Development of Aloe Vera-Green Banana Saba-Curcumin Composite Film for Colorimetric Detection of Ferrum (II)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Aloe Vera-Banana Starch-Curcumin Composite Film
2.3. Morphology Characterization
2.4. Film Thickness and Mass
2.5. Density
2.6. Color Property
2.7. Opacity
2.8. Biodegradation Tests
2.9. Moisture Content
2.10. Water Solubility
2.11. Water Absorption
2.12. Swelling Degree
2.13. Water Vapor Permeability
2.14. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characterization
3.2. Dry Weight, Density, and Thickness
3.3. Color Property and Opacity
3.4. Biodegradability Test
3.5. Water-Resistance/Water Barrier Properties
3.6. Sensing Performance of the Composite Film
3.7. Selectivity of the Composite Film
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, M.; Liu, Y.; Geng, J.; Kou, X.; Xin, Z.; Yang, D. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Met. 2018, 10, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B. A review on detection of heavy metal ions in water–an electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Carrard, N.; Foster, T.; Willetts, J. Groundwater as a source of drinking water in southeast Asia and the Pacific: A multi-country review of current reliance and resource concerns. Water 2019, 11, 1605. [Google Scholar] [CrossRef] [Green Version]
- Bui, T.T.; Nguyen, D.C.; Han, M.; Kim, M.; Park, H. Rainwater as a source of drinking water: A resource recovery case study from Vietnam. J. Water Process. Eng. 2021, 39, 101740. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, Y.S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020, 11, 1021. [Google Scholar] [CrossRef]
- Khorasani, M.Y.; Langari, H.; Sany, S.B.; Rezayi, M.; Sahebkar, A. The role of curcumin and its derivatives in sensory applications. Mater. Sci. Eng. C. 2019, 103, 109792. [Google Scholar] [CrossRef]
- Rainey, N.E.; Moustapha, A.; Saric, A.; Nicolas, G.; Sureau, F.; Petit, P.X. Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov. 2019, 5, 150. [Google Scholar] [CrossRef]
- Sartori, T.; Menegalli, F.C. Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrocoll. 2016, 55, 210–219. [Google Scholar] [CrossRef]
- Ketsa, S.; Wisutiamonkul, A. Postharvest Physiological Disorders of Banana Fruit: Finger Drop, Senescent Spotting, and Chilling Injury. Hortic. Rev. 2022, 49, 97–169. [Google Scholar] [CrossRef]
- Cahyana, Y.; Wijaya, E.; Halimah, T.S.; Marta, H.; Suryadi, E.; Kurniati, D. The effect of different thermal modifications on slowly digestible starch and physicochemical properties of green banana flour (Musa acuminata colla). Food Chem. 2019, 274, 274–280. [Google Scholar] [CrossRef]
- Ezuruike, U.F.; Prieto, J.M. The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations. J. Ethnopharmacol. 2014, 155, 857–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Toro, R.; Collazo-Bigliardi, S.; Roselló, J.; Santamarina, P.; Chiralt, A. Antifungal starch-based edible films containing Aloe vera. Food Hydrocoll. 2017, 72, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sarker, A.; Grift, T.E. Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: A review. J. Food Meas. Charact. 2021, 15, 2119–2213. [Google Scholar] [CrossRef]
- Nizam, N.H.M.; Rawi, N.F.M.; Ramle, S.F.M.; Abd Aziz, A.; Abdullah, C.K.; Rashedi, A.; Kassim, M.H.M. Physical, thermal, mechanical, antimicrobial and physicochemical properties of starch based film containing aloe vera: A review. J. Mater. Res. Technol. 2021, 15, 1572–1589. [Google Scholar] [CrossRef]
