103334. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.D.; Junqueira, R.B.; de Carvalho, R.F.; Lacerda, M.; Faé, D.S.; Lemos, C.A.A. Is a fiber post better than a metal post for the restoration of endodontically treated teeth? A systematic review and meta-analysis. J. Dent. 2021, 112, 103750. [Google Scholar] [CrossRef]
- Haralur, S.B. Fracture resistance of endodontically treated teeth restored with various esthetic posts. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2021, 29, 243–252. [Google Scholar] [CrossRef]
- Ibrahim, R.O.; Al-Zahawi, A.R.; Sabri, L.A. Mechanical and thermal stress evaluation of PEEK prefabricated post with different head design in endodontically treated tooth: 3D-finite element analysis. Dent. Mater. J. 2021, 40, 508–518. [Google Scholar] [CrossRef]
- Okawa, S.; Aoyagi, Y.; Kimura, T.; Izumi, K. Effect of pre-coating with methyl methacrylate containing UV photoinitiators on the bond strength of poly(ether ether ketone). Dent. Mater. J. 2021, 40, 519–524. [Google Scholar] [CrossRef]
- Lalama, M.; Rocha, M.G.; O’Neill, E.; Zoidis, P. Polyetheretherketone (PEEK) Post and Core Restorations: A 3D Accuracy Analysis between Heat-Pressed and CAD-CAM Fabrication Methods. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2021. [Google Scholar] [CrossRef]
- Teixeira, K.N.; Duque, T.M.; Maia, H.P.; Gonçalves, T. Fracture Resistance and Failure Mode of Custom-made Post-and-cores of Polyetheretherketone and Nano-ceramic Composite. Oper. Dent. 2020, 45, 506–515. [Google Scholar] [CrossRef]
- Sugano, K.; Komada, W.; Okada, D.; Miura, H. Evaluation of composite resin core with prefabricated polyetheretherketone post on fracture resistance in the case of flared root canals. Dent. Mater. J. 2020, 39, 924–932. [Google Scholar] [CrossRef]
- Zoidis, P. The Use of Modified Polyetheretherketone Post and Core for an Esthetic Lithium Disilicate Anterior Ceramic Restoration: A Clinical Report. Int. J. Prosthodont. 2021, 34, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Elashmawy, Y.; Aboushelib, M.; Elshahawy, W. Retention of different CAD/CAM endocrowns bonded to severely damaged endodontically treated teeth: An in vitro study. J. Indian Prosthodont. Soc. 2021, 21, 269–275. [Google Scholar] [CrossRef]
- Prechtel, A.; Stawarczyk, B.; Hickel, R.; Edelhoff, D.; Reymus, M. Fracture load of 3D printed PEEK inlays compared with milled ones, direct resin composite fillings, and sound teeth. Clin. Oral. Investig. 2020, 24, 3457–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, M.; Kubacki, J.; Psiuk, B.; Mrozek-Wilczkiewicz, A.; Malarz, K.; Corti, A.; Pompella, A.; Szade, J. Photofunctionalization effect and biological ageing of PEEK, TiO(2) and ZrO(2) abutments material. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111823. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gupta, R.; Gill, S. Evaluation of the failure modes and load-bearing capacity of different surface-treated polyether ether ketone copings veneered with lithium di-silicate compared to polyether ether ketone copings veneered with composite: An in vitro study. J. Indian Prosthodont. Soc. 2021, 21, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Yao, S.; Zhao, J.; Zhou, C.; Oates, T.W.; Weir, M.D.; Wu, J.; Xu, H.H.K. Review on Development and Dental Applications of Polyetheretherketone-Based Biomaterials and Restorations. Materials 2021, 14, 408. [Google Scholar] [CrossRef]
- Chaijareenont, P.; Prakhamsai, S.; Silthampitag, P.; Takahashi, H.; Arksornnukit, M. Effects of different sulfuric acid etching concentrations on PEEK surface bonding to resin composite. Dent. Mater. J. 2018, 37, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yi, Y.; Wang, C.; Ding, L.; Wang, R.; Wu, G. Effect of Acid-Etching Duration on the Adhesive Performance of Printed Polyetheretherketone to Veneering Resin. Polymers 2021, 13, 3509. [Google Scholar] [CrossRef]
- Ma, R.; Wang, J.; Li, C.; Ma, K.; Wei, J.; Yang, P.; Guo, D.; Wang, K.; Wang, W. Effects of different sulfonation times and post-treatment methods on the characterization and cytocompatibility of sulfonated PEEK. J. Biomater. Appl. 2020, 35, 342–352. [Google Scholar] [CrossRef]
