Refractive Index and Temperature Sensing Performance of Microfiber Modified by UV Glue Distributed Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Refractive Index Sensing Performance Comparison
3.2. Temperature Sensing Properties Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.-M.; Park, J.-H.; Lee, S.-K. Fabrication and Measurement of Fiber Optic Localized Surface Plasmon Resonance Sensor Based on Hybrid Structure of Dielectric Thin Film and Bi-Layered Gold Nanoparticles. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Li, Z.; Su, Z.; Zhu, Y. Preparation and Application of Metal Nanoparticals Elaborated Fiber Sensors. Sensors 2020, 20, 5155. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Zi, J.; Lin, Z. Fano Resonance-Induced Negative Optical Scattering Force on Plasmonic Nanoparticles. ACS Nano 2015, 9, 1926–1935. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Yan, X.; Zhou, P.; Yin, Y.; Lu, R.; Han, C.; Cui, B.; Wei, D. Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sens. Actuators B Chem. 2019, 286, 501–511. [Google Scholar] [CrossRef]
- Li, J.; Chen, G.; Meng, F. A Fiber-Optic Formic Acid Gas Sensor Based on Molybdenum Disulfide Nanosheets and Chitosan Works at Room Temperature. Opt. Laser Technol. 2022, 150, 107975. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Meng, F. Formic Acid Gas Sensor Based on Coreless Optical Fiber Coated by Molybdenum Disulfide Nanosheet. J. Alloy. Compd. 2022, 896, 163063. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Amorim, V.A.; Marques, P.V.S. High Performance Titanium Oxide Coated D-Shaped Optical Fiber Plasmonic Sensor. IEEE Sens. J. 2019, 19, 9244–9248. [Google Scholar] [CrossRef]
- Bi, W.; Wu, Y.; Chen, C.; Zhou, D.; Song, Z.; Li, D.; Chen, G.; Dai, Q.; Zhu, Y.; Song, H. Dye Sensitization and Local Surface Plasmon Resonance-Enhanced Upconversion Luminescence for Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 24737–24746. [Google Scholar] [CrossRef]
- Mola, G.T.; Mthethwa, M.C.; Hamed, M.S.; Adedeji, M.A.; Mbuyise, X.G.; Kumar, A.; Sharma, G.; Zang, Y. Local surface plasmon resonance assisted energy harvesting in thin film organic solar cells. J. Alloy. Compd. 2021, 856, 158172. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, J.; Zhu, H.; Chen, Q.; Hu, X.; Koh, K.; Chen, H. AuNPs network structures as a plasmonic matrix for ultrasensitive immunoassay based on surface plasmon resonance spectroscopy. Sens. Actuators B Chem. 2021, 340, 129948. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Li, M.; Singh, R.; Marques, C.; Min, R.; Kaushik, B.K.; Zhang, B.Y.; Jha, R.; Kumar, S. Water Pollutants p-Cresol Detection Based on Au-ZnO Nanoparticles Modified Tapered Optical Fiber. IEEE Trans Nanobioscience 2021, 20, 377–384. [Google Scholar] [CrossRef]
- Soares, M.S.; Vidal, M.; Santos, N.F.; Costa, F.M.; Marques, C.; Pereira, S.O.; Leitão, C. Immunosensing Based on Optical Fiber Technology: Recent Advances. Biosensors 2021, 11, 305. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, H.; Chang, Y.; Zhao, Y.; Li, M.; Wang, C.; Sun, Y.; Liu, J. One-Step Synthesis of Au/SnO2/RGO Nanocomposites and Their VOC Sensing Properties. IEEE Trans. Nanotechnol. 2018, 17, 212–219. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Zhou, P.; Zhong, X.; Han, C.; Zhao, Q.; Wei, D. Design of Au@WO3 core−shell structured nanospheres for ppb-level NO2 sensing. Sens. Actuators B Chem. 2019, 282, 917–926. [Google Scholar] [CrossRef]