- Werner, J. Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase for preconcentration of heavy metals ions prior to determination by LC-UV. Talanta 2018, 182, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Sardar, M.R.; Lin, B.; Lin, J.M. Analysis of trace metals in water samples using NOBIAS chelate resins by HPLC and ICP-MS. Talanta 2019, 204, 50–56. [Google Scholar] [CrossRef]
- Choodum, A.; Sriprom, W.; Wongniramaikul, W. Portable and selective colorimetric film and digital image colorimetry for detection of iron. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 208, 40–47. [Google Scholar] [CrossRef]
- Kumar, Y.; Kaushik, R.; Rani, S.; Rafat, S.; Shabir, J.; Dev, K.; Kumar, L.S. Curcumin immobilized metal organic framework based fluorescent nanoprobe for selective sensing and bioimaging of Fe (II). Mater. Today Commun. 2021, 28, 102563. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Wang, X.; Zhao, J.; Pan, W.; Yu, G.; Qu, Y.; Wang, J. Colorimetric and fluorimetric dual mode detection of Fe2+ in aqueous solution based on a carbon dots/phenanthroline system. Arab. J. Chem. 2020, 13, 5075–5083. [Google Scholar] [CrossRef]
- Liu, G.; Li, B.; Liu, Y.; Feng, Y.; Jia, D.; Zhou, Y. Rapid and high yield synthesis of carbon dots with chelating ability derived from acrylamide/chitosan for selective detection of ferrous ions. Appl. Surf. Sci. 2019, 487, 1167–1175. [Google Scholar] [CrossRef]
- Rasouli, Z.; Ghavami, R. A 3 × 3 visible-light cross-reactive sensor array based on the nano aggregation of curcumin in different pH and buffers for the multivariate identification and quantification of metal ions. Talanta 2021, 226, 122131. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; Xie, F.; Fan, Y.; Xu, X.; Qi, J.; Xiong, G.; Gao, X.; Zhang, F. pH-responsive double-layer indicator films based on konjac glucomannan/camellia oil and carrageenan/anthocyanin/curcumin for monitoring meat freshness. Food Hydrocoll. 2021, 118, 106695. [Google Scholar] [CrossRef]
- Acevedo-Guevara, L.; Nieto-Suaza, L.; Sanchez, L.T.; Pinzon, M.I.; Villa, C.C. Development of native and modified banana starch nanoparticles as vehicles for curcumin. Int. J. Biol. Macromol. 2018, 111, 498–504. [Google Scholar] [CrossRef]
- Akubor, P.I.; Igba, T. Effect of pre gelatinization and annealing on the chemical composition, functional and pasting properties of starch prepared from unripe banana fruits. South Asian J. Food Technol. Env. 2019, 5, 807–816. [Google Scholar] [CrossRef]
- Pandit, R.S.; Gaikwad, S.C.; Agarkar, G.A.; Gade, A.K.; Rai, M. Curcumin nanoparticles: Physico-chemical fabrication and its in vitro efficacy against human pathogens. 3 Biotech 2015, 5, 991–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto-Suaza, L.; Acevedo-Guevara, L.; Sánchez, L.T.; Pinzón, M.I.; Villa, C.C. Characterization of Aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. Food Struct. 2019, 22, 100131. [Google Scholar] [CrossRef]
- Altaf, F.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Akram, M.A.; Butt, M.S.; Noor, T.; Sher, F. Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. J. Polym. Environ. 2021, 29, 156–174. [Google Scholar] [CrossRef]
- Rovina, K.; Vonnie, J.M.; Shaeera, S.N.; Yi, S.X.; Abd Halid, N.F. Development of biodegradable hybrid polymer film for detection of formaldehyde in seafood products. Sens. Bio-Sens. Res. 2020, 27, 100310. [Google Scholar] [CrossRef]