- Tsuka, H.; Morita, K.; Kato, K.; Kimura, H.; Abekura, H.; Hirata, I.; Kato, K.; Tsuga, K. Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone (PEEK). J. Prosthodont. Res. 2019, 63, 52–57. [Google Scholar] [CrossRef]
- Zhou, L.; Qian, Y.; Zhu, Y.; Liu, H.; Gan, K.; Guo, J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2014, 30, e209–e215. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Jordan, P.; Schmidlin, P.R.; Roos, M.; Eichberger, M.; Gernet, W.; Keul, C. PEEK surface treatment effects on tensile bond strength to veneering resins. J. Prosthet. Dent. 2014, 112, 1278–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keul, C.; Liebermann, A.; Schmidlin, P.R.; Roos, M.; Sener, B.; Stawarczyk, B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J. Adhes. Dent. 2014, 16, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Escobar, M.; Souza, J.C.M.; Barra, G.M.O.; Fredel, M.C.; Özcan, M.; Henriques, B. On the synergistic effect of sulfonic functionalization and acidic adhesive conditioning to enhance the adhesion of PEEK to resin-matrix composites. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2021, 37, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; He, D.; Zhu, G.; Wu, G.; Chen, L. Surface sulfonation and nitrification enhance the biological activity and osteogenesis of polyetheretherketone by forming an irregular nano-porous monolayer. J. Mater. Sci. Mater. Med. 2019, 31, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, C.J.; Huang, J.; Edirisinghe, M. PEEK surface modification by fast ambient-temperature sulfonation for bone implant applications. J. R. Soc. Interface 2019, 16, 20180955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.; Nie, W.; Zhang, K.; Xu, F.; Ding, X.; Wang, S.; Qiu, Y. Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment. ACS Appl. Mater. Interfaces 2018, 10, 13652–13659. [Google Scholar] [CrossRef]
- Lu, C.; Qiu, S.; Lu, X.; Wang, J.; Xiao, L.; Zheng, T.; Wang, X.; Zhang, D. Enhancing the Interfacial Strength of Carbon Fiber/Poly(ether ether ketone) Hybrid Composites by Plasma Treatments. Polymers 2019, 11, 753. [Google Scholar] [CrossRef] [Green Version]
- Stawarczyk, B.; Bähr, N.; Beuer, F.; Wimmer, T.; Eichberger, M.; Gernet, W.; Jahn, D.; Schmidlin, P.R. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone. Clin. Oral. Investig. 2014, 18, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Bötel, F.; Zimmermann, T.; Sütel, M.; Müller, W.D.; Schwitalla, A.D. Influence of different low-pressure plasma process parameters on shear bond strength between veneering composites and PEEK materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2018, 34, e246–e254. [Google Scholar] [CrossRef]
- Fu, Q.; Gabriel, M.; Schmidt, F.; Müller, W.D.; Schwitalla, A.D. The impact of different low-pressure plasma types on the physical, chemical and biological surface properties of PEEK. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2021, 37, e15–e22. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.; Unkovskiy, A.; ElAyouti, A.; Geis-Gerstorfer, J.; Spintzyk, S. The Effect of Various Plasma Gases on the Shear Bond Strength between Unfilled Polyetheretherketone (PEEK) and Veneering Composite Following Artificial Aging. Materials 2019, 12, 1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedel, M.; Micheli, V.; Thaler, M.; Awaja, F. Effect of nitrogen plasma treatment on the crystallinity and self-bonding of polyetheretherketone (PEEK) for biomedical applications. Polym. Adv. Technol. 2020, 31, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taha, D.; Safwat, F.; Wahsh, M. Effect of combining different surface treatments on the surface characteristics of polyetheretherketone-based core materials and shear bond strength to a veneering composite resin. J. Prosthet. Dent. 2022. [Google Scholar] [CrossRef]
- Parkar, U.; Dugal, R.; Madanshetty, P.; Devadiga, T.; Khan, A.S.; Godil, A. Assessment of different surface treatments and shear bond characteristics of poly-ether-ether-ketone: An in vitro SEM analysis. J. Indian Prosthodont. Soc. 2021, 21, 412–419. [Google Scholar] [CrossRef]
