Strengthening Timber Structural Members with CFRP and GFRP: A State-of-the-Art Review
Abstract
:1. Aim and Scope of Pursued Study
- the CFRP-wood strengthening techniques,
- CFRP-wood bond characteristics and the limitation of the existing models,
- experimental and numerical modelling of CFRP-wood composite,
- effect of the CFRP on the increase of the elastic stiffness and the issue of its moderate enhancement,
- effect of the imperfection of the CFRP on its behaviour,
- strengthening timber with GFRP,
- modelling of knots in timber and the appeared contradictions.
2. Early Developments in FRP-Timber Reinforcement
3. General Introduction
4. CFRP Strengthening Techniques
4.1. Externally-Bonded Reinforcing (EBR) Strengthening Technique
4.2. The Near-Surface Mounted (NSM) Strengthening Technique
4.3. Glued-in Rods (GiR) Strengthening Technique
4.4. Comparison between the Failure Modes
5. CFRP-Wood Bond Characteristics
6. Numerical and Experimental Studies on FRP-Wood Strengthening
6.1. Strengthening Timber with CFRP
6.2. Strengthening Timber with GFRP
6.3. Effect of the CFRP on Flexural Stiffness Enhancement of Timber
7. Effect of the Waviness of the CFRP on Their Performance
8. Modelling of Knots in Structural Timber
8.1. General Overview
8.2. Knot Represented by Openings
8.3. Knot Represented by a Cone or a Cylinder
9. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sathishkumar, T.; Naveen, J.; Satheeshkumar, S. Hybrid fiber reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 454–471. [Google Scholar] [CrossRef]
- Unterweger, C.; Brüggemann, O.; Fürst, C. Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polym. Compos. 2014, 35, 227–236. [Google Scholar] [CrossRef]
- Ramesh, M.; Bhoopathi, R.; Deepa, C.; Sasikala, G. Experimental investigation on morphological, physical and shear properties of hybrid composite laminates reinforced with flax and carbon fibers. J. Chin. Adv. Mater. Soc. 2018, 6, 640–654. [Google Scholar] [CrossRef]
- Xian, G.; Guo, R.; Li, C. Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2022, 281, 115060. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, F.; Li, C.; Hong, B. Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites. Constr. Build. Mater. 2022, 315, 125710. [Google Scholar] [CrossRef]
- Jia, J.; Davalos, J.F.; Qiao, P.; Panariello, G. Performance characterization of wood-FRP bonded interfaces. In Structural Engineering Research Frontiers; Structural Engineering Institute of the ASCE: Reston, VA, USA, 2007; pp. 1–15. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; de Jesus, A.M.; Lima, A.M.; Lousada, J.L. Study of strengthening solutions for glued-laminated wood beams of maritime pine wood. Constr. Build. Mater. 2009, 23, 2738–2745. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Lorenzo, R.; Corbi, I.; Corbi, O.; Fang, C. Review on bond properties between wood and fiber reinforced polymer. J. Renew. Mater. 2020, 8, 993. [Google Scholar] [CrossRef]
- Steiger, R.; Serrano, E.; Stepinac, M.; Rajčić, V.; O’Neill, C.; McPolin, D.; Widmann, R. Strengthening of timber structures with glued-in rods. Constr. Build. Mater. 2015, 97, 90–105. [Google Scholar] [CrossRef]
- Schober, K.U.; Harte, A.M.; Kliger, R.; Jockwer, R.; Xu, Q.; Chen, J.F. FRP reinforcement of timber structures. Constr. Build. Mater. 2015, 97, 106–118. [Google Scholar] [CrossRef]
- Mark, R. Wood-aluminum beams within and beyond the elastic range. For. Prod. J. 1961, 11, 477–484. [Google Scholar]
- Bohannan, B. Prestressing wood members. For. Prod. J. 1962, 12, 596–603. [Google Scholar]
- Silker, A. Reinforced wood laminated beams. For. Prod. J. 1962, 12, 91–96. [Google Scholar]
- Peterson, J. Wood beams prestressed with bonded tension elements. J. Struct. Div. 1965, 91, 103–119. [Google Scholar] [CrossRef]
- Theakston, F. A feasibility study for strengthening timber beams with fiberglass. Can. Agric. Eng. 1965, 7, 17–19. [Google Scholar]
- Borgin, K.B.; Loedolff, G.F.; Saunders, G.R. Laminated wood beams reinforced with steel strips. J. Struct. Div. 1968, 94, 1681–1705. [Google Scholar] [CrossRef]
- Lantos, G. The flexural behavior of steel reinforced laminated timber beams. Wood Sci. 1970, 2, 136–143. [Google Scholar]
- Krueger, G.P. Ultimate strength design of reinforced timber: State of the art. Wood Sci. 1973, 6, 175–186. [Google Scholar]
- Mitzner, R. Durability and Maintenance of Plywood Overlaid with Fiberglass Reinforced Plastic; American Plywood Association Laboratory Report No. 119 Part 3; American Plywood Association Laboratory: Tacoma, WA, USA, 1973. [Google Scholar]
- Boehme, C.; Schultz, U. Load bearing behavior of a GFRP sandwich. Holz Als-Roh-Werkst 1974, 32, 250–256. [Google Scholar] [CrossRef]
- Tang, R.; Adams, S. Applications of reinforced plastics for laminated transmission poles. For. Prod. J. 1973, 23, 42–46. [Google Scholar]
- Saucier, J.; Holman, J. Structural particleboard reinforced with glass fiber-Progress in its development. For. Prod. J. 1975, 25, 69–72. [Google Scholar]
- Dziuba, T. The ultimate strength of wooden beams with tension reinforcement. Holzforsch. Holzverwert. 1985, 37, 115–119. [Google Scholar]
- Bulleit, W.M.; Sandberg, L.B.; Woods, G.J. Steel-reinforced glued laminated timber. J. Struct. Eng. 1989, 115, 433–444. [Google Scholar] [CrossRef]
- Bulleit, W.M. Reinforcement of wood materials: A review. Wood Fiber Sci. 1984, 16, 391–397. [Google Scholar]
- Spaun, F.D. Reinforcement of wood with fiberglass. For. Prod. J. 1981, 31, 26–33. [Google Scholar]