- Turlier, J.; Fourmont, J.; Bidault, X.; Blanc, W.; Chaussedent, S. In situ formation of rare-earth-doped nanoparticles in a silica matrix from Molecular Dynamics simulations. Ceram. Int. 2020, 46, 26264–26272. [Google Scholar] [CrossRef]
- Sypabekova, M.; Aitkulov, A.; Blanc, W.; Tosi, D. Reflector-less nanoparticles doped optical fiber biosensor for the detection of proteins: Case thrombin. Biosens. Bioelectron. 2020, 165, 112365. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K.; Kaur, B. A Review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol. 2018, 43, 20–34. [Google Scholar] [CrossRef]
- Baffou, G.; Quidant, R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photon-Rev. 2013, 7, 171–187. [Google Scholar] [CrossRef]
- Lu, Y.R.; Nikrityuk, P.A. Steam methane reforming driven by the Joule heating. Chem. Eng. Sci. 2022, 251, 117446. [Google Scholar] [CrossRef]
- Lal, S.; Clare, S.E.; Halas, N.J. Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact. Acc. Chem. Res. 2008, 41, 1842–1851. [Google Scholar] [CrossRef]
- Boyer, D.; Tamarat, P.; Maali, A.; Lounis, B.; Orrit, M. Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers. Science 2002, 297, 1160–1163. [Google Scholar] [CrossRef] [PubMed]
- Faruk, O.; Ahmed, A.; Jalil, M.A.; Islam, M.T.; Shamim, A.M.; Adak, B.; Hossain, M.; Mukhopadhyay, S. Functional textiles and composite based wearable thermal devices for Joule heating: Progress and perspectives. Appl. Mater. Today 2021, 23, 101025. [Google Scholar] [CrossRef]
- Deng, B.; Luong, D.X.; Wang, Z.; Kittrell, C.; McHugh, E.A.; Tour, J.M. Urban mining by flash Joule heating. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects. Electrophoresis 2022, 43, 167–189. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’Yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [Green Version]
- Zograf, G.P.; Petrov, M.I.; Makarov, S.V.; Kivshar, Y.S. All-dielectric thermonanophotonics. Adv. Opt. Photon- 2021, 13, 643–702. [Google Scholar] [CrossRef]
- Yan, J.; Liu, X.; Ma, C.; Huang, Y.; Yang, G. All-dielectric materials and related nanophotonic applications. Mater. Sci. Eng. R: Rep. 2020, 141, 100563. [Google Scholar] [CrossRef]
- Barreda, Á.I.; Saleh, H.; Litman, A.; González, F.; Geffrin, J.M.; Moreno, F. On the scattering directionality of a dielectric particle dimer of high refractive index. Sci. Rep. 2018, 8, 7976. [Google Scholar] [CrossRef]
- Terekhov, P.D.; Baryshnikova, K.V.; Greenberg, Y.; Fu, Y.H.; Evlyukhin, A.B.; Shalin, A.S.; Karabchevsky, A. Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Frizyuk, K.; Volkovskaya, I.; Smirnova, D.; Poddubny, A.; Petrov, M. Second-harmonic generation in Mie-resonant dielectric nanoparticles made of noncentrosymmetric materials. Phys. Rev. B 2019, 99, 075425. [Google Scholar] [CrossRef] [Green Version]
