Effects of Heat Treatment Atmosphere and Temperature on the Properties of Carbon Fibers
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Surface Topography of the Carbon Fibers
3.2. Tensile Properties of Carbon Fibers
3.3. Surface Composition of Carbon Fibers
3.4. Surface Energy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stojcevski, F.; Hilditch, T.B.; Henderson, L.C. A comparison of interfacial testing methods and sensitivities to carbon fiber surface treatment conditions. Compos. Part A Appl. Sci. Manuf. 2019, 118, 293–301. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, Y.; Wang, B.; Zhang, X. Interfacial enhancement for carbon fibre reinforced electron beam cured polymer composite by microwave irradiation. Polymer 2020, 192, 122327. [Google Scholar] [CrossRef]
- Han, S.H.; Oh, H.J.; Kim, S.S. Evaluation of mechanical property of carbon fiber/polypropylene composite according to carbon fiber surface treatment. Trans. Korean Soc. Mech. Eng. 2013, 37, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Moon, C.W.; Jung, G.; Im, S.S.; Nah, C.; Park, S.J. Effect of anodic oxidation of H2SO4/HNO3 ratio for improving interfacial adhesion between carbon fibers and epoxy matrix resins. Polymer 2013, 37, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Imai, Y.; Shimamoto, D.; Hotta, Y. Relationship study between crystal structure and thermal/mechanical properties of polyamide 6 reinforced and unreinforced by carbon fiber from macro and local view. Polymer 2014, 55, 6186–6194. [Google Scholar] [CrossRef]
- Park, S.J.; Chang, Y.H.; Kim, Y.C.; Rhee, K.Y. Anodization of carbon fibers on interfacial mechanical properties of epoxy matrix composites. J. Nanosci. Nanotechnol. 2010, 10, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; An, K.H.; Bang, Y.H.; Kwac, L.K.; Oh, S.Y.; Kim, B.J. Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method. Carbon Lett. 2016, 19, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, J.; Matsutsuka, N.; Okazumi, T.; Uzawa, K.; Ohsawa, I.; Yamaguchi, K.; Kitano, A. Mechanical properties of recycled CFRP by injection molding method. In Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan, 8–13 July 2007; Available online: https://www.iccm-central.org/Proceedings/ICCM16proceedings/contents/pdf/FriF/FrFA2-02ge_takahashij224456.pdf (accessed on 13 June 2021).
- Song, J. Tensile strength of polypropylene carbon fiber composite for heat treatment conditions. J. Korean Soc. Mech. Technol. 2020, 22, 107–111. [Google Scholar] [CrossRef]
- Fukui, R.; Odai, T.; Zushi, H.; Osawa, I.; Uzawa, K.; Takahashi, J. Recycle of carbon fiber reinforced plastics for automotive application. In Proceedings of the Ninth Japan International SAMPE Symposium, Tokyo, Japan, 29 November–2 December 2005; pp. 44–49. Available online: https://www.researchgate.net/publication/266887280_Recycle_of_carbon_fiber_reinforced_plastics_for_automotive_application (accessed on 10 July 2021).
