Chitosan: A Sustainable Material for Multifarious Applications
Abstract
:1. Introduction
2. Chemical Properties and Processing Technologies of Chitosan Based Materials
2.1. Physicochemical and Biological Activities
2.2. Process Technologies for Producing Chitosan Composites
3. Major Applications of Chitosan
3.1. Water and Air Filtration
3.2. Metal Removal from Water
3.3. Antibacterial Activities
3.4. Wound Dressing and Healing
3.5. Food Preservation and Packaging
3.6. Agricultural Activities
3.7. Drug Delivery
3.8. Other Applications
4. Conclusions
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SARS | Severe Acute Respiratory Syndrome |
AIDS | Acquired immunodeficiency syndrome |
Co/MCM | Chitosan–cobalt–silica |
PVA-Co-PE | Poly(vinyl alcohol-co-ethylene) |
Cr(IV) | Chromium–IV |
Cu(II) | Cupric oxide |
PVDF-S/MIL100-CS | Polyvinylidene fluoride metal organic framework chitosan |
MWNT | Multiwalled nanotubes |
PVA | Polyvinyl alcohol |
PAN | Polyacrylonitrile |
PEG | Polyethylene glycol |
MWCNT | Multiwalled carbon nanotubes |
E. coli | Escherichia coli |
S. aureus | Staphylococcus aureus |
Ni2+ | Nickel cation with two positive charges |
NaBH4 | Sodium borohydride |
FESEM | Field emission scanning electron microscope |
SEM | Scanning electron microscope |
EDAX | Energy-dispersive spectroscopy |
Ni | Nickel |
CS | Chitosan |
FT-IR | Fourier transform infrared spectroscopy |
ZnPc-CS | Zinc phthalocyanine chitosan |
GSNO-PL/CS | No donor S-nitrosoglutathione-pluronic-chitosan |
BC-CS | Bacterial cellulose–chitosan |
BC-COS | Bacterial cellulose–chitooligosaccharide |
Ag/CS/Silica | Silver–chitosan–silica |
UV radiation | Ultraviolet radiation |
K | Kelvin |
Cu2O | Cuprous oxide |
CuSO4 | Copper sulphate |
DNA | Deoxyribonucleic acid |
CH-SN-N | Chitosan silica nanoparticles |
MRSA | Methicillin-resistant staphylococcus aureus |
CCZ | Curcumin chitosan zinc oxide |
CS-Au | Chitosan gold nanoparticles |
C/RL | Chitosan rhamnolipid |
MMT | Montmorillonite |
OCMCS-SB | O—Carboxymethyl chitosan Schiff base |
MnO2 | Manganese dioxide |
SPM-CH | Semi-conductive in-situ-polymerized MnO2 nanowire–chitosan hydrogels. |
DD | Degree of deacetylation |
Mw | Molecular weight |
References
- Kassem, A.; Ayoub, G.M.; Malaeb, L. Antibacterial Activity of Chitosan Nano-Composites and Carbon Nanotubes: A Review. Sci. Total Environ. 2019, 668, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Pervez, M.N.; Balakrishnan, M.; Hasan, S.W.; Choo, K.H.; Zhao, Y.; Cai, Y.; Zarra, T.; Belgiorno, V.; Naddeo, V. A Critical Review on Nanomaterials Membrane Bioreactor (NMS-MBR) for Wastewater Treatment. npj Clean Water 2020, 3, 43. [Google Scholar] [CrossRef]
- Yadav, M.; Goswami, P.; Paritosh, K.; Kumar, M.; Pareek, N.; Vivekanand, V. Seafood Waste: A Source for Preparation of Commercially Employable Chitin/Chitosan Materials. Bioresour. Bioprocess. 2019, 6, 8. [Google Scholar] [CrossRef]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K.L. Recent Advances in Heavy Metal Removal by Chitosan Based Adsorbents. Carbohydr. Polym. 2021, 251, 117000. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, N.; Shinde, S.D.; Jadhav, G.S.; Adsare, D.R.; Rao, K.; Kachhia, M.; Maingle, M.; Patil, S.P.; Arya, N.; Sahu, B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjugate Chem. 2021, 32, 448–465. [Google Scholar] [CrossRef] [PubMed]
- Negi, H.; Verma, P.; Singh, R.K. A Comprehensive Review on the Applications of Functionalized Chitosan in Petroleum Industry. Carbohydr. Polym. 2021, 266, 118125. [Google Scholar] [CrossRef] [PubMed]
- Salama, A. Recent Progress in Preparation and Applications of Chitosan/Calcium Phosphate Composite Materials. Int. J. Biol. Macromol. 2021, 178, 240–252. [Google Scholar] [CrossRef]
- Jaber, N.; Al-Remawi, M.; Al-Akayleh, F.; Al-Muhtaseb, N.; Al-Adham, I.S.I.; Collier, P.J. A Review of the Antiviral Activity of Chitosan, Including Patented Applications and Its Potential Use against COVID-19. J. Appl. Microbiol. 2022, 132, 41–58. [Google Scholar] [CrossRef]
- Sharifianjazi, F.; Khaksar, S.; Esmaeilkhanian, A.; Bazli, L.; Eskandarinezhad, S.; Salahshour, P.; Sadeghi, F.; Rostamnia, S.; Vahdat, S.M. Advancements in Fabrication and Application of Chitosan Composites in Implants and Dentistry: A Review. Biomolecules 2022, 12, 155. [Google Scholar] [CrossRef]