- Larson, D.S. The Technical and Marketing Feasibility of Producing Synthetically Reinforced Parallel Laminated Veneer Material. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 1981. [Google Scholar]
- Triantafillou, T.C.; Deskovic, N. Prestressed FRP sheets as external reinforcement of wood members. J. Struct. Eng. 1992, 118, 1270–1284. [Google Scholar] [CrossRef]
- Plevris, N.; Triantafillou, T.C. FRP-reinforced wood as structural material. J. Mater. Civ. Eng. 1992, 4, 300–317. [Google Scholar] [CrossRef]
- Buchanan, A.H. Bending strength of lumber. J. Struct. Eng. 1990, 116, 1213–1229. [Google Scholar] [CrossRef]
- Bazan, I.M.M. Ultimate Bending Strength of Timber Beams. Ph.D. Thesis, Nova Scotia Technical College, Halifax, NS, Canada, 1980. [Google Scholar]
- Saadatmanesh, H.; Ehsani, M.R. Application of fiber-composites in civil engineering. In Proceedings of the Sessions Related to Structural Materials at Structures Congress ’89, ASCE, San Francisco, CA, USA, 1–5 May 1989; pp. 526–535. [Google Scholar]
- Ritchie, P.A.; Thomas, D.A.; Lu, L.W.; Connelly, G.M. External Reinforcement of Concrete Beams Using Fiber Reinforced Plastic. Master’s Thesis, Lehigh University, Bethlehem, PA, USA, 1988. [Google Scholar]
- Kaiser, H. Strengthening of Reinforced Concrete with Epoxy-Bonded Carbon-Fiber Plastics. Ph.D. Thesis, ETH, Zurich, Switzerland, 1989. [Google Scholar]
- Corradi, M.; Borri, A.; Righetti, L.; Speranzini, E. Uncertainty analysis of FRP reinforced timber beams. Compos. Part B Eng. 2017, 113, 174–184. [Google Scholar] [CrossRef]
- Fiorelli, J.; Dias, A.A. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Mater. Res. 2003, 6, 193–202. [Google Scholar] [CrossRef]
- Nadir, Y.; Nagarajan, P.; Ameen, M. Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets. Constr. Build. Mater. 2016, 112, 547–555. [Google Scholar] [CrossRef]
- Kim, Y.J.; Harries, K.A. Modeling of timber beams strengthened with various CFRP composites. Eng. Struct. 2010, 32, 3225–3234. [Google Scholar] [CrossRef]
- Norris, T.; Saadatmanesh, H. Improving the Serviceability of Concrete Beams Using Carbon Fiber Reinforced Polymer (CFRP) Sheets; Technical Report DDEGRF-93-P-05; Federal Highway Administration: Washington, DC, USA, 1994. [Google Scholar]
- Green, D.W.; Winandy, J.E.; Kretschmann, D.E. Mechanical properties of wood. In Wood Handbook: Wood as an Engineering Material; General Technical Report FPL GTR-113; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999. [Google Scholar]
- Rijsdijk, J.F.; Laming, P.B. Physical and Related Properties of 145 Timbers: Information for Practice; Springer Science & Business Media: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Okstad, T.; Kårstad, H. The Mechanical Properties of Spruce Wood (Picea abies L. Karst.) in Northern Norway. Meddelelser Fra Nor. Inst. Skogforsk. 1985, 38, 47p. [Google Scholar]
- Kristian, B.D. Mechanical Properties of Clear Wood from Norway Spruce. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2009. [Google Scholar]
- Raftery, G.M.; Harte, A.M. Low-grade glued laminated timber reinforced with FRP plate. Compos. Part B Eng. 2011, 42, 724–735. [Google Scholar] [CrossRef]
- Gilfillan, J.; Gilbert, S.; Patrick, G. The use of FRP composites in enhancing the structural behavior of timber beams. J. Reinf. Plast. Compos. 2003, 22, 1373–1388. [Google Scholar] [CrossRef]
- Neubauerová, P. Timber beams strengthened by carbon–fiber reinforced lamellas. Procedia Eng. 2012, 40, 292–297. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Vignoli, A. New materials for strengthening and seismic upgrading interventions. In Proceedings of the International Workshop Ariadne 10, Prague, Czech Republic, 22–28 April 2002. 23p. [Google Scholar]
- Liu, J. Evaluation of the tensor polynomial strength theory for wood. J. Compos. Mater. 1984, 18, 216–226. [Google Scholar] [CrossRef]
- Hasebe, K.; Usuki, S. Application of orthotropic failure criterion to wood. J. Eng. Mech. 1989, 115, 867–872. [Google Scholar] [CrossRef]
- Patton-Mallory, M.; Pellicane, P.J.; Smith, F.W. Modeling bolted connections in wood. J. Struct. Eng. 1997, 123, 1054–1062. [Google Scholar] [CrossRef]
- Aicher, S.; Klock, W. Linear versus quadratic failure criteria for inplane loaded wood based panels. Otto-Graf J. 2001, 12, 187–199. [Google Scholar]
- Yang, Y.L.; Liu, J.W.; Xiong, G.J. Flexural behavior of wood beams strengthened with CFRP. Constr. Build. Mater. 2013, 43, 118–124. [Google Scholar] [CrossRef]
- Fiorelli, J.; Dias, A.A. Glulam beams reinforced with FRP externally-bonded: Theoretical and experimental evaluation. Mater. Struct. 2011, 44, 1431–1440. [Google Scholar] [CrossRef]
- Romani, M.; Blaß, H.J. Design model for FRP reinforced glulam beams. In Proceedings of the International Council for Research and Innovation in Building and Construction (CIB), Working Commission W18 Timber Structures, Meeting, Venice, Italy, August 2001; Volume 34. [Google Scholar]
- Brunner, M.; Schnuriger, M. Timber beams strengthened by attaching prestressed carbon FRP laminates with a gradiented anchoring device. In Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), Hong Kong, China, 7–9 December 2005; International Institute for FRP in Construction: Hong Kong Polytechnic University: Hong Kong, China, 2005; pp. 465–471. [Google Scholar]
- White, R.H. Analytical methods for determining fire resistance of timber members. In SFPE Handbook of Fire Protection Engineering; Springer: New York, NY, USA, 2016; pp. 1979–2011. [Google Scholar] [CrossRef]