- Sun, H.; Guo, G.; Memon, S.A.; Xu, W.; Zhang, Q.; Zhu, J.-H.; Xing, F. Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method. Compos. Part A Appl. Sci. Manuf. 2015, 78, 10–17. [Google Scholar] [CrossRef]
- Lee, H.; Ohsawa, I.; Takahashi, J. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties. Appl. Surf. Sci. 2015, 328, 241–246. [Google Scholar] [CrossRef]
- di Landro, L.; Pegoraro, M. Carbon fiber-thermoplastic matrix adhesion. J. Mater. Sci. 1987, 22, 1980–1986. [Google Scholar] [CrossRef]
- Jung, M.J.; Park, M.S.; Lee, S.; Lee, Y.S. Effect of e-beam radiation with acid drenching on surface properties of pitch-based carbon fibers. Appl. Chem. Eng. 2016, 27, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Hancock, P.; Cuthbertson, R.C. The effect of fibre length and interracial bond in glass fibre-epoxy resin composites. J. Mater. Sci. 1970, 5, 762–768. [Google Scholar] [CrossRef]
- Li, J.; Cai, C.L. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Curr. Appl. Phys. 2011, 11, 50–54. [Google Scholar] [CrossRef]
- Pizzi, A.; Mittal, K.L. Handbook of Adhesive Technology; M. Dekker: New York, NY, USA; Basel, Switzerland, 2003. [Google Scholar]
- Tiwari, S.; Bijwe, J.; Panier, S. Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment. Wear 2011, 271, 2252–2260. [Google Scholar] [CrossRef]
- Woodhead, A.L.; de Souza, M.L.; Church, J.S. An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber. Appl. Surf. Sci. 2017, 401, 79–88. [Google Scholar] [CrossRef]
- Martínez-Landeros, V.H.; Vargas-Islas, S.Y.; Cruz-González, C.E.; Barrera, S.; Mourtazov, K.; Ramírez-Bon, R. Studies on the influence of surface treatment type, in the effectiveness of structural adhesive bonding, for carbon fiber reinforced composites. J. Manuf. Process. 2019, 39, 160–166. [Google Scholar] [CrossRef]
- Wu, Z.; Pittman, C.U.; Gardner, S.D. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon 1995, 33, 597–605. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, S.; Yang, D.; Dodelet, J.P.; Sacher, E. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 2008, 46, 196–205. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.H.; Ma, W.J.; Ma, Q.S. Influenceof heat treatment on physical-chemical properties of PAN-based carbon fiber. Ceram. Int. 2006, 32, 291–295. [Google Scholar] [CrossRef]
- Lee, W.H.; Lee, J.G.; Reucrof, P.J. XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2 /(O2 + N2). Appl. Surf. Sci. 2001, 171, 136–142. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, B.; Shi, F.; Li, M.; Zhang, Z.; Gu, Y. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl. Surf. Sci. 2011, 257, 8457–8461. [Google Scholar] [CrossRef]
- Zhang, J. Different Surface Treatments of Carbon Fibers and Their Influence on the Interfacial Properties of Carbon Fiber. Ph.D Thesis, Ecole Centrale, Paris, France, 2012. [Google Scholar]
- Liansheng, Y.; Tao, S.M.; Wu, Z. The pretreatment of carbon fibres for 3D C/SiC composites. Sci. Eng. Compos. Mater. 2002, 10, 55–58. [Google Scholar] [CrossRef]
- Park, S.J.; Oh, J.-S.; Suh, D.-H. Crack resistance properties of anodized carbon fibers/epoxy matrix composites. Korean J. Chem. Eng. 2004, 42, 102–106. Available online: https://www.koreascience.or.kr/article/JAKO200011921694701.pdf (accessed on 13 June 2021).