- Sain, B.; Meier, C.; Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review. Adv. Photon- 2019, 1, 024002. [Google Scholar] [CrossRef] [Green Version]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Castellanos, G.W.; Murai, S.; Raziman, T.V.; Wang, S.; Ramezani, M.; Curto, A.G.; Gómez Rivas, J. Exciton-Polaritons with Magnetic and Electric Character in All-Dielectric Metasurfaces. ACS Photonics 2020, 7, 1226–1234. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Dang, H.; Meng, F. Structure design and application of hollow core microstructured optical fiber gas sensor: A review. Opt. Laser Technol. 2021, 135, 106658. [Google Scholar] [CrossRef]
- Li, Y.; Xin, H.; Zhang, Y.; Li, B. Optical Fiber Technologies for Nanomanipulation and Biodetection: A Review. J. Light. Technol. 2021, 39, 251–262. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Zhang, L.; Li, X. Plasmonic biosensing based on non-noble-metal materials. Chin. Chem. Lett. 2018, 29, 54–60. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. Plasmonics: A Necessity in the Field of Sensing-A Review (Invited). Fiber Integr. Opt. 2021, 40, 14–47. [Google Scholar] [CrossRef]
- Guzmán-Sepúlveda, J.R.; Guzmán-Cabrera, R.; Castillo-Guzmán, A.A. Optical Sensing Using Fiber-Optic Multimode Interference Devices: A Review of Nonconventional Sensing Schemes. Sensors 2021, 21, 1862. [Google Scholar] [CrossRef]
- Soldano, L.; Pennings, E. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K. Fundamentals of Optical Waveguides; Academic Press: London, UK, 2006. [Google Scholar]
- Castelló, M.; Dweck, J.; Aranda, D.A.G. Thermal stability and water content determination of glycerol by thermogravimetry. J. Therm. Anal. 2009, 97, 627–630. [Google Scholar] [CrossRef]
Materials | NPs Concentration | Sensitivity | Linearity |
---|---|---|---|
Silver | 0.01 mol/L | 1382.3 nm/RIU | 0.99291 |
0.05 mol/L | 1364.8 nm/RIU | 0.98768 | |
0.1 mol/L | 1357.6 nm/RIU | 0.99014 | |
0.5 mol/L | 1842.3 nm/RIU | 0.99167 | |
Silicon | 0.01 mol/L | 1769.7 nm/RIU | 0.98992 |
0.05 mol/L | 1471.8 nm/RIU | 0.98968 | |
0.1 mol/L | 1468.1 nm/RIU | 0.99534 | |
0.5 mol/L | 1321.8 nm/RIU | 0.99252 |
Sensitive Materials | Sensitivity | Refs. |
---|---|---|
Bi-layered Au NPs | 49.63 a.u./RIU | [1] |
Ag NPs based works | 349.1–8600 nm/RIU | [2] |
Au NPs based works | 900–5140 nm/RIU | [2] |
Au film (40 nm) | ~2459–20,863 nm/RIU # | [4] |
Au NPs + ZnO NPs | ~6 nm/μM | [5] |
Au film + TiO2 layer | 30,000 nm/RIU # | [7] |
Ag NPs | 1842.3 nm/RIU | This work |
Si NPs | 1769.7 nm/RIU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, H.; Zhang, Y.; Qiao, Y.; Li, J. Refractive Index and Temperature Sensing Performance of Microfiber Modified by UV Glue Distributed Nanoparticles. Polymers 2022, 14, 2425. https://doi.org/10.3390/polym14122425
Dang H, Zhang Y, Qiao Y, Li J. Refractive Index and Temperature Sensing Performance of Microfiber Modified by UV Glue Distributed Nanoparticles. Polymers. 2022; 14(12):2425. https://doi.org/10.3390/polym14122425
Chicago/Turabian StyleDang, Hongtao, Yan Zhang, Yukun Qiao, and Jin Li. 2022. "Refractive Index and Temperature Sensing Performance of Microfiber Modified by UV Glue Distributed Nanoparticles" Polymers 14, no. 12: 2425. https://doi.org/10.3390/polym14122425
APA StyleDang, H., Zhang, Y., Qiao, Y., & Li, J. (2022). Refractive Index and Temperature Sensing Performance of Microfiber Modified by UV Glue Distributed Nanoparticles. Polymers, 14(12), 2425. https://doi.org/10.3390/polym14122425