- Khelifa, M.; Celzard, A. Numerical analysis of flexural strengthening of timber beams reinforced with CFRP strips. Compos. Struct. 2014, 111, 393–400. [Google Scholar] [CrossRef]
- Ratsch, N.; Bohm, S.; Voß, M.; Kaufmann, M.; Vallée, T. Influence of imperfections on the load capacity and stiffness of glued-in rod connections. Constr. Build. Mater. 2019, 226, 200–211. [Google Scholar] [CrossRef]
- Dagher, H.; Gray, H.; Davids, W.; Silva-Henriquez, R.; Nader, J. Variable prestressing of FRP-reinforced glulam beams: Methodology and behavior. In Proceedings of the World Conference on Timber Engineering (WCTE 2010), Trentino, Italy, 20–24 June 2010. 6p. [Google Scholar]
- Kliger, I.R.; Haghani, R.; Brunner, M.; Harte, A.M.; Schober, K.U. Wood-based beams strengthened with FRP laminates: Improved performance with pre-stressed systems. Eur. J. Wood Wood Prod. 2016, 74, 319–330. [Google Scholar] [CrossRef]
- Motavalli, M.; Czaderski, C.; Pfyl-Lang, K. Prestressed CFRP for Strengthening of Reinforced Concrete Structures: Recent Developments at Empa, Switzerland. J. Compos. Constr. 2011, 15, 194–205. [Google Scholar] [CrossRef]
- Rodd, P.; Pope, D. Prestressing as a means of better utilising low quality wood in glued laminated beams. In Proceedings of the International Association of Wood Products Societies, International Conference of Forest Products, ISSU, Daejeon, Korea, 21–24 April 2003. [Google Scholar]
- Lehmann, M.; Properzi, M.; Pichelin, F.; Triboulot, P. Pre-stressed FRP for the in-situ strengthening of timber structures. In Proceedings of the 9th World Conference on Timber Engineering 2006 (WCTE 2006), Oregon State University Conference Services, Portland, OR, USA, 6–10 August 2006; pp. 1760–1767. [Google Scholar]
- Brady, J.F.; Harte, A.M.; Arima, T. Prestressed FRP flexural strengthening of softwood glue-laminated timber beams. In Proceedings of the 10th World Conference on Timber Engineering (WCTE), Miyazaki, Japan, 2–5 June 2008. 8p. [Google Scholar]
- Nowak, T.P.; Jasieńko, J.; Czepiżak, D. Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips. Constr. Build. Mater. 2013, 40, 197–206. [Google Scholar] [CrossRef]
- Lu, W.; Ling, Z.; Geng, Q.; Liu, W.; Yang, H.; Yue, K. Study on flexural behaviour of glulam beams reinforced by Near Surface Mounted (NSM) CFRP laminates. Constr. Build. Mater. 2015, 91, 23–31. [Google Scholar] [CrossRef]
- Sena-Cruz, J.; Jorge, M.; Branco, J.M.; Cunha, V.M. Bond between glulam and NSM CFRP laminates. Constr. Build. Mater. 2013, 40, 260–269. [Google Scholar] [CrossRef]
- Yang, C.; Huang, H.; Tomblin, J.S.; Sun, W. Elastic-plastic model of adhesive-bonded single-lap composite joints. J. Compos. Mater. 2004, 38, 293–309. [Google Scholar] [CrossRef]
- Stepinac, M.; Hunger, F.; Tomasi, R.; Serrano, E.; Rajcic, V.; van de Kuilen, J.W. Comparison of Design Rules for Glued-in Rods and Design Rule Proposal for Implementation in European Standards; Report CIB-W18/46-7-10; International Council for Research and Innovation in Building and Construction (CIB): Ottawa, ON, Canada, 2013. [Google Scholar]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Grunwald, C.; Kaufmann, M.; Alter, B.; Vallée, T.; Tannert, T. Numerical investigations and capacity prediction of GFRP rods glued into timber. Compos. Struct. 2018, 202, 47–59. [Google Scholar] [CrossRef]
- Yang, H.; Ju, D.; Liu, W.; Lu, W. Prestressed glulam beams reinforced with CFRP bars. Constr. Build. Mater. 2016, 109, 73–83. [Google Scholar] [CrossRef]
- Wu, Z.; Hemdan, S. Debonding in FRP-strengthened flexural members with different shear-span ratios. In Proceeding of the 7th International Symposium on Fiber Reinforced Composite Reinforcement for Concrete Structures, Kansas City, MI, USA, 6–9 November 2005; American Concrete Institute: Farmington Hills, MI, USA, 2005; pp. 411–426. [Google Scholar]
- Vahedian, A.; Shrestha, R.; Crews, K. Analysis of externally bonded Carbon Fibre Reinforced Polymers sheet to timber interface. Compos. Struct. 2018, 191, 239–250. [Google Scholar] [CrossRef]
- Biscaia, H.C.; Cruz, D.; Chastre, C. Analysis of the debonding process of CFRP-to-timber interfaces. Constr. Build. Mater. 2016, 113, 96–112. [Google Scholar] [CrossRef]
- Vahedian, A.; Shrestha, R.; Crews, K. Experimental and analytical investigation on CFRP strengthened glulam laminated timber beams: Full-scale experiments. Compos. Part B Eng. 2019, 164, 377–389. [Google Scholar] [CrossRef]
- Zhou, A.; Tam, L.h.; Yu, Z.; Lau, D. Effect of moisture on the mechanical properties of CFRP–wood composite: An experimental and atomistic investigation. Compos. Part B Eng. 2015, 71, 63–73. [Google Scholar] [CrossRef]
- Lyons, J.S.; Ahmed, M.R. Factors affecting the bond between polymer composites and wood. J. Reinf. Plast. Compos. 2005, 24, 405–412. [Google Scholar] [CrossRef]
- Davis, G. The performance of adhesive systems for structural timbers. Int. J. Adhes. Adhes. 1997, 17, 247–255. [Google Scholar] [CrossRef]
- Zhou, A.; Qin, R.; Chow, C.L.; Lau, D. Bond integrity of aramid, basalt and carbon fiber reinforced polymer bonded wood composites at elevated temperature. Compos. Struct. 2020, 245, 112342. [Google Scholar] [CrossRef]
- Yao, J.; Teng, J.; Chen, J.F. Experimental study on FRP-to-concrete bonded joints. Compos. Part B Eng. 2005, 36, 99–113. [Google Scholar] [CrossRef]
- Coronado, C. Characterization, Modeling and Size Effect of Concrete-Epoxy Interfaces. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2006. [Google Scholar]
- Franco, A.; Royer-Carfagni, G. Effective bond length of FRP stiffeners. Int. J. Non-Linear Mech. 2014, 60, 46–57. [Google Scholar] [CrossRef]