- Bojorges, H.; Ríos-Corripio, M.A.; Hernández-Cázares, A.S.; Hidalgo-Contreras, J.V.; Contreras-Oliva, A. Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Sci. Nutr. 2020, 8, 4308–4319. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lee, E.S.; Han, J. Enhancement of the water-resistance properties of an edible film prepared from mung bean starch via the incorporation of sunflower seed oil. Sci. Rep. 2020, 10, 13622. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, X.; Liu, L.; Chen, W.; Bai, J.; Ma, F.; Liu, X.; Kang, W. Preparation and characterization of edible films composed of Dioscorea opposita Thunb. mucilage and starch. Polym. Test. 2020, 90, 106708. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M.; Velazquez, G. Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym. Test. 2018, 69, 536–544. [Google Scholar] [CrossRef]
- Wongphan, P.; Harnkarnsujarit, N. Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. Int. J. Biol. Macromol. 2020, 156, 80–93. [Google Scholar] [CrossRef]
- Pinzon, M.I.; Garcia, O.R.; Villa, C.C. The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films. J. Sci. Food Agric. 2018, 98, 4042–4049. [Google Scholar] [CrossRef]
- Schaefer, E.W.; Pavoni, J.M.; Luchese, C.L.; Faccin, D.J.; Tessaro, I.C. Influence of turmeric incorporation on physicochemical, antimicrobial and mechanical properties of the cornstarch and chitosan films. Int. J. Biol. Macromol. 2020, 148, 342–350. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Saha, J. Antimicrobial, UV resistant and thermal comfort properties of chitosan- and Aloe vera-modified cotton woven fabric. J. Polym. Environ. 2019, 27, 405–420. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; González, G. Effect of cross-linking with Aloe vera gel on surface and physicochemical properties of edible films made from plantain flour. Food Biophys. 2017, 12, 11–22. [Google Scholar] [CrossRef]
- Erna, K.H.; Felicia, W.X.L.; Rovina, K.; Vonnie, J.M.; Huda, N. Development of Curcumin/Rice Starch Films for Sensitive Detection of Hypoxanthine in Chicken and Fish Meat. Carbohydr. Polym. 2022, 3, 100189. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Makwana, S.H. Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydr. Polym. 2020, 227, 115303. [Google Scholar] [CrossRef] [PubMed]
- Wilfer, P.B.; Giridaran, G.; Jeevahan, J.J.; Joseph, G.B.; Kumar, G.S.; Thykattuserry, N.J. Effect of starch type on the film properties of native starch based edible films. Mater. Today 2021, 44, 3903–3907. [Google Scholar] [CrossRef]
- Silva, V.D.; Macedo, M.C.; Rodrigues, C.G.; dos Santos, A.N.; e Loyola, A.C.; Fante, C.A. Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Biosci. 2020, 38, 100750. [Google Scholar] [CrossRef]
- Smułek, W.; Sydow, M.; Zabielska-Matejuk, J.; Kaczorek, E. Bacteria involved in biodegradation of creosote PAH–A case study of long-term contaminated industrial area. Ecotoxicol. Environ. Saf. 2020, 187, 109843. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, M.; Nath, O.; Deb, P. Enhancing barrier properties of biodegradable film by reinforcing with 2D heterostructure. Appl. Surf. Sci. 2021, 541, 148464. [Google Scholar] [CrossRef]
- Arayaphan, J.; Boonsuk, P.; Chantarak, S. Enhancement of water barrier properties of cassava starch-based biodegradable films using silica particles. Iran. Polym. J. 2020, 29, 749–757. [Google Scholar] [CrossRef]