- Spoială, A.; Ilie, C.I.; Ficai, D.; Ficai, A.; Andronescu, E. Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification—A Review. Materials 2021, 14, 2091. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, Y. Recent Advances of Chitosan-Based Nanoparticles for Biomedical and Biotechnological Applications. Int. J. Biol. Macromol. 2022, 203, 379–388. [Google Scholar] [CrossRef] [PubMed]
- El Kady, E. Chitin, Chitosan and Glucan, Properties and Applications. World J. Agric. Soil Sci. 2019, 3, 1–19. [Google Scholar] [CrossRef]
- Lv, S.H. High-Performance Superplasticizer Based on Chitosan. In Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 131–150. [Google Scholar] [CrossRef]
- Kumirska, J.; Weinhold, M.X.; Thöming, J.; Stepnowski, P. Biomedical Activity of Chitin/Chitosan Based Materials- Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation. Polymers 2011, 3, 1875–1901. [Google Scholar] [CrossRef]
- Gatto, M.; Ochi, D.; Yoshida, C.M.P.; da Silva, C.F. Study of Chitosan with Different Degrees of Acetylation as Cardboard Paper Coating. Carbohydr. Polym. 2019, 210, 56–63. [Google Scholar] [CrossRef]
- Bansal, V.; Sharma, P.K.; Sharma, N.; Pal, O.P.; Malviya, R. Applications of Chitosan and Chitosan Derivatives in Drug Delivery. Biol. Res. 2011, 5, 28–37. [Google Scholar]
- Ilyas, R.A.; Aisyah, H.A.; Nordin, A.H.; Ngadi, N.; Yusoff, M.; Zuhri, M.; Rizal, M.; Asyraf, M.; Sapuan, S.M.; Zainudin, E.S.; et al. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers 2022, 14, 874. [Google Scholar] [CrossRef]
- Qasim, S.B.; Zafar, M.S.; Najeeb, S.; Khurshid, Z.; Shah, A.H.; Husain, S.; Rehman, I.U. Electrospinning of Chitosan-Based Solutions for Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 2018, 19, 407. [Google Scholar] [CrossRef] [Green Version]
- Green-warren, R.A.; Bontoux, L.; Mcallister, N.M.; Kovacevich, D.A.; Kuznetsova, C.; Tenorio, M.; Lei, L.; Pelegri, A.A.; Jonathan, P. Determining the Self-Limiting Electrospray Deposition Compositional Limits for Mechanically Tunable Polymer Composites. ACS Appl. Polym. Mater. 2022, 4, 3511–3519. [Google Scholar] [CrossRef]
- Islam, S.; Jadhav, A.; Fang, J.; Arnold, L.; Wang, L.; Padhye, R.; Wang, X.; Lin, T. Surface Deposition of Chitosan on Wool Substrate by Electrospraying. Adv. Mater. Res. 2011, 331, 165–170. [Google Scholar] [CrossRef]
- Garg, U.; Chauhan, S.; Upendra, N.; Jain, N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv. Pharm. Bull. 2019, 9, 195–204. [Google Scholar] [CrossRef]
- Shiekh, K.A.; Ngiwngam, K.; Tongdeesoontorn, W. Polysaccharide-Based Active Coatings Incorporated with Bioactive Compounds for Reducing Postharvest Losses of Fresh Fruits. Coatings 2022, 12, 8. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, L.; Sun, H.; Zhang, J.; Chen, S. Using Chitosan Combined Treatment with Citric Acid as Edible Coatings to Delay Postharvest Ripening Process and Maintain Tomato (Solanum Lycopersicon Mill) Quality. J. Food Nutr. Res. 2017, 5, 144–150. [Google Scholar] [CrossRef]
- Fosso-Kankeu, E.; de Klerk, C.M.; van Aarde, C.; Waanders, F.; Phoku, J. Antibacterial Activity of a Synthesized Chitosan-Silver Composite with Different Molecular Weights Chitosan against Gram-Positive and Gram-Negative Bacteria. In Proceedings of the International Conference on Advances in Science, Engineering, Technology and Natural Resources (ICA-SETNR-16), Parys, South Africa, 24–25 November 2016. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, S.B.; Kamal, T.; Yasir, M.; Asiri, A.M. Antibacterial Nanocomposites Based on Chitosan/Co-MCM as a Selective and Efficient Adsorbent for Organic Dyes. Int. J. Biol. Macromol. 2016, 91, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Cheng, P.; Wang, Y.; Zhong, W.; Lu, Z.; Li, M.; Liu, Q.; Wang, W.; Zhu, Q.; Wang, D. Concurrent Filtration and Inactivation of Bacteria Using Poly(Vinyl Alcohol-Co-Ethylene) Nanofibrous Membrane Facilely Modified Using Chitosan and Graphene Oxide. Environ. Sci. Nano 2017, 4, 385–395. [Google Scholar] [CrossRef]