- Vahedian, A.; Shrestha, R.; Crews, K. Bond strength model for externally bonded FRP-to-timber interface. Compos. Struct. 2018, 200, 328–339. [Google Scholar] [CrossRef]
- Chen, J.F.; Teng, J. Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng. 2001, 127, 784–791. [Google Scholar] [CrossRef]
- Barbero, E.; Davalos, J.; Munipalle, U. Bond strength of FRP-wood interface. J. Reinf. Plast. Compos. 1994, 13, 835–854. [Google Scholar] [CrossRef]
- Vallée, T.; Tannert, T.; Murcia-Delso, J.; Quinn, D.J. Influence of stress-reduction methods on the strength of adhesively bonded joints composed of orthotropic brittle adherends. Int. J. Adhes. Adhes. 2010, 30, 583–594. [Google Scholar] [CrossRef]
- Crews, K.; Smith, S.T. Tests on FRP strengthened timber joints. In Proceedings of the International Conference on FRP Composites in Civil Engineering, Miami, FL, USA, 13–15 December 2006; International Institute for FRP in Construction: Queen’s University: Kingston, ON, Canada, 2006; pp. 677–680. [Google Scholar]
- Wan, J.; Smith, S.T.; Qiao, P.; Chen, F. Experimental investigation on FRP-to-timber bonded interfaces. J. Compos. Constr. 2014, 18, A4013006. [Google Scholar] [CrossRef]
- Benedetti, A.; Colla, C. Strengthening of old timber beams by means of externally bonded reinforcement. In Proceedings of the World Conference on Timber Engineering, WCTE2010, Trentino, Italy, 20–24 June 2010. [Google Scholar]
- Juvandes, L.F.P.; Barbosa, R. Bond analysis of timber structures strengthened with FRP systems. Strain 2012, 48, 124–135. [Google Scholar] [CrossRef]
- Biblis, E. Analysis of wood-fiberglass composite beams within and beyond the elastic region. For. Prod. J. 1965, 15, 81–88. [Google Scholar]
- Triantafillou, T.C.; Deskovic, N. Innovative prestressing with FRP sheets: Mechanics of short-term behavior. J. Eng. Mech. 1991, 117, 1652–1672. [Google Scholar] [CrossRef]
- Tingley, D.A. The Stress-Strain Relationships in Wood and Fiber-Reinforced Plastic lLaminae of Reinforced Glued-Laminated Wood Beams. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1997. [Google Scholar]
- Kirlin, C.P. Experimental and Finite-Element Analysis of Stress Distributions Near the End of Reinforcement in Partially Reinforced Glulam. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1996. [Google Scholar]
- Serrano, E. Glued-in rods for timber structures—A 3D model and finite element parameter studies. Int. J. Adhes. Adhes. 2001, 21, 115–127. [Google Scholar] [CrossRef]
- Kasal, B.; Heiduschke, A. Radial reinforcement of curved glue laminated wood beams with composite materials. For. Prod. J. 2004, 54, 74–79. [Google Scholar]
- Khelifa, M.; Vila Loperena, N.; Bleron, L.; Khennane, A. Analysis of CFRP-strengthened timber beams. J. Adhes. Sci. Technol. 2014, 28, 1–14. [Google Scholar] [CrossRef]
- Johnsson, H.; Blanksvard, T.; Carolin, A. Glulam members strengthened by carbon fibre reinforcement. Mater. Struct. 2007, 40, 47–56. [Google Scholar] [CrossRef]
- Li, Y.F.; Tsai, M.J.; Wei, T.F.; Wang, W.C. A study on wood beams strengthened by FRP composite materials. Constr. Build. Mater. 2014, 62, 118–125. [Google Scholar] [CrossRef]
- Moses, D.M.; Prion, H.G. Anisotropic Plasticity and Failure Prediction in Wood Composites. In Ansys.net (Online), 2002. Available online: https://www.yumpu.com/en/document/view/16905486/anisotropic-plasticity-and-failure-prediction-in-wood-ansys-users (accessed on 1 May 2022).
- Madenci, E.; Guven, I. The Finite Element Method and Applications in Engineering Using ANSYS®; Springer: New York, NY, USA, 2015. [Google Scholar]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1948, 193, 281–297. [Google Scholar] [CrossRef]
- Shih, C.; Lee, D. Further developments in anisotropic plasticity. J. Eng. Mater. Technol. 1978, 100, 294–302. [Google Scholar] [CrossRef]
- Valliappan, S.; Boonlaulohr, P.; Lee, I. Non-linear analysis for anisotropic materials. Int. J. Numer. Methods Eng. 1976, 10, 597–606. [Google Scholar] [CrossRef]
- Raftery, G.M.; Harte, A.M. Nonlinear numerical modelling of FRP reinforced glued laminated timber. Compos. Part B Eng. 2013, 52, 40–50. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Grazini, A. A method for flexural reinforcement of old wood beams with CFRP materials. Compos. Part B Eng. 2005, 36, 143–153. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Garbin, E.; Modena, C. Flexural strengthening of timber beams by traditional and innovative techniques. J. Build. Apprais. 2007, 3, 125–143. [Google Scholar] [CrossRef]
- De Jesus, A.M.; Pinto, J.M.; Morais, J.J. Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths. Constr. Build. Mater. 2012, 35, 817–828. [Google Scholar] [CrossRef]
- Čizmar, D.; Sørensen, J.D.; Kirkegaard, P.H.; Rajčić, V. Robustness analysis of a timber structure with ductile behaviour in compression. In Proceedings of the Final Conference of COST Action TU0601: Robustness of Structures, Czech Technical University, Prague, Czech Republic, 30–31 May 2011; pp. 17–32. [Google Scholar]
- Li, Y.F.; Xie, Y.M.; Tsai, M.J. Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Constr. Build. Mater. 2009, 23, 411–422. [Google Scholar] [CrossRef]
- Buchanan, A.H. Combined bending and axial loading in lumber. J. Struct. Eng. 1986, 112, 2592–2609. [Google Scholar] [CrossRef]
- Kollmann, F.F.; Cote, W., Jr. Principles of Wood Science and Technology; Springer: New York, NY, USA, 1968. [Google Scholar]
- Mascia, N.T.; Lahr, F.A.R. Remarks on orthotropic elastic models applied to wood. Mater. Res. 2006, 9, 301–310. [Google Scholar] [CrossRef]