- Fonseca-García, A.; Jiménez-Regalado, E.J.; Aguirre-Loredo, R.Y. Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers. Carbohydr. Polym. 2021, 251, 117009. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Jiang, Q.; Yu, D.; Xu, Y.; Wang, B.; Xia, W. Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydr. Polym. 2021, 260, 117778. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Beneduci, A.; Corrente, G.A.; Marino, T.; Aiello, D.; Bartella, L.; Di Donna, L.; Napoli, A.; Russo, N.; Romeo, I.; Furia, E. Insight on the chelation of aluminum (III) and iron (III) by curcumin in aqueous solution. J. Mol. Liq. 2019, 296, 111805. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, X.; Zhang, J.; Yang, Z.; Sun, Y.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Povey, M.; et al. Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packag. 2020, 26, 100595. [Google Scholar] [CrossRef]
Parameter | Banana Starch Film | Aloe Vera-Banana Starch Film | Banana Starch-Curcumin Film | Aloe Vera-Banana Starch-Curcumin Film |
---|---|---|---|---|
Thickness (μm) | 16.80 ± 0.70 a | 26.10 ± 3.30 b | 17.40 ± 1.80 a | 26.40 ± 1.90 b |
Weight (g) | 0.18 ± 0.01 a | 0.20 ± 0.02 a | 0.20 ± 0.01 a | 0.23 ± 0.03 a |
Density (g/cm3) | 0.06 ± 2.71 a | 0.07 ± 15.04 a | 0.08 ± 14.60 a | 0.08 ± 1.99 a |
ΔE | 19.34 ± 0.25 a | 22.16 ± 0.14 b | 52.07 ± 0.85 c | 42.38 ± 0.67 d |
Opacity (%) | 35.19 ± 2.37 a | 38.22 ± 4.62 a | 38.01 ± 4.51 a | 32.77 ± 2.10 a |
Biodegradability (%) | 1.28 ± 0.05 a | 1.18 ± 0.11 a | 0.79 ± 0.76 a | 1.28 ± 0.03 a |
Parameter | Banana Starch Film | Aloe Vera-Banana Sarch Film | Banana Starch-Curcumin Film | Aloe Vera-Banana Starch-Curcumin Film |
---|---|---|---|---|
Moisture content (%) | 19.16 ± 2.71 a | 27.43 ± 15.04 a | 14.56 ± 0.39 a | 27.12 ± 1.42 a |
Water solubility (%) | 3.97 ± 0.18 a | 11.70 ± 4.22 b | 1.75 ± 0.96 a | 9.45 ± 1.24 b |
Water adsorption (%) | 27.38 ± 3.87 a | 38.11 ± 21.88 a | 27.37 ± 19.50 a | 43.65 ± 1.75 a |
Swelling degree (%) | 145.91 ± 31.32 a | 157.84 ± 103.77 a | 118.75 ± 6.77 a | 151.56 ± 52.14 a |
Water vapor permeability (g/m s Pa) | 8.05 × 10−7 ± 7.4910−9 a | 5.3010−7 ± 2.4910−8 a | 5.5910−7 ± 2.6310−8 a | 3.3810−7 ± 1.8010−8 a |
Composite Materials | Linear Range | LOD | Samples | References |
---|---|---|---|---|
Carbon dots with acrylamide/ chitosan | 0–50 μM | 160 nM | Drinking water | Liu et al. [23] |
Carbon dots/ phenanthroline | 0–100 μM | 2.98 μM | Lake water, tap water, and human blood | Sun et al. [22] |
Curcumin immobilized zeolitic imidazolate framework-8 | 0–250 μM | 7.64 μM | Aqueous media | Kumar et al. [21] |
Phenanthroline/ tapioca starch thin film | 0–10 ppm | 0.09 ± 0.01 ppm | Soil and paddy field water | Choodum et al. [20] |
Aloe vera-banana starch-curcumin bio-films | 0–100 ppm | 27.8438 ppm | Water | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vonnie, J.M.; Jing Ting, B.; Rovina, K.; Erna, K.H.; Felicia, W.X.L.; Nur ‘Aqilah, N.M.; Abdul Wahab, R. Development of Aloe Vera-Green Banana Saba-Curcumin Composite Film for Colorimetric Detection of Ferrum (II). Polymers 2022, 14, 2353. https://doi.org/10.3390/polym14122353
Vonnie JM, Jing Ting B, Rovina K, Erna KH, Felicia WXL, Nur ‘Aqilah NM, Abdul Wahab R. Development of Aloe Vera-Green Banana Saba-Curcumin Composite Film for Colorimetric Detection of Ferrum (II). Polymers. 2022; 14(12):2353. https://doi.org/10.3390/polym14122353
Chicago/Turabian StyleVonnie, Joseph Merillyn, Bong Jing Ting, Kobun Rovina, Kana Husna Erna, Wen Xia Ling Felicia, Nasir Md Nur ‘Aqilah, and Roswanira Abdul Wahab. 2022. "Development of Aloe Vera-Green Banana Saba-Curcumin Composite Film for Colorimetric Detection of Ferrum (II)" Polymers 14, no. 12: 2353. https://doi.org/10.3390/polym14122353
APA StyleVonnie, J. M., Jing Ting, B., Rovina, K., Erna, K. H., Felicia, W. X. L., Nur ‘Aqilah, N. M., & Abdul Wahab, R. (2022). Development of Aloe Vera-Green Banana Saba-Curcumin Composite Film for Colorimetric Detection of Ferrum (II). Polymers, 14(12), 2353. https://doi.org/10.3390/polym14122353