- Kolangare, I.M.; Isloor, A.M.; Karim, Z.A.; Kulal, A.; Ismail, A.F.; Inamuddin; Asiri, A.M. M. Antibiofouling Hollow-Fiber Membranes for Dye Rejection by Embedding Chitosan and Silver-Loaded Chitosan Nanoparticles. Environ. Chem. Lett. 2019, 17, 581–587. [Google Scholar] [CrossRef]
- Bandara, P.C.; Nadres, E.T.; Rodrigues, D.F. Use of Response Surface Methodology to Develop and Optimize the Composition of a Chitosan-Polyethyleneimine-Graphene Oxide Nanocomposite Membrane Coating to More Effectively Remove Cr(VI) and Cu(II) from Water. ACS Appl. Mater. Interfaces 2019, 11, 17784–17795. [Google Scholar] [CrossRef]
- Cho, K.Y.; Yoo, C.H.; Won, Y.J.; Hong, D.Y.; Chang, J.S.; Choi, J.W.; Lee, J.H.; Lee, J.S. Surface-Concentrated Chitosan-Doped MIL-100(Fe) Nanofiller-Containing PVDF Composites for Enhanced Antibacterial Activity. Eur. Polym. J. 2019, 120, 109221. [Google Scholar] [CrossRef]
- Chaudhary, M.; Maiti, A. Fe–Al–Mn@chitosan Based Metal Oxides Blended Cellulose Acetate Mixed Matrix Membrane for Fluoride Decontamination from Water: Removal Mechanisms and Antibacterial Behavior. J. Memb. Sci. 2020, 611, 118372. [Google Scholar] [CrossRef]
- Alshahrani, A.A.; Algamdi, M.S.; Alsohaimi, I.H.; Nghiem, L.D.; Tu, K.L.; Al-Rawajfeh, A.E.; in het Panhuis, M. The Rejection of Mono- and Di-Valent Ions from Aquatic Environment by MWNT/Chitosan Buckypaper Composite Membranes: Influences of Chitosan Concentrations. Sep. Purif. Technol. 2020, 234, 116088. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Wang, L.; Nie, J.; Ma, G. Multilayer Electrospun Nanofibrous Membranes with Antibacterial Property for Air Filtration. Appl. Surf. Sci. 2020, 515, 145962. [Google Scholar] [CrossRef]
- Makaremi, M.; Lim, C.X.; Pasbakhsh, P.; Lee, S.M.; Goh, K.L.; Chang, H.; Chan, E.S. Electrospun Functionalized Polyacrylonitrile-Chitosan Bi-Layer Membranes for Water Filtration Applications. RSC Adv. 2016, 6, 53882–53893. [Google Scholar] [CrossRef] [Green Version]
- Jabur, A.R.; Abbas, L.K.; Moosa, S.A. Fabrication of Electrospun Chitosan/Nylon 6 Nanofibrous Membrane toward Metal Ions Removal and Antibacterial Effect. Adv. Mater. Sci. Eng. 2016, 2016, 5810216. [Google Scholar] [CrossRef] [Green Version]
- Mohraz, M.H.; Golbabaei, F.; Yu, I.J.; Mansournia, M.A.; Zadeh, A.S.; Dehghan, S.F. Preparation and Optimization of Multifunctional Electrospun Polyurethane/Chitosan Nanofibers for Air Pollution Control Applications. Int. J. Environ. Sci. Technol. 2019, 16, 681–694. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; Mao, J.; Chen, Z.; Chen, G.; Lai, Y. Transparent Antibacterial Nanofiber Air Filters with Highly Efficient Moisture Resistance for Sustainable Particulate Matter Capture. iScience 2019, 19, 214–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoerunnisa, F.; Rahmah, W.; Seng Ooi, B.; Dwihermiati, E.; Nashrah, N.; Fatimah, S.; Ko, Y.G.; Ng, E.P.; Khoerunnisa, F. Chitosan/PEG/MWCNT/Iodine Composite Membrane with Enhanced Antibacterial Properties for Dye Wastewater Treatment. J. Environ. Chem. Eng. 2020, 8, 103686. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-elhamid, A.I.; Awwad, N.S.; Abdelgawad, M.A.; Wu, J.; Mo, X.; Gomha, S.M.; Aly, A.A.; Bräse, S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers 2022, 14, 1594. [Google Scholar] [CrossRef]
- Ahmad, I.; Kamal, T.; Khan, S.B.; Asiri, A.M. An Efficient and Easily Retrievable Dip Catalyst Based on Silver Nanoparticles/Chitosan-Coated Cellulose Filter Paper. Cellulose 2016, 23, 3577–3588. [Google Scholar] [CrossRef]
- Kamal, T.; Khan, S.B.; Asiri, A.M. Nickel Nanoparticles-Chitosan Composite Coated Cellulose Filter Paper: An Efficient and Easily Recoverable Dip-Catalyst for Pollutants Degradation. Environ. Pollut. 2016, 218, 625–633. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Y.; Pan, G.; Xu, J.; Yan, H.; Liu, Y. In Situ Formation of Copper Nanoparticles in Carboxylated Chitosan Layer: Preparation and Characterization of Surface Modified TFC Membrane with Protein Fouling Resistance and Long-Lasting Antibacterial Properties. Sep. Purif. Technol. 2017, 176, 164–172. [Google Scholar] [CrossRef]
- Bagheripour, E.; Moghadassi, A.R.; Hosseini, S.M.; Van der Bruggen, B.; Parvizian, F. Novel Composite Graphene Oxide/Chitosan Nanoplates Incorporated into PES Based Nanofiltration Membrane: Chromium Removal and Antifouling Enhancement. J. Ind. Eng. Chem. 2018, 62, 311–320. [Google Scholar] [CrossRef]