- Hermanson, J.C. The Triaxial Bbehavior of Redwood Using a New Confined Compression Device. Ph.D. Thesis, The University of Wisconsin, Madison, WI, USA, 1996. [Google Scholar]
- Milch, J.; Tippner, J.; Sebera, V.; Brabec, M. Determination of the elasto-plastic material characteristics of Norway spruce and European beech wood by experimental and numerical analyses. Holzforschung 2016, 70, 1081–1092. [Google Scholar] [CrossRef]
- Wei, P.; Wang, B.J.; Zhou, D.; Dai, C.; Wang, Q.; Huang, S. Mechanical properties of poplar laminated veneer lumber modified by carbon fiber reinforced polymer. BioResources 2013, 8, 4883–4898. [Google Scholar] [CrossRef]
- Da Silva Bertolini, M.; de Macedo, L.B.; de Almeida, D.H.; Icimoto, F.H.; Rocco Lahr, F.A. Restoration of structural timber elements using epoxy resin: Analysis of mechanical properties. Adv. Mater. Res. Trans. Tech. Publ. 2013, 778, 582–587. [Google Scholar] [CrossRef]
- Burawska, I.; Mohammadi, A.H.; Widmann, R.; Motavalli, M. Local reinforcement of timber beams using D-shape CFRP strip. In Proceedings of the 3rd Conference on Smart Monitoring, Assessment and Rehabilitation, of Civil Structures, Antalya, Turkey, 7–9 September 2015. [Google Scholar]
- Hu, M. Studies of the Fibre Direction and Local Bending Stiffness of Norway Spruce Timber: For Application on Machine Strength Grading. Ph.D. Thesis, Linnaeus University Press, Växjö, Sweden, 2018. [Google Scholar]
- Foley, C. A three-dimensional paradigm of fiber orientation in timber. Wood Sci. Technol. 2001, 35, 453–465. [Google Scholar] [CrossRef]
- Rahmani, H.; Najaf, S.H.M.; Ashori, A.; Golriz, M. Elastic properties of carbon fibre-reinforced epoxy composites. Polym. Polym. Compos. 2015, 23, 475–482. [Google Scholar] [CrossRef]
- Leopold, C.; Harder, S.; Philipkowski, T.; Liebig, W.V.; Fiedler, B. Comparison of analytical approaches predicting the compressive strength of fibre reinforced polymers. Materials 2018, 11, 2517. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.C. Predicting Modulus of Elasticity for Wood-Based Composites. Mater. Sci. Forum Trans. Tech. Publ. 2008, 575, 1106–1110. [Google Scholar] [CrossRef]
- Corradi, M.; Maheri, A.; Osofero, A. Design of Reinforced and Unreinforced Timber Beams subject to Uncertainties. In Proceedings of the Twelfth International Conference on Computational Structures Technology, Naples, Italy, 2–5 September 2014; Civil-Comp Press: Stirlingshire, UK, 2014; Volume 134, pp. 1–10. [Google Scholar] [CrossRef]
- Moideen, K.R.; Dewangan, U. Effect of material nonlinearity on deflection of beams and frames. Indian J. Sci. Technol. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Corradi, M.; Vemury, C.M.; Edmondson, V.; Poologanathan, K.; Nagaratnam, B. Local FRP reinforcement of existing timber beams. Compos. Struct. 2021, 258, 113363. [Google Scholar] [CrossRef]
- Arriaga, F.; Arguelles, R. Estructuras de Madera, Diseño y CáLculo (Wooden Structures. Design and Calculation); Aitim: Madrid, Spain, 1996; ISBN 848738109. [Google Scholar]
- Rescalvo, F.J.; Valverde-Palacios, I.; Suarez, E.; Gallego, A. Experimental and analytical analysis for bending load capacity of old timber beams with defects when reinforced with carbon fiber strips. Compos. Struct. 2018, 186, 29–38. [Google Scholar] [CrossRef]
- Triantafillou, T.; Fardis, M.N. Strengthening of historic masonry structures with fibre reinforced plastic composites. WIT Trans. Built Environ. 1970, 17, 129–136. [Google Scholar]
- Li, V.C.; Wang, S. Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams. Mater. J. 2002, 99, 11–21. [Google Scholar]
- Naghipour, M.; Nematzadeh, M.; Yahyazadeh, Q. Analytical and experimental study on flexural performance of WPC–FRP beams. Constr. Build. Mater. 2011, 25, 829–837. [Google Scholar] [CrossRef]
- Alhayek, H.; Svecova, D. Flexural Stiffness and Strength of GFRP-Reinforced Timber Beams. J. Compos. Constr. 2012, 16, 245–252. [Google Scholar] [CrossRef]
- Hay, S.; Thiessen, K.; Svecova, D.; Bakht, B. Effectiveness of GFRP Sheets for Shear Strengthening of Timber. J. Compos. Constr. 2006, 10, 483–491. [Google Scholar] [CrossRef]
- Gómez, S.; Svecova, D. Behavior of Split Timber Stringers Reinforced with External GFRP Sheets. J. Compos. Constr. 2008, 12, 202–211. [Google Scholar] [CrossRef]
- Gentile, C.; Svecova, D.; Rizkalla, S.H. Timber Beams Strengthened with GFRP Bars: Development and Applications. J. Compos. Constr. 2002, 6, 11–20. [Google Scholar] [CrossRef]
- Svecova, D.; Eden, R.J. Flexural and shear strengthening of timber beams using glass fibre reinforced polymer bars—An experimental investigation. Can. J. Civ. Eng. 2004, 31, 45–55. [Google Scholar] [CrossRef]
- Yusof, A.; Saleh, A. Flexural strengthening of timber beams using glass fibre reinforced polymer. Electron. J. Struct. Eng. 2010, 10, 45–56. [Google Scholar]
- Bower, C.M.; Peterson, W.; Calfee, J.D. Fibers for High Performance Composites; Technical Report; Monsanto Company/Washington University: St. Louis, MO, USA, 1965. [Google Scholar]
- André, A.; Kliger, R. Strengthening of timber beams using FRP, with emphasis on compression strength: A state of the art review. In Proceedings of the Second Official International Conference of International Institute for FRP in Construction for Asia-Pacific Region APFIS, Seoul, Korea, 9–11 December 2009; pp. 193–202. [Google Scholar]
- Morales-Conde, M.; Rodríguez-Liñán, C.; Rubio-de Hita, P. Bending and shear reinforcements for timber beams using GFRP plates. Constr. Build. Mater. 2015, 96, 461–472. [Google Scholar] [CrossRef]
