Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading
Abstract
:1. Introduction
2. Materials and Testing Methods
3. Test Results and Discussions
4. Hyperelastic Material Coefficient Fitting
5. Conclusions
- For the tensile strain ranges between 30% and 90%, the peak stress was nearly the same during the cyclic loading, but a significant reduction was observed in tensile strain ranges greater than 90%.
- At the first cycle, the monotonic elastic modulus was almost consistent for all specimens, which confirmed that the deviation of 50 μm in the thickness did not significantly affect the monotonic elastic modulus.
- In contrast to the monotonic elastic modulus, the cyclic elastic modulus tended to escalate as the film thickness increased, but tended to decrease with an increase in the tensile loading.
- Hyperelastic material coefficients were defined to simulate the cyclic mechanical behaviours of the PDMS films. The third-order Ogden model showed the best fitting results over the entire tensile strain range.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y. Stretchable Electronics Based on PDMS Substrates. Adv. Mater. 2021, 33. [Google Scholar] [CrossRef] [PubMed]
- Segev-Bar, M.; Haick, H. Flexible Sensors Based on Nanoparticles. ACS Nano 2013, 7, 8366–8378. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Tong, Y.; Sun, J.; Wei, Y.; Thitsartarn, W.; Jayven, C.C.Y.; Muiruri, J.K.; Wong, S.Y.; He, C. Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer. Compos. Sci. Technol. 2018, 159, 208–215. [Google Scholar] [CrossRef]
- Chen, Z.; Xi, J.; Huang, W.; Yuen, M.M.F. Stretchable conductive elastomer for wireless wearable communication applications. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trung, T.Q.; Lee, N.-E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv. Mater. 2016, 28, 4338–4372. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, D.; Hu, G.; Wang, H.; Jiang, Y.; Chen, G.; Luo, Y.; Loh, X.J.; Liedberg, B.; Chen, X. Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiber-Shaped Stretchable Strain Sensors. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef] [PubMed]
- Sim, G.-D.; Lee, Y.-S.; Lee, S.-B.; Vlassak, J.J. Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng. A 2013, 575, 86–93. [Google Scholar] [CrossRef]
- Ke, K.; Pötschke, P.; Wiegand, N.; Krause, B.; Voit, B. Tuning the network structure in poly (vinylidene fluoride)/carbon nanotube nanocomposites using carbon black: Toward improvements of conductivity and piezoresistive sensitivity. ACS Appl. Mater. Interfaces 2016, 8, 14190–14199. [Google Scholar] [CrossRef]
- Kim, T.K.; Kim, J.K.; Jeong, O.C. Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectron. Eng. 2011, 88, 1982–1985. [Google Scholar] [CrossRef]
- Wu, C.-L.; Lin, H.-C.; Huang, C.-H.; Yip, M.-C.; Fang, W. Mechanical Properties of PDMS/CNTs Nanocomposites. MRS Proc. 2007, 1056. [Google Scholar] [CrossRef]
- Liu, M.; Sun, J.; Chen, Q. Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sensors Actuators A Phys. 2009, 151, 42–45. [Google Scholar] [CrossRef]
- Park, J.; You, I.; Shin, S.; Jeong, U. Material Approaches to Stretchable Strain Sensors. ChemPhysChem 2015, 16, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Shih, T.-K.; Chen, C.-F.; Ho, J.-R.; Chuang, F.-T. Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectron. Eng. 2006, 83, 2499–2503. [Google Scholar] [CrossRef]
- Liu, M.; Sun, J.; Sun, Y.; Bock, C.; Chen, Q. Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J. Micromechanics Microengineering 2009, 19. [Google Scholar] [CrossRef]
- Johnston, I.; McCluskey, D.; Tan, C.; Tracey, M. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromechanics Microengineering 2014, 24, 035017. [Google Scholar] [CrossRef]
- Zakaria, S.; Madsen, F.B.; Skov, A.L. Post Curing as an Effective Means of Ensuring the Long-term Reliability of PDMS Thin Films for Dielectric Elastomer Applications. Polym. Technol. Eng. 2016, 56, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Wapler, M.C.; Wallrabe, U. A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter 2019, 15, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Bedon, C.; Mattei, S. Multistep Experimental Calibration of Mechanical Parameters for Modelling Multilayer Antishatter Safety Films in Structural Glass Protection. Math. Probl. Eng. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Mattei, S.; Cozzarini, L.; Bedon, C. Experimental and Numerical Peeling Investigation on Aged Multi-Layer Anti-Shatter Safety Films (ASFs) for Structural Glass Retrofit. Symmetry 2022, 14, 162. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2012.