- Sangeetha, K.; Angelin Vinodhini, P.; Sudha, P.N.; Alsharani Faleh, A.; Sukumaran, A. Novel Chitosan Based Thin Sheet Nanofiltration Membrane for Rejection of Heavy Metal Chromium. Int. J. Biol. Macromol. 2019, 132, 939–953. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of Chitosan-Based Adsorbents Used in Heavy Metal Adsorption: A Review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
- Biao, L.; Tan, S.; Wang, Y.; Guo, X.; Fu, Y.; Xu, F.; Zu, Y.; Liu, Z. Synthesis, Characterization and Antibacterial Study on the Chitosan-Functionalized Ag Nanoparticles. Mater. Sci. Eng. C 2017, 76, 73–80. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S.; Kim, S.K.; Shim, M.S. Chitosan as a Vehicle for Growth Factor Delivery: Various Preparations and Their Applications in Bone Tissue Regeneration. Int. J. Biol. Macromol. 2017, 104, 1383–1397. [Google Scholar] [CrossRef]
- Ali, F.; Khan, S.B.; Kamal, T.; Anwar, Y.; Alamry, K.A.; Asiri, A.M. Anti-Bacterial Chitosan/Zinc Phthalocyanine Fibers Supported Metallic and Bimetallic Nanoparticles for the Removal of Organic Pollutants. Carbohydr. Polym. 2017, 173, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Cheah, W.Y.; Show, P.L.; Ng, I.S.; Lin, G.Y.; Chiu, C.Y.; Chang, Y.K. Antibacterial Activity of Quaternized Chitosan Modified Nanofiber Membrane; Elsevier: Amsterdam, The Netherlands, 2019; Volume 126, ISBN 8862290616. [Google Scholar]
- Pelegrino, M.T.; Lima, B.d.A.; do Nascimento, M.H.M.; Lombello, C.B.; Brocchi, M.; Seabra, A.B. Biocompatible and Antibacterial Nitric Oxide-Releasing Pluronic F-127/Chitosan Hydrogel for Topical Applications. Polymers 2018, 10, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Guo, L.; Liu, M.; Cao, X.; Shang, S.; Liu, Z.; Huang, D.; Cao, Y.; Cui, F.; Tian, L. Callicarpa Nudiflora Loaded on Chitosan-Collagen/Organomontmorillonite Composite Membrane for Antibacterial Activity of Wound Dressing. Int. J. Biol. Macromol. 2018, 120, 2279–2284. [Google Scholar] [CrossRef]
- Senthilkumar, P.; Yaswant, G.; Kavitha, S.; Chandramohan, E.; Kowsalya, G.; Vijay, R.; Sudhagar, B.; Kumar, D.S.R.S. Preparation and Characterization of Hybrid Chitosan-Silver Nanoparticles (Chi-Ag NPs); A Potential Antibacterial Agent. Int. J. Biol. Macromol. 2019, 141, 290–297. [Google Scholar] [CrossRef]
- Belbekhouche, S.; Bousserrhine, N.; Alphonse, V.; Le Floch, F.; Charif Mechiche, Y.; Menidjel, I.; Carbonnier, B. Chitosan Based Self-Assembled Nanocapsules as Antibacterial Agent. Colloids Surf. B Biointerfaces 2019, 181, 158–165. [Google Scholar] [CrossRef]
- Yin, N.; Du, R.; Zhao, F.; Han, Y.; Zhou, Z. Characterization of Antibacterial Bacterial Cellulose Composite Membranes Modified with Chitosan or Chitooligosaccharide. Carbohydr. Polym. 2020, 229, 115520. [Google Scholar] [CrossRef]
- Oh, J.W.; Chun, S.C.; Chandrasekaran, M. Preparation and in Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato. Agronomy 2019, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Zienkiewicz-Strzałka, M.; Deryło-Marczewska, A.; Skorik, Y.A.; Petrova, V.A.; Choma, A.; Komaniecka, I. Silver Nanoparticles on Chitosan/Silica Nanofibers: Characterization and Antibacterial Activity. Int. J. Mol. Sci. 2020, 21, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadkari, R.R.; Ali, S.W.; Joshi, M.; Rajendran, S.; Das, A.; Alagirusamy, R. Leveraging Antibacterial Efficacy of Silver Loaded Chitosan Nanoparticles on Layer-by-Layer Self-Assembled Coated Cotton Fabric. Int. J. Biol. Macromol. 2020, 162, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, D.; Sazegar, M.R. Antibacterial Activity of a Novel Biocomposite Chitosan/Graphite Based on Zinc-Grafted Mesoporous Silica Nanoparticles. Int. J. Nanomed. 2020, 15, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Kızılkonca, E.; Torlak, E.; Erim, F.B. Preparation and Characterization of Antibacterial Nano Cerium Oxide/Chitosan/Hydroxyethylcellulose/Polyethylene Glycol Composite Films. Int. J. Biol. Macromol. 2021, 177, 351–359. [Google Scholar] [CrossRef]
- Zhou, X.; Yin, A.; Sheng, J.; Wang, J.; Chen, H.; Fang, Y.; Zhang, K. In Situ Deposition of Nano Cu2O on Electrospun Chitosan Nanofibrous Scaffolds and Their Antimicrobial Properties. Int. J. Biol. Macromol. 2021, 191, 600–607. [Google Scholar] [CrossRef]