- Corradi, M.; Vo, T.P.; Poologanathan, K.; Osofero, A.I. Flexural behaviour of hardwood and softwood beams with mechanically connected GFRP plates. Compos. Struct. 2018, 206, 610–620. [Google Scholar] [CrossRef]
- Motlagh, Y.B.; Hosseinalibeygi, M.; Ebrahimi, G.; Gholipour, Y. Experimental Investigations on Flexural Strenghtening of Old Wood Members in Historical Buildings with GFRP. In Wood Science for Conservation of Cultural Heritage; Firenze University Press: Florence, Italy, 2010; pp. 302–308. [Google Scholar] [CrossRef]
- Hernandez, R. Strength and Stiffness of Reinforced Yellow-Poplar Glued-Laminated Beams; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1997; Volume 554. [Google Scholar]
- Osmannezhad, S.; Faezipour, M.; Ebrahimi, G. Effects of GFRP on bending strength of glulam made of poplar (Populus deltoids) and beech (Fagus orientalis). Constr. Build. Mater. 2014, 51, 34–39. [Google Scholar] [CrossRef]
- Raftery, G.M.; Whelan, C. Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods. Constr. Build. Mater. 2014, 52, 209–220. [Google Scholar] [CrossRef]
- Mays, G.C.; Hutchinson, A.R. Adhesives in Civil Engineering; Cambridge University Press: Cambridge, UK, 1992; Volume 32. [Google Scholar]
- Raftery, G.M.; Harte, A.M.; Rodd, P.D. Bond quality at the FRP—Wood interface using wood-laminating adhesives. Int. J. Adhes. Adhes. 2009, 29, 101–110. [Google Scholar] [CrossRef]
- Andor, K.; Lengyel, A.; Polgár, R.; Fodor, T.; Karácsonyi, Z. Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric. Constr. Build. Mater. 2015, 99, 200–207. [Google Scholar] [CrossRef]
- Amy, K.; Svecova, D. Strengthening of dapped timber beams using glass fibre reinforced polymer bars. Can. J. Civ. Eng. 2004, 31, 943–955. [Google Scholar] [CrossRef]
- De la Rosa García, P.; Escamilla, A.C.; García, M.N.G. Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Compos. Part B Eng. 2013, 55, 528–536. [Google Scholar] [CrossRef]
- Saad, K.; Lengyel, A. Inverse Calculation of Timber-CFRP Composite Beams Using Finite Element Analysis. Period. Polytech. Civ. Eng. 2021, 65, 437–449. [Google Scholar] [CrossRef]
- Saad, K.; Lengyel, A. Inverse determination of material properties of timber beams reinforced with CFRP using the classical beam theory. Epa. J. Silic. Based Compos. Mater. 2022, 74, 32–40. [Google Scholar] [CrossRef]
- Buell, T.W.; Saadatmanesh, H. Strengthening timber bridge beams using carbon fiber. J. Struct. Eng. 2005, 131, 173–187. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hossain, M.; Harries, K.A. CFRP strengthening of timber beams recovered from a 32 year old quonset: Element and system level tests. Eng. Struct. 2013, 57, 213–221. [Google Scholar] [CrossRef]
- Schober, K.; Franke, S.; Rautenstrauch, K. In Situ Strengthening of Timber Structures with CFRP; Report CIB-W18/39-12-2; International Council for Research and Innovation in Building and Construction (CIB): Ottawa, ON, Canada, 2006. [Google Scholar]
- Brol, J.; Wdowiak-Postulak, A. Old Timber Reinforcement with FRPs. Materials 2019, 12, 4197. [Google Scholar] [CrossRef]
- Kent, S.; Tingley, D. Structural evaluation of fiber reinforced hollow wood beams. In IABSE Symposium Report; International Association for Bridge and Structural Engineering: Zurich, Switzerland, 2001; Volume 85, pp. 37–42. [Google Scholar] [CrossRef]
- Rowlands, R.; Van Deweghe, R.; Laufenberg, T.L.; Krueger, G. Fiber-reinforced wood composites. Wood Fiber Sci. 1986, 18, 39–57. [Google Scholar]
- Ianasi, A. On the role of CFRP reinforcement for wood beams stiffness. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 95, p. 12015. [Google Scholar] [CrossRef]
- Gadi Reddy, D.V. Analysis, Design and Rehabilitation of Structural Members with Timber and FRP. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2016. [Google Scholar] [CrossRef]
- Kugler, D.; Moon, T.J. Identification of the most significant processing parameters on the development of fiber waviness in thin laminates. J. Compos. Mater. 2002, 36, 1451–1479. [Google Scholar] [CrossRef]
- Parlevliet, P.P.; Bersee, H.E.; Beukers, A. Residual stresses in thermoplastic composites—A study of the literature—Part I: Formation of residual stresses. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1847–1857. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Mizukami, K.; Mizutani, Y.; Kimura, K.; Sato, A.; Todoroki, A.; Suzuki, Y. Detection of in-plane fiber waviness in cross-ply CFRP laminates using layer selectable eddy current method. Compos. Part A Appl. Sci. Manuf. 2016, 82, 108–118. [Google Scholar] [CrossRef]
- Mizukami, K.; Mizutani, Y.; Kimura, K.; Sato, A.; Todoroki, A.; Suzuki, Y.; Nakamura, Y. Visualization and size estimation of fiber waviness in multidirectional CFRP laminates using eddy current imaging. Compos. Part A Appl. Sci. Manuf. 2016, 90, 261–270. [Google Scholar] [CrossRef]
- Bouloudenine, A.; Feliachi, M.; Latreche, M.E.H. Development of circular arrayed eddy current sensor for detecting fibers orientation and in-plane fiber waviness in unidirectional CFRP. NDT E Int. 2017, 92, 30–37. [Google Scholar] [CrossRef]
- Sutcliffe, M.; Lemanski, S.; Scott, A. Measurement of fibre waviness in industrial composite components. Compos. Sci. Technol. 2012, 72, 2016–2023. [Google Scholar] [CrossRef]
- Smith, R.A.; Nelson, L.J.; Mienczakowski, M.J.; Challis, R.E. Automated analysis and advanced defect characterisation from ultrasonic scans of composites. Insight-Non-Destr. Test. Cond. Monit. 2009, 51, 82–87. [Google Scholar] [CrossRef]