- Lee, Y.; Chung, J.W.; Lee, G.H.; Kang, H.; Kim, J.-Y.; Bae, C.; Yoo, H.; Jeong, S.; Cho, H.; Kang, S.-G.; et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 2021, 7, eabg9180. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Wang, H.; Jian, M.; Hao, X.; Zhang, Y. Carbonized Cotton Fabric for High-Performance Wearable Strain Sensors. Adv. Funct. Mater. 2017, 27, 1604795. [Google Scholar] [CrossRef]
- Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Ychisawa, L.K.; Costa, C.A. Yield Point Determination Using Cyclic Loading in Polymer. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018. [Google Scholar] [CrossRef]
- Félix, A.S.C.; Santiago-Alvarado, A.; Iturbide-Jiménez, F.; Licona-Morán, B. Physical-chemical properties of PDMS samples used in tunable lenses. Intl. J. Eng. Sci. Innov. Tech 2014, 3, 563–571. [Google Scholar]
- Khanafer, K.; Duprey, A.; Schlicht, M.; Berguer, R. Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications. Biomed. Microdevices 2009, 11, 503–508. [Google Scholar] [CrossRef]
- Schneider, F.; Fellner, T.; Wilde, J.; Wallrabe, U. Mechanical properties of silicones for MEMS. J. Micromech. Microeng. 2008, 18. [Google Scholar] [CrossRef]
- Esmail, J.F.; Mohamedmeki, M.Z.; Ajeel, A.E. Using the uniaxial tension test to satisfy the hyperelastic material simulation in ABAQUS. IOP Conf. Series Mater. Sci. Eng. 2020, 888, 012065. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Standard test method | ASTM-D882 |
Specimen materials | PDMS (Polydimethylsiloxane) |
Thickness | 150, 200, 250 ± 10 (μm) |
Width × Length | 10 (mm) × 100 (mm) |
Distance between grips | 50 (mm) |
Test equipment | E-3000, Illinois Tool Works Inc. |
Strain increase | 30–130, step 20 (%) |
Strain rate | 10 (mm/min) |
Repeatability | 5 (times) |
Cycle | 20 (cycles) |
Specimen Dimensions (mm) (Length × Width × Thickness) | Monotonic Elastic Modulus (MPa) | ||
---|---|---|---|
(a) | 100 × 10 × 0.2 | 2.42 ± 0.19 | |
(b) | 115 × 5 × 0.2 | [15] | 2.46 ± 0.16 |
(c) | 75 × 6 × 4 | [26] | 1.58 ± 0.10 |
(d) | 75 × 12.5 × 2 | [27] | 1.82 ± 0.10 |
Strain (%) | Cyclic Elastic Modulus (MPa) | ||
---|---|---|---|
Thickness of the PDMS Films (μm) | |||
150 | 200 | 250 | |
30 | 2.39 | 2.40 | 2.41 |
50 | 2.25 | 2.29 | 2.32 |
70 | 2.12 | 2.18 | 2.21 |
90 | 1.99 | 2.05 | 2.09 |
110 | 1.82 | 1.91 | 1.98 |
130 | 1.69 | 1.78 | 1.90 |
Third-Order Ogden Model | |||||||
---|---|---|---|---|---|---|---|
Specimen Thickness (μm) | Hyper Elastic Material Coefficient | Tensile Strain (%) | |||||
30 | 50 | 70 | 90 | 110 | 130 | ||
150 | −5.594711 | −2.348676 | −1.409677 | −2.384077 | 0.263213 | 0.604602 | |
−5.182573 | 8.043136 | 6.210769 | 6.217385 | 4.907022 | 1.945838 | ||
3.229671 | 0.728314 | 0.204002 | 0.328402 | 0.001876 | 0.140047 | ||
−2.907440 | 9.906084 | 9.192678 | 8.561867 | 14.191971 | 12.334158 | ||
3.322678 | 2.375117 | 1.898027 | 2.695122 | 0.454483 | −0.267031 | ||
−8.528927 | 6.062830 | 4.763705 | 5.250434 | −5.828099 | −24.725894 | ||
200 | −0.295821 | 1.654135 | 0.590544 | 1.013227 | 3.203418 | 0.584670 | |
2.001144 | −13.686336 | 1.578236 | −9.281674 | −0.888450 | 1.789209 | ||
0.654140 | 0.629338 | 0.001385 | 0.434336 | 0.029540 | 0.239936 | ||
4.003101 | 13.186393 | 15.362390 | 12.533238 | 10.234323 | 12.480701 | ||
0.419904 | −1.727669 | 0.270030 | −0.873365 | −2.746224 | −0.466616 | ||
−1.997385 | −25.120702 | −14.913937 | −24.999502 | −2.429734 | −24.999846 | ||
250 | −3.321326 | −1.979203 | 1.188739 | 1.242766 | 0.164472 | 0.450567 | |
1.994642 | 4.852943 | −9.402663 | −8.051210 | 7.220017 | 1.108518 | ||
2.074812 | 1.125128 | 0.487679 | 0.743862 | 0.000974 | 0.000450 | ||
3.995351 | 6.456453 | 12.542545 | 12.490390 | 15.149941 | 15.239930 | ||
2.102843 | 1.652740 | −0.985134 | −1.457221 | 0.605288 | 0.270454 | ||
−2.005924 | 2.141025 | −24.996848 | −24.998148 | −0.651284 | −12.803001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Cho, N.-K.; Park, K.; Kim, C.-S. Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading. Polymers 2022, 14, 2373. https://doi.org/10.3390/polym14122373
Song K, Cho N-K, Park K, Kim C-S. Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading. Polymers. 2022; 14(12):2373. https://doi.org/10.3390/polym14122373
Chicago/Turabian StyleSong, Kyu, Nak-Kyun Cho, Keun Park, and Chung-Soo Kim. 2022. "Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading" Polymers 14, no. 12: 2373. https://doi.org/10.3390/polym14122373
APA StyleSong, K., Cho, N. -K., Park, K., & Kim, C. -S. (2022). Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading. Polymers, 14(12), 2373. https://doi.org/10.3390/polym14122373