- Babaee, M.; Garavand, F.; Rehman, A.; Jafarazadeh, S.; Amini, E.; Cacciotti, I. Biodegradability, Physical, Mechanical and Antimicrobial Attributes of Starch Nanocomposites Containing Chitosan Nanoparticles. Int. J. Biol. Macromol. 2022, 195, 49–58. [Google Scholar] [CrossRef]
- Dubey, P.; Gopinath, P. PEGylated Graphene Oxide-Based Nanocomposite-Grafted Chitosan/Polyvinyl Alcohol Nanofiber as an Advanced Antibacterial Wound Dressing. RSC Adv. 2016, 6, 69103–69116. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Varaprasad, K.; Pyarasani, R.D.; Reddy, K.K.; Kumar, K.D.; Akbari-Fakhrabadi, A.; Mangalaraja, R.V.; Amalraj, J. Chitosan Capped Copper Oxide/Copper Nanoparticles Encapsulated Microbial Resistant Nanocomposite Films. Int. J. Biol. Macromol. 2019, 128, 499–508. [Google Scholar] [CrossRef]
- Moutsatsou, P.; Coopman, K.; Georgiadou, S. Chitosan & Conductive PANI/Chitosan Composite Nanofibers—Evaluation of Antibacterial Properties. Curr. Nanomater. 2018, 4, 6–20. [Google Scholar] [CrossRef]
- Zou, P.; Lee, W.H.; Gao, Z.; Qin, D.; Wang, Y.; Liu, J.; Sun, T.; Gao, Y. Wound Dressing from Polyvinyl Alcohol/Chitosan Electrospun Fiber Membrane Loaded with OH-CATH30 Nanoparticles. Carbohydr. Polym. 2020, 232, 115786. [Google Scholar] [CrossRef] [PubMed]
- Moura, L.I.F.; Dias, A.M.A.; Carvalho, E.; de Sousa, H.C. Recent Advances on the Development of Wound Dressings for Diabetic Foot Ulcer Treatment—A Review. Acta Biomater. 2013, 9, 7093–7114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Mehrotra, G.K.; Dutta, P.K. Chitosan Based ZnO Nanoparticles Loaded Gallic-Acid Films for Active Food Packaging. Food Chem. 2021, 334, 127605. [Google Scholar] [CrossRef] [PubMed]
- Arkoun, M.; Daigle, F.; Heuzey, M.C.; Ajji, A. Mechanism of Action of Electrospun Chitosan-Based Nanofibers against Meat Spoilage and Pathogenic Bacteria. Molecules 2017, 22, 585. [Google Scholar] [CrossRef] [Green Version]
- Arkoun, M.; Daigle, F.; Heuzey, M.C.; Ajji, A. Antibacterial Electrospun Chitosan-Based Nanofibers: A Bacterial Membrane Perforator. Food Sci. Nutr. 2017, 5, 865–874. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Sauraj; Kumar, B.; Deeba, F.; Kulshreshtha, A.; Negi, Y.S. Chitosan Films Incorporated with Apricot (Prunus Armeniaca) Kernel Essential Oil as Active Food Packaging Material. Food Hydrocoll. 2018, 85, 158–166. [Google Scholar] [CrossRef]
- Jiang, L.; Luo, Z.; Liu, H.; Wang, F.; Li, H.; Gao, H.; Zhang, H. Preparation and Characterization of Chitosan Films Containing Lychee (Litchi Chinensis Sonn.) Pericarp Powder and Their Application as Active Food Packaging. Foods 2021, 10, 2834. [Google Scholar] [CrossRef]
- Senthilkumar, R.P.; Bhuvaneshwari, V.; Ranjithkumar, R.; Sathiyavimal, S.; Malayaman, V.; Chandarshekar, B. Synthesis, Characterization and Antibacterial Activity of Hybrid Chitosan-Cerium Oxide Nanoparticles: As a Bionanomaterials. Int. J. Biol. Macromol. 2017, 104, 1746–1752. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef]
- Xing, Y.; Li, X.; Guo, X.; Li, W.; Chen, J.; Liu, Q.; Xu, Q.; Wang, Q.; Yang, H.; Shui, Y.; et al. Effects of Different Tio2 Nanoparticles Concentrations on the Physical and Antibacterial Activities of Chitosan-Based Coating Film. Nanomaterials 2020, 10, 1365. [Google Scholar] [CrossRef]
- Sami, R.; Soltane, S.; Helal, M. Microscopic Image Segmentation and Morphological Characterization of Novel Chitosan/Silica Nanoparticle/Nisin Films Using Antimicrobial Technique for Blueberry Preservation. Membranes 2021, 11, 303. [Google Scholar] [CrossRef] [PubMed]
- Bandara, S.; Du, H.; Carson, L.; Bradford, D.; Kommalapati, R. Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials 2020, 10, 1903. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.A.R.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Tan, L.; Huang, R.; Li, X.; Liu, S.; Shen, Y.M.; Shao, Z. Chitosan-Based Core-Shell Nanomaterials for PH-Triggered Release of Anticancer Drug and near-Infrared Bioimaging. Carbohydr. Polym. 2017, 157, 325–334. [Google Scholar] [CrossRef]