- Ma, K.; Chen, P.; Wang, B.; Cui, G.; Xu, X. A study of the effect of oxygen plasma treatment on the interfacial properties of carbon fiber/epoxy composites. J. Appl. Polym. Sci. 2010, 118, 1606–1614. [Google Scholar] [CrossRef]
- Jang, J.; Yang, H. The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites. J. Mater. Sci. 2000, 35, 2297–2303. [Google Scholar] [CrossRef]
- Hueso, J.L.; Espinós, J.P.; Caballero, A.; Cotrino, J.; González-Elipe, A.R. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon 2007, 45, 89–96. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J. Surface treatment of carbon fibers—A review. Procedia Technol. 2014, 14, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, C.J.; Min, K.D.; Hwang, B.U.; Kang, D.G.; Choi, D.H.; Joo, J.; Jung, S.B. Intense pulsed light surface treatment for improving adhesive bonding of aluminum and carbon fiber reinforced plastic (CFRP). Compos. Struct. 2020, 258, 113364. [Google Scholar] [CrossRef]
- Oliveira, V.; Sharma, S.P.; de Moura, M.F.S.F.; Moreira, R.D.F.; Vilar, R. Surface treatment of CFRP composites using femtosecond laser radiation. Opt. Lasers Eng. 2017, 94, 37–43. [Google Scholar] [CrossRef]
- Lee, H.J.; Won, J.; Lim, S.; Lee, T.; Lee, S.G. Preparation and characterization of PAN-based carbon fiber with carbonization temperature. J. Text. Sci. Eng. 2006, 53, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Rong, H.; Ryu, Z.; Zheng, J.; Zhang, Y. Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde. Carbon 2002, 40, 2291–2300. [Google Scholar] [CrossRef]
- Gupta, A.; Harriso, I.R. New aspects in the oxidative stabilization of pan-based carbon fibers. Carbon 1996, 34, 1427–1445. [Google Scholar] [CrossRef]
- Karacan, I.; Erdoğan, G. A study on structural characterization of thermal stabilization stage of polyacrylonitrile fibers prior to carbonization. Fibers Polym. 2012, 13, 329–338. [Google Scholar] [CrossRef]
- Ohkubo, T.; Tsukamoto, M.; Sato, Y. Numerical simulation of laser beam cutting of carbon fiber reinforced plastics. Phys. Procedia 2014, 239, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Rho, S.B.; Lim, M.A. A study on the surface characteristics of hydrophobic-hydrophilic powders with concentration change of solutions-contact angles of the powder PMMA, PVC, PVdF and aluminum on the surfactant SDS, CTABr solutions. Polymer 1999, 23, 662–672. [Google Scholar]
Treatment Condition | Elemental Composition (at. %) | O/C | ||||
---|---|---|---|---|---|---|
Atmosphere | Temperature | Carbon | Oxygen | Nitrogen | Silicon | |
Virgin | 76.31 | 21.31 | 0.75 | 1.63 | 0.28 | |
Nitrogen | 300 °C | 80.15 | 16.97 | 1.17 | 1.71 | 0.21 |
500 °C | 85.85 | 11.13 | 1.19 | 1.83 | 0.14 | |
Oxygen | 300 °C | 83.61 | 11.66 | 2.36 | 2.37 | 0.13 |
500 °C | 68.03 | 26.50 | 2.89 | 2.58 | 0.39 |
Treatment Condition | C1s (at. %) | ||||
---|---|---|---|---|---|
Atmosphere | Temperature | C–C, C=C | C–O, C=O | C–N | O=C-O |
Virgin | 71.09 | 26.86 | 0.98 | 1.07 | |
Nitrogen | 300 °C | 77.37 | 19.25 | 1.46 | 1.92 |
500 °C | 85.65 | 10.05 | 1.39 | 2.91 | |
Oxygen | 300 °C | 83.23 | 12.05 | 2.82 | 1.90 |
500 °C | 56.80 | 23.66 | 4.25 | 15.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Lee, H.; Kim, K.; Kim, D.U. Effects of Heat Treatment Atmosphere and Temperature on the Properties of Carbon Fibers. Polymers 2022, 14, 2412. https://doi.org/10.3390/polym14122412
Kim G, Lee H, Kim K, Kim DU. Effects of Heat Treatment Atmosphere and Temperature on the Properties of Carbon Fibers. Polymers. 2022; 14(12):2412. https://doi.org/10.3390/polym14122412
Chicago/Turabian StyleKim, Gyungha, Hyunkyung Lee, Kyungeun Kim, and Dae Up Kim. 2022. "Effects of Heat Treatment Atmosphere and Temperature on the Properties of Carbon Fibers" Polymers 14, no. 12: 2412. https://doi.org/10.3390/polym14122412
APA StyleKim, G., Lee, H., Kim, K., & Kim, D. U. (2022). Effects of Heat Treatment Atmosphere and Temperature on the Properties of Carbon Fibers. Polymers, 14(12), 2412. https://doi.org/10.3390/polym14122412