- Spyropoulos, D.; Kamposiora, P.; Zoidis, P. The Effect of Surface Pretreatment and Water Storage on the Bonding Strength of a Resin Composite Cement to Modified PEEK. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 121–127. [Google Scholar] [CrossRef]
- Tosun, B.; Yanıkoğlu, N. Evaluation of the effects of different surface modification methods on the bond strength of high-performance polymers and resin matrix ceramics. Clin. Oral. Investig. 2022, 26, 3781–3790. [Google Scholar] [CrossRef]
- Çulhaoğlu, A.K.; Özkır, S.E.; Şahin, V.; Yılmaz, B.; Kılıçarslan, M.A. Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2020, 29, 136–141. [Google Scholar] [CrossRef]
- Caglar, I.; Ates, S.M.; Yesil Duymus, Z. An In Vitro Evaluation of the Effect of Various Adhesives and Surface Treatments on Bond Strength of Resin Cement to Polyetheretherketone. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2019, 28, e342–e349. [Google Scholar] [CrossRef] [Green Version]
- Stawarczyk, B.; Taufall, S.; Roos, M.; Schmidlin, P.R.; Lümkemann, N. Bonding of composite resins to PEEK: The influence of adhesive systems and air-abrasion parameters. Clin. Oral. Investig. 2018, 22, 763–771. [Google Scholar] [CrossRef]
- Henriques, B.; Fabris, D.; Mesquita-Guimarães, J.; Sousa, A.C.; Hammes, N.; Souza, J.C.M.; Silva, F.S.; Fredel, M.C. Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement. J. Mech. Behav. Biomed. Mater. 2018, 84, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Jahandideh, Y.; Falahchai, M.; Pourkhalili, H. Effect of Surface Treatment With Er:YAG and CO2 Lasers on Shear Bond Strength of Polyether Ether Ketone to Composite Resin Veneers. J. Lasers Med. Sci. 2020, 11, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ates, S.M.; Caglar, I.; Duymus, Z.Y. The effect of different surface pretreatments on the bond strength of veneering resin to polyetheretherketone. J. Adhes. Sci. Technol. 2018, 32, 2220–2231. [Google Scholar] [CrossRef]
- Ulgey, M.; Gorler, O.; Karahan Gunduz, C. Effects of laser modalities on shear bond strengths of composite superstructure to zirconia and PEEK infrastructures: An in vitro study. Odontology 2021, 109, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Bunz, O.; Benz, C.I.; Arnold, W.H.; Piwowarczyk, A. Shear bond strength of veneering composite to high performance polymers. Dent. Mater. J. 2021, 40, 304–311. [Google Scholar] [CrossRef]
- Kurahashi, K.; Matsuda, T.; Ishida, Y.; Ichikawa, T. Effect of Surface Treatments on Shear Bond Strength of Polyetheretherketone to Autopolymerizing Resin. Dent. J. 2019, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Chersoni, S.; Lorenzi, R.; Ferrieri, P.; Prati, C. Laboratory evaluation of compomers in Class V restorations. Am. J. Dent. 1997, 10, 147–151. [Google Scholar]
- Park, M.E.; Shin, S.Y. Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. J. Prosthet. Dent. 2018, 119, 861.e861–861.e867. [Google Scholar] [CrossRef]
- Yabutsuka, T.; Fukushima, K.; Hiruta, T.; Takai, S.; Yao, T. Fabrication of Bioactive Fiber-reinforced PEEK and MXD6 by Incorporation of Precursor of Apatite. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2254–2265. [Google Scholar] [CrossRef]
- Abd El-Fattah, A.; Youssef, H.; Gepreel, M.A.H.; Abbas, R.; Kandil, S. Surface Morphology and Mechanical Properties of Polyether Ether Ketone (PEEK) Nanocomposites Reinforced by Nano-Sized Silica (SiO2) for Prosthodontics and Restorative Dentistry. Polymers 2021, 13, 3006. [Google Scholar] [CrossRef]
- Rikitoku, S.; Otake, S.; Nozaki, K.; Yoshida, K.; Miura, H. Influence of SiO2 content of polyetheretherketone (PEEK) on flexural properties and tensile bond strength to resin cement. Dent. Mater. J. 2019, 38, 464–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumkemann, N.; Eichberger, M.; Stawarczyk, B. Bonding to Different PEEK Compositions: The Impact of Dental Light Curing Units. Materials 2017, 10, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwitalla, A.D.; Botel, F.; Zimmermann, T.; Sutel, M.; Muller, W.D. The impact of argon/oxygen low-pressure plasma on shear bond strength between a veneering composite and different PEEK materials. Dent. Mater. 2017, 33, 990–994. [Google Scholar] [CrossRef]