- Janus, Ł.; Piatkowski, M.; Radwan-Pragłowska, J.; Bogdał, D.; Matysek, D. Chitosan-Based Carbon Quantum Dots for Biomedical Applications: Synthesis and Characterization. Nanomaterials 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, C.; Varaprasad, K.; Akbari-Fakhrabadi, A.; Hameed, A.S.H.; Sadiku, R. Biomolecule Chitosan, Curcumin and ZnO-Based Antibacterial Nanomaterial, via a One-Pot Process. Carbohydr. Polym. 2020, 249, 116825. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.E.; Badea, N.; Bacalum, M.; Antohe, S. Novel Bio-Friendly Nanomaterials Based on Artificial Cell Membranes, Chitosan and Silver Nanoparticles Phytogenerated From Eugenia Caryophyllata Buds: Eco-Synthesis, Characterization And Evaluation Of Bioactivities. Rom. Rep. Phys. 2020, 72, 601. [Google Scholar]
- Muthuchamy, M.; Govindan, R.; Shine, K.; Thangasamy, V.; Alharbi, N.S.; Thillaichidambaram, M.; Khaled, J.M.; Wen, J.L.; Alanzi, K.F. Anti-Biofilm Investigation of Graphene/Chitosan Nanocomposites against Biofilm Producing P. Aeruginosa and K. Pneumoniae. Carbohydr. Polym. 2020, 230, 115646. [Google Scholar] [CrossRef]
- Zhang, C.; Hui, D.; Du, C.; Sun, H.; Peng, W.; Pu, X.; Li, Z.; Sun, J.; Zhou, C. Preparation and Application of Chitosan Biomaterials in Dentistry. Int. J. Biol. Macromol. 2021, 167, 1198–1210. [Google Scholar] [CrossRef]
- Meng, Q.; Sun, Y.; Cong, H.; Hu, H.; Xu, F.J. An Overview of Chitosan and Its Application in Infectious Diseases. Drug Deliv. Transl. Res. 2021, 11, 1340–1351. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L.S.; Sytar, O.; Sestito, S.; Rapposelli, S.; Akram, M.; Iqbal, M.; Krishna, A.; et al. Chitosan Nanoparticles as a Promising Tool in Nanomedicine with Particular Emphasis on Oncological Treatment. Cancer Cell Int. 2021, 21, 318. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, K.; Peng, X.; Zhang, L. Chitosan-Based Drug Delivery Systems: Current Strategic Design and Potential Application in Human Hard Tissue Repair. Eur. Polym. J. 2022, 166, 110979. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Chylińska, M.; Pertile, G.; Pieczywek, P.M.; Cieślak, K.J.; Zdunek, A.; Frąc, M. Influence of Chitosan Addition on the Mechanical and Antibacterial Properties of Carrot Cellulose Nanofibre Film. Cellulose 2019, 26, 9613–9629. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Turner, J.; Jiang, N.; Zhu, S.; Zhang, L.; Falzon, B.G.; McCoy, C.P.; Maguire, P.; Mariotti, D.; Sun, D. Atmospheric Pressure Microplasma for Antibacterial Silver Nanoparticle/Chitosan Nanocomposites with Tailored Properties. Compos. Sci. Technol. 2020, 186, 107911. [Google Scholar] [CrossRef]
- Peng, J.; Wang, X.; Lou, T. Preparation of Chitosan/Gelatin Composite Foam with Ternary Solvents of Dioxane/Acetic Acid/Water and Its Water Absorption Capacity. Polym. Bull. 2020, 77, 5227–5244. [Google Scholar] [CrossRef]
- Fuster, M.G.; Montalbán, M.G.; Carissimi, G.; Lima, B.; Feresin, G.E.; Cano, M.; Giner-Casares, J.J.; López-Cascales, J.J.; Enriz, R.D.; Víllora, G. Antibacterial Effect of Chitosan–Gold Nanoparticles and Computational Modeling of the Interaction between Chitosan and a Lipid Bilayer Model. Nanomaterials 2020, 10, 2340. [Google Scholar] [CrossRef]
- Marangon, C.A.; Martins, V.C.A.; Ling, M.H.; Melo, C.C.; Plepis, A.M.G.; Meyer, R.L.; Nitschke, M. Combination of Rhamnolipid and Chitosan in Nanoparticles Boosts Their Antimicrobial Efficacy. ACS Appl. Mater. Interfaces 2020, 12, 5488–5499. [Google Scholar] [CrossRef]
- Chen, P.; Xie, F.; Tang, F.; McNally, T. Influence of Plasticiser Type and Nanoclay on the Properties of Chitosan-Based Materials. Eur. Polym. J. 2021, 144, 110225. [Google Scholar] [CrossRef]
- Dong, Y.; Bi, J.; Ming, S.; Zhang, S.; Zhu, D.; Meng, D.; Li, T. Functionalized Chitosan as a Novel Support for Stabilizing Palladium in Suzuki Reactions. Carbohydr. Polym. 2021, 260, 117815. [Google Scholar] [CrossRef]
- Irshad, M.S.; Wang, X.; Abbasi, M.S.; Arshad, N.; Chen, Z.; Guo, Z.; Yu, L.; Qian, J.; You, J.; Mei, T. Semiconductive, Flexible MnO2NWs/Chitosan Hydrogels for Efficient Solar Steam Generation. ACS Sustain. Chem. Eng. 2021, 9, 3887–3900. [Google Scholar] [CrossRef]