- Bogetti, T.A.; John, W. Gillespie, J.; Lamontia, M.A. Influence of Ply Waviness on the Stiffness and Strength Reduction on Composite Laminates. J. Thermoplast. Compos. Mater. 1992, 5, 344–369. [Google Scholar] [CrossRef]
- Velmurugan, R.; Srinivasulu, G.; Jayasankar, S. Influence of fiber waviness on the effective properties of discontinuous fiber reinforced composites. Comput. Mater. Sci. 2014, 91, 339–349. [Google Scholar] [CrossRef]
- Kretschmann, D.E. Mechanical properties of wood. In Wood Handbook: Wood as an Engineering Material; General Technical Report FPL, GTR–190; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010. [Google Scholar]
- Mitsuhashi, K.; Poussa, M.; Puttonen, J. Method for predicting tension capacity of sawn timber considering slope of grain around knots. J. Wood Sci. 2008, 54, 189–195. [Google Scholar] [CrossRef]
- Mihashi, H.; Navi, P.; Sunderland, H.; Itagaki, N.; Ninomiya, S. Micromechanics of knot’s influence on tensile strength of Japanese Cedar. In Proceedings of the 1st Rilem Symposium on Timber Engineering, Stockholm, Sweden, 13–14 September 1999; pp. 181–190, ISBN 2912143101. [Google Scholar]
- Briggert, A.; Hu, M.; Olsson, A.; Oscarsson, J. Tracheid effect scanning and evaluation of in-plane and out-of-plane fiber direction in Norway Spruce timber. Wood Fiber Sci. 2018, 50, 411–429. [Google Scholar] [CrossRef]
- Cramer, S.; Shi, Y.; McDonald, K. Fracture modeling of lumber containing multiple knots. In Proceedings of the International Wood Engineering Conference, New Orleans, LA, USA, 28–31 October 1996; pp. 288–294. [Google Scholar]
- Ekevad, M. Method to compute fiber directions in wood from computed tomography images. J. Wood Sci. 2004, 50, 41–46. [Google Scholar] [CrossRef]
- Journal, E.I. A new tree biology-facts, photos and philosophies and their problems and proper care. IAWA J. 1988, 9, 292. [Google Scholar] [CrossRef]
- Wangaard, F.F. The Mechanical Properties of Wood; John Wiley & Sons, Inc.: New York, NY, USA, 1950. [Google Scholar]
- Foley, C. Modeling the Effects of Knots in Structural Timber. Ph.D. Thesis, Lund University, Lund, Sweden, 2003. [Google Scholar]
- Guindos, P.; Guaita, M. A three-dimensional wood material model to simulate the behavior of wood with any type of knot at the macro-scale. Wood Sci. Technol. 2013, 47, 585–599. [Google Scholar] [CrossRef]
- Stahl, D.C.; Cramer, S.M.; McDonald, K. Modeling the effect of out-of-plane fiber orientation in lumber specimens. Wood Fiber Sci. 2007, 22, 173–192. [Google Scholar]
- Lukacevic, M.; Kandler, G.; Hu, M.; Olsson, A.; Fussl, J. A 3D model for knots and related fiber deviations in sawn timber for prediction of mechanical properties of boards. Mater. Des. 2019, 166, 107617. [Google Scholar] [CrossRef]
- Cramer, S.; Goodman, J. Model for stress analysis and strength prediction of lumber. Wood Fiber Sci. 1983, 15, 338–349. [Google Scholar]
- Baño, V.; Arriaga, F.; Guaita, M. Determination of the influence of size and position of knots on load capacity and stress distribution in timber beams of Pinus sylvestris using finite element model. Biosyst. Eng. 2013, 114, 214–222. [Google Scholar] [CrossRef]
- Guindos, P.; Guaita, M. The analytical influence of all types of knots on bending. Wood Sci. Technol. 2014, 48, 533–552. [Google Scholar] [CrossRef]
- Grant, D.; Anton, A.; Lind, P. Bending strength, stiffness, and stress-grade of structural Pinus radiata: Effect of knots and timber density. N. Z. J. For. Sci. 1984, 14, 331–348. [Google Scholar]
- Suryoatmono, B.; Pranata, Y.A. An alternative to Hankinson’s Formula for uniaxial tension at an angle to the grain. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 16–19 July 2012. 6p. [Google Scholar]
- Saad, K.; Lengyel, A. Accurate finite element modelling of knots and related fibre deviations in structural timber. J. King Saud Univ. Eng. Sci. 2022. preprint. [Google Scholar] [CrossRef]
- Burawska, I.; Tomusiak, A.; Turski, M.; Beer, P. Local concentration of stresses as a result of the notch in different positions to the bottom surface of bending solid timber beam based on numerical analysis in Solidworks Simulation environment. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2011, 73, 192–198. [Google Scholar]
- Burawska, I.; Zbiec, M.; Kalicinski, J.; Beer, P. Technical simulation of knots in structural wood. Ann. Wars. Univ. Life-Sci. SGGW For. Wood Technol. 2013, 82, 105–112. [Google Scholar]
- Williams, J.M.; Fridley, K.J.; Cofer, W.F.; Falk, R.H. Failure modeling of sawn lumber with a fastener hole. Finite Elem. Anal. Des. 2000, 36, 83–98. [Google Scholar] [CrossRef]
- Kandler, G.; Lukacevic, M.; Fussl, J. An algorithm for the geometric reconstruction of knots within timber boards based on fibre angle measurements. Constr. Build. Mater. 2016, 124, 945–960. [Google Scholar] [CrossRef]
- Baño, V.; Arriaga, F.; Soilán, A.; Guaita, M. Prediction of bending load capacity of timber beams using a finite element method simulation of knots and grain deviation. Biosyst. Eng. 2011, 109, 241–249. [Google Scholar] [CrossRef]
Ref. | FRP Type | Compos. | Pre-Stress | Thickness/Diameter of FRP (mm) or Volume Fraction (%) | Increase of Capacity (%) | Debond. | Dominant Failure Mode (FRP-Wood) | Wood Mechanical Model/Analysis Method | Notes |
---|---|---|---|---|---|---|---|---|---|
[37] | GFRP/CFRP | fabrics | no | 1% GFRP/0.4% CFRP | no | tensile | brittle elastic in tension, elastic-plastic in compression | surface timber treatment | |