- Manzoor, F.; Golbang, A.; Jindal, S.; Dixon, D.; McIlhagger, A.; Harkin-Jones, E.; Crawford, D.; Mancuso, E. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential. J. Mech. Behav. Biomed. Mater. 2021, 121, 104601. [Google Scholar] [CrossRef] [PubMed]
- Sikder, P.; Ferreira, J.A.; Fakhrabadi, E.A.; Kantorski, K.Z.; Liberatore, M.W.; Bottino, M.C.; Bhaduri, S.B. Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2020, 36, 865–883. [Google Scholar] [CrossRef]
- Chen, S.G.; Yang, J.; Jia, Y.G.; Lu, B.; Ren, L. TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications. Nanomaterials 2019, 9, 1049. [Google Scholar] [CrossRef] [Green Version]
- Teng, R.; Meng, Y.; Zhao, X.; Liu, J.; Ding, R.; Cheng, Y.; Zhang, Y.; Zhang, Y.; Pei, D.; Li, A. Combination of Polydopamine Coating and Plasma Pretreatment to Improve Bond Ability Between PEEK and Primary Teeth. Front. Bioeng. Biotechnol. 2020, 8, 630094. [Google Scholar] [CrossRef]
Strategies | Microscopic Analyses (SEM or AFM Images) | Mean Roughness Values (Ra, μm) | Wettability Assays, Surface Contact Angle (θ, °) Mean Values | Shear Bond Strength (SBS, MPa) | Reference, Author, Year |
---|---|---|---|---|---|
70, 80, 85, 90, 98% sulfuric acid for 60 s | Formation of broader and deepen pores with increasing concentration | Ra elevated with increasing concentration (from 0.04 ± 0.02 to 0.74 ± 0.25 μm) | SBS enhanced with increasing concentration (from 1.75 ± 0.66 to 27.36 ± 3.95 MPa) | Chaijareenont et al., 2018 [77] | |
98% sulfuric acid etching and acidic adhesive for 0, 1, 3, 5 min | Well-distributed multi-scale pores and pits over the entire surface | Ra elevated over time (from 1.05 ± 0.59 to 1.26 ± 0.51 μm) | Higher wettability (θ at ~55°) vs. the untreated surface (θ at ∼65°) | SBS enhanced over time (from 4.95 ± 2.86 MPa to 21.43 ± 5.00 MPa) | Escobar et al., 2021 [84] |
98% sulfuric acid etching (A, for 1 min); sandblasting abrasion (S, 50 μm, at 2 MPa for 10 s). | A: Sponge-like, complex fiber network characterized surface S: Irregular rough surface Combination: agglomeration of alumina particles inside the pores | Sandblasting (1.37 ± 0.28 μm) > combined (0.78 ± 0.26 μm) > sulfuric acid (0.73 ± 0.20 μm) > untreated (0.29 ± 0.10 μm) | Sulfuric acid (13.43 ± 1.42 MPa) > Combination (11.72 ± 1.69 MPa) > sandblasting (6.43 ± 1.05 MPa) or untreated (5.39 ± 1.36 MPa) | Adem et al., 2021 [7] | |
98% sulfuric acid etching for 0, 5, 30, 60, 90, 120, 300 s | Etched pores were broadened and deepened over time. | Printed PEEK: the highest SBS (27.90 ± 3.48 MPa) was achieved at 30 s. Milled PEEK: SBS showed no significant difference from 5 to 120 s (over 29 MPa) while decreased at 300 s. | Zhang et al., 2021 [78] | ||
98% sulfuric acid etching for 0.5, 1, 3, 5, 7 min | Formation of a 3D porous network that become more complex over time. 5 min: an intact structure with micro- to nano-scale features 7 min: the porous structure tended to be dissolved | Higher wettability (5 min θ at 115.3 ± 9.9°) vs. the untreated surface (θ at 92.9 ± 3.2°) | Ma et al., 2020 [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Huang, M.; Dang, P.; Xie, J.; Zhang, X.; Yan, X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers 2022, 14, 2323. https://doi.org/10.3390/polym14122323
Wang B, Huang M, Dang P, Xie J, Zhang X, Yan X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers. 2022; 14(12):2323. https://doi.org/10.3390/polym14122323
Chicago/Turabian StyleWang, Biyao, Minghao Huang, Pengrui Dang, Jiahui Xie, Xinwen Zhang, and Xu Yan. 2022. "PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement" Polymers 14, no. 12: 2323. https://doi.org/10.3390/polym14122323
APA StyleWang, B., Huang, M., Dang, P., Xie, J., Zhang, X., & Yan, X. (2022). PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers, 14(12), 2323. https://doi.org/10.3390/polym14122323