- Yousefi, V.; Mohebbi-Kalhori, D.; Samimi, A. Start-up Investigation of the Self-Assembled Chitosan/Montmorillonite Nanocomposite over the Ceramic Support as a Low-Cost Membrane for Microbial Fuel Cell Application. Int. J. Hydrogen Energy 2020, 45, 4804–4820. [Google Scholar] [CrossRef]
- Castro Marín, A.; Colangelo, D.; Lambri, M.; Riponi, C.; Chinnici, F. Relevance and Perspectives of the Use of Chitosan in Winemaking: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3450–3464. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Pizzi, A.; Lei, H.; Zhang, B.; Chen, X.; Du, G. Environmentally Friendly Chitosan Adhesives for Plywood Bonding. Int. J. Adhes. Adhes. 2022, 112, 103027. [Google Scholar] [CrossRef]
- Nasirinezhad, M.; Ghaffarian, S.R.; Tohidian, M. Eco-Friendly Polyelectrolyte Nanocomposite Membranes Based on Chitosan and Sulfonated Chitin Nanowhiskers for Fuel Cell Applications. Iran. Polym. J. 2021, 30, 355–367. [Google Scholar] [CrossRef]
- Qi, P.; Xu, Z.; Zhou, T.; Zhang, T.; Zhao, H. Study on a Quartz Crystal Microbalance Sensor Based on Chitosan-Functionalized Mesoporous Silica for Humidity Detection. J. Colloid Interface Sci. 2021, 583, 340–350. [Google Scholar] [CrossRef]
- Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar] [CrossRef]
- Chadha, U.; Selvaraj, S.K.; Ashokan, H.; Hariharan, S.P.; Mathew Paul, V.; Venkatarangan, V.; Paramasivam, V. Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications. Adv. Mater. Sci. Eng. 2022, 2022, 1552334. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Selvaraj, S.K.; Kumari, K.; Isaac, T.S.; Panjwani, M.; Kulkarni, K.; Mathew, R.M.; Satheesh, A.M.; Pal, A.; et al. Advances in Chitosan Biopolymer Composite Materials: From Bioengineering, Wastewater Treatment to Agricultural Applications. Mater. Res. Express 2022, 9, 052002. [Google Scholar] [CrossRef]
- Chang, S.H. Gold(III) Recovery from Aqueous Solutions by Raw and Modified Chitosan: A Review. Carbohydr. Polym. 2021, 256, 117423. [Google Scholar] [CrossRef]
- Wang, G.; Li, R.; Parseh, B.; Du, G. Prospects and Challenges of Anticancer Agents’ Delivery via Chitosan-Based Drug Carriers to Combat Breast Cancer: A Review. Carbohydr. Polym. 2021, 268, 118192. [Google Scholar] [CrossRef]
- Gorantla, S.; Dabholkar, N.; Sharma, S.; Rapalli, V.K.; Alexander, A.; Singhvi, G. Chitosan-Based Microneedles as a Potential Platform for Drug Delivery through the Skin: Trends and Regulatory Aspects. Int. J. Biol. Macromol. 2021, 184, 438–453. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Pal, A.; Nakashima, K.; Yadav, B.K. Applications of Chitosan in Environmental Remediation: A Review. Chemosphere 2021, 266, 128934. [Google Scholar] [CrossRef] [PubMed]
- Kamal Eddin, F.B.; Fen, Y.W.; Omar, N.A.S.; Liew, J.Y.C.; Daniyal, W.M.E.M.M. Femtomolar Detection of Dopamine Using Surface Plasmon Resonance Sensor Based on Chitosan/Graphene Quantum Dots Thin Film. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2021, 263, 120202. [Google Scholar] [CrossRef] [PubMed]
Applications | Examples |
---|---|
Chitosan | |
Biomedical and pharmaceutical materials | Treating burns, drug delivery systems, dental repair and treatment, surgical structures, artificial skin, lenses for eyes, dialysis of blood, artificial blood vessels, antitumor and antibiotic uses, accelerated wound healing. |
Cosmetics | Hair and skin care products |
Tissue engineering | Regeneration of bones and tissues, repair of scaffolds, regeneration of sulphate sponges in bone, development of artificial pancreas, diabetes treatment. |
Agriculture | Food and seed coating, removal of pesticides and herbicides from soil and water, excellent film coating with antimicrobial activities, preservation of post harvested foods, enhancing plant growth, enhancing soil quality. |
Food and feed additives | Food and beverage de-acidification, color stabilization in foods, lipid absorption reduction, extension of natural flavor, antioxidant and food preservation, controlling agent, stabilizing agent, thickening agent, additives in livestock and fish food, manufacture of dietary fibers. |
Water engineering | Treatment of waste water, removal of heavy metals from water, removal of pesticides and ions from water, dye removal from water, removal of petroleum products from water, removal of dyes from effluents, color removal from textile waste waters. |