[130] | CFRP | laminate | no | 1.2, 1.4 mm | 14–88 | yes | shear | elastoplastic; different moduli in tension and compression | beams w/knots |
[73] | CFRP | bar | yes | 11, 16 mm | 93.3–131 | no | ductile in compression/flexure–shear | elastoplastic; bilinear in compression | - |
[56] | CFRP | laminate | yes/no | 1.14 mm | 34/22 | no | - | linear elastic brittle for tension and ductile for compression | - |
[110] | CFRP | laminate | no | 1.2 mm | 28 | no | crack initiation at the reinforcement boundaries | linear elastic brittle for tension and ductile for compression | interfacial shear and peeling stresses are essential for failure analysis |
[60] | GFRP | laminate | yes | 3.3 mm | 95 | no | tensile | elastic-plastic in compression/linear elastic in tension-moment-curvature analyses | During the wet bond line, the approach was to release the pre-tensioning force |
[100] | CFRP | rod/laminate | no | - | 49–63 | no | ductile compression | - | anchoring length provided to avoid delamination |
[107] | CFRP | laminate | no | 2.8 mm | 28.6–38 | no | tensile | - | a nonlinear numerical model was developed to accurately replicate wood behaviour |
[66] | CFRP | laminate | no | 1.2 mm | 21–79 | no | tensile (mainly in the defected timber zones) | elastic-ideally plastic material model | inserting the CFRP inside the cross-section reduces the possibility of delamination failure |
In Terms of | CFRP | GFRP |
---|---|---|
definition | Carbon fibre Reinforced polymers | Glass fibre Reinforced Polymers |
properties | lightweight (1.7 g/mm) | medium weight (2.5 g/mm) |
conductivity | conductive | insulative |
cost | expensive | acceptable price |
fibre diameter | fine | thicker |
properties | orthotropic (simplified to quasi-isotropic) | can be simplified to isotropic |
References | CFRP Type | FRP Dimensions | Wood Dimensions | Stiffness Increase (%) | Theoretical Stiffness Increase (%) | ||
---|---|---|---|---|---|---|---|
[37] | fabrics | C:10.5/T:8 | 180 | Full width of the beam. | 60 × 120 × 3000 | 15–30 | 25.228 |
[110] | strips | 15.3 | 161 | 50 × 1.2 | 50 × 50 | 23–28 | 63.427 |
[100] | strips | 10.4 | 155 | 10 × 10 | 40 × 40 × 40 | 10 | 68.548 |
[155] | bidirectional fabrics | 13.238 | 137.895 | - | 483 × 203 × 7620 | 17–27 | 18.457 |
[109] | sheets | 11 | 230 | 100 × 0.165 | 145 × 115 | 15–60 | 6.095 |
[161] | sheets and plates | 13 | 165 | 25 × 1.5 | 50 × 25 × 500 | 20.2–29.6 | 87.768 |
[38] | sheets | C: 8.17/T:8.68 | 100.19 | 40 × 1 | 60 × 40 × 900 | 36.19–64.12 | 49.793 |
[108] | sheets | - | 417.625 | 100 × 0.165 | 200 × 200 × 4000 | 22.5–30.3 | - |
[39] | sheets and strips | 9.9 | 227 | 35 × 0.165 | 138 × 38 × 2440 | 25–50 | 7.406 |
[46] | strips | 9 | 165 | 43 × 1.2 | 160 × 43 × 1650 | 40 | 36.810 |
[45] | plates | 8 | 45 | 96 × 2.8 | 96 × 44 × 4200 | 13.15 | 83.760 |
[107] | plates | 8 | 38.44 | 96 × 3.3 | 190 × 96 × 1710 | 8.4 | 23.918 |
[157] | lamella | 13 | 164 | 1.4 × 1 | 15.41 × 15.41 × 3150 | 6 | 23.551 |
[36] | fabrics | Oak:9/Fir:10 | 417.6 | 20 × 0.165 | 20 × 20 × 380 | 4.7–15.1 | 84.425 |
67 × 0.165 | 67 × 67 × 1320 | 30.917 | |||||
100 × 0.165 | 100 × 100 × 1950 | 21.405 | |||||
100 × 0.165 | 200 × 200 × 4000 | 5.643 |
Ref. | Knot Approximated by | Knot Location | Knot Diameter (mm) | Loss in Capacity (%) | Notes |
---|---|---|---|---|---|
[186] | opening/solid | variable throughout the beam height | variable | 1–76 | Opening model was a good assumption for the knots located in the tension zone of a beam under bending. |
[192] | opening/solid | - | - | - | Knots were found to be similar to artificial openings in their effects on the MOR. |
[177] | solid | variable | variable | - | Two closely spaced knots can diminish tensile strength by 60% when compared to a single critical knot. |
[120] | opening | mid-span in the tension zone | variable | - | A 50 mm diameter opening may reduce the bending stiffness by 83%. |
[195] | opening/solid | tension zone | 28.5–43.7 | - | The concept employs knots as an opening for those in the tension zone is practical. |
[182] | ellipse, rotated and oblique cone | tension zone | variable | - | The 3D flow-grain analogy was applied to determine the grain deviation around the knot. |
[187] | cylindrical, truncated conical, shallow conical face knots and conical edge knots | variable | variable | 72, due to size: 55—due to position: 70, due to size: 43—due to position: 68, due to size: 52—due to position: 24 | The knot inclination can sometimes increase the flexural capacity of the timber element. |
[184] | cone | variable | variable | - | The precision of knot modelling was demonstrated to be dependent on accurate pith modelling. |
[190] | opening/solid | variable | 30-40 | up to 62 | The findings highlight the need of correct modelling for fibre deviations rather than the knot itself. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, K.; Lengyel, A. Strengthening Timber Structural Members with CFRP and GFRP: A State-of-the-Art Review. Polymers 2022, 14, 2381. https://doi.org/10.3390/polym14122381
Saad K, Lengyel A. Strengthening Timber Structural Members with CFRP and GFRP: A State-of-the-Art Review. Polymers. 2022; 14(12):2381. https://doi.org/10.3390/polym14122381
Chicago/Turabian StyleSaad, Khaled, and András Lengyel. 2022. "Strengthening Timber Structural Members with CFRP and GFRP: A State-of-the-Art Review" Polymers 14, no. 12: 2381. https://doi.org/10.3390/polym14122381
APA StyleSaad, K., & Lengyel, A. (2022). Strengthening Timber Structural Members with CFRP and GFRP: A State-of-the-Art Review. Polymers, 14(12), 2381. https://doi.org/10.3390/polym14122381