Chemical Properties | Biological Properties |
---|---|
Nitrogen content is enhanced | Biocompatible and biodegradable |
High hydrophilicity and crystallinity due to structure | Non-toxic to humans |
Powerful nucleophile and weak base | Combines with microbial cells quickly |
Increases viscosity by forming hydrogen bonds | Regenerates the gum tissues |
Has reactive groups for crosslinking and chemical activation | Stops bleeding |
Insoluble in water and organic solvents | Enhances bone formation and repair |
Soluble in acids | Inhibits the growth of fungi |
Leads to salt formation with organic and inorganic acids | Inhibits the growth of tumor cells |
Has chelating properties | Enhances birth control |
Ionic conductivity | Acts as a cholesterol-reducing agent |
Act as a polyelectrolyte in acidic conditions | Anticancer agent |
Combines with negatively charged molecules | Act as a nervous depressant |
Better adsorption and entrapment properties | Improves the immune response |
Better separation and filtration abilities | Combines with mammalians |
Ability to form films | Safe for water treatment |
Physicochemical Properties | |||
---|---|---|---|
S.No. | Properties | Degree of N-acetylation (DA) | Molecular Weight (MW) |
1 | Solubility | Indirectly proportional | N/A |
2 | Crystallinity | Directly proportional | N/A |
3 | Viscosity | Indirectly proportional | N/A |
4 | Biodegradability | Directly proportional | Indirectly proportional |
5 | Biocompatibility | Indirectly proportional | N/A |
Biological properties | |||
6 | Antimicrobial | Indirectly proportional | Directly proportional |
7 | Analgesic | Indirectly proportional | N/A |
8 | Anticholestemic | N/A | Indirectly proportional |
9 | Antioxidant | Indirectly proportional | Indirectly proportional |
10 | Hemostatic | Indirectly proportional | N/A |
11 | Mucoadhesion | Indirectly proportional | Directly proportional |
12 | Permeation enhancing effect | Indirectly proportional | Directly proportional |
13 | Antitumor | N/A | Indirectly proportional |
Application | General Recommendations | |
---|---|---|
Healing of wounds | Chitosan preferred over chitin due to higher drug delivery capability | |
DD systems | Higher drug delivery capability and higher Mw | |
Repairing of Scaffolds | Good proliferation and structure Higher Mw results in prolonged biodegradation | |
Enzyme immobilization | Adsorption | Chitin used for positively charged and neutral proteins Chitosan used for negatively charged proteins It possess higher drug delivery capability |
Covalent | Chitosan is used for immobilization at multipoints Chitin with higher DD or chitosan with lower DD is used for single-point immobilization | |
Encapsulation | Chitosan has higher Mw, higher drug delivery rates, and better retention Chitosan-–alginate PECs possess medium Mw and have better stability under different conditions | |
Food preservative | Higher drug delivery Medium and lower Mw values | |
Waste water treatment | Depending on pollutants and water conditions such as pH and ionic strength. Chitosan is preferred over chitin due to higher drug delivery ability and lower crystallinity | |
Metal reduction | Chitosan’s characteristics decide the metal reduction rate, higher DD rate, and lower Mw results in the stabilization of nanoparticles |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, A.Z.; Raj, S.A.; Kandasamy, J.; Baghdadi, M.A.; Shahzad, M.A. Chitosan: A Sustainable Material for Multifarious Applications. Polymers 2022, 14, 2335. https://doi.org/10.3390/polym14122335
Hameed AZ, Raj SA, Kandasamy J, Baghdadi MA, Shahzad MA. Chitosan: A Sustainable Material for Multifarious Applications. Polymers. 2022; 14(12):2335. https://doi.org/10.3390/polym14122335
Chicago/Turabian StyleHameed, Abdul Zubar, Sakthivel Aravind Raj, Jayakrishna Kandasamy, Majed Abubakr Baghdadi, and Muhammad Atif Shahzad. 2022. "Chitosan: A Sustainable Material for Multifarious Applications" Polymers 14, no. 12: 2335. https://doi.org/10.3390/polym14122335
APA StyleHameed, A. Z., Raj, S. A., Kandasamy, J., Baghdadi, M. A., & Shahzad, M. A. (2022). Chitosan: A Sustainable Material for Multifarious Applications. Polymers, 14(12), 2335. https://doi.org/10.3390/polym14122335