Cross-Linked Luminescent Polymers Based on β-Diketone-Modified Polysiloxanes and Organoeuropiumsiloxanes
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Synthesis
2.2.1. Polysiloxane with Distributed Silylhydride Groups (4)
2.2.2. Polysiloxane with Distributed Dibenzoylmethane Groups (6)
2.2.3. Preparation of Oligophenyleuropiumsiloxane (7 a)
2.2.4. Preparation of Oligoethyleuropiumsiloxane (7 b)
2.2.5. Preparation of Europium-Contained Cross-Linked Polymers (8 a–d)
2.3. Characterization
3. Results and Discussion
3.1. Preparation
3.2. Characterization
3.2.1. Gel Fraction
3.2.2. Morphology
3.3. Mechanical Properties
3.4. TGA Analysis
3.5. DSC Analysis
3.6. Self-Healing Properties
3.7. Luminescent Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Liu, P.; Hou, C.; Cao, C.; Zhang, J.; Sun, H.; Yao, X. Dual-Cross-Linked Supramolecular Polysiloxanes for Mechanically Tunable, Damage-Healable and Oil-Repellent Polymeric Coatings. ACS Appl. Mater. Interfaces 2019, 11, 47382–47389. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.-R.; Lai, J.-C.; Zeng, K.-Y.; Wang, D.-P.; Li, C.-H.; Zuo, J.-L. New insights into the mechanical and self-healing properties of polymers cross-linked by Fe(iii)-2,6-pyridinedicarboxamide coordination complexes. Polym. Chem. 2019, 10, 362–371. [Google Scholar] [CrossRef]
- Rao, Y.-L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y.-C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X.; Wang, C.; et al. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked through Metal-Ligand Coordination. J. Am. Chem. Soc. 2016, 138, 6020–6027. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Das, R.K. Dual Cross-Linked Hydrogels with High Strength, Toughness, and Rapid Self-Recovery Using Dynamic Metal-Ligand Interactions. Macromol. Mater. Eng. 2019, 304, 1900195. [Google Scholar] [CrossRef]
- Bode, S.; Zedler, L.; Schacher, F.H.; Dietzek, B.; Schmitt, M.; Popp, J.; Hager, M.D.; Schubert, U.S. Self-Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers. Adv. Mater. 2013, 25, 1634–1638. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Wang, W.; Yin, G.-Q.; Wang, Y.-X.; Zhang, C.-W.; Shi, J.-M.; Yu, Y.; Yang, H.-B. Cross-linked supramolecular polymer metallogels constructed via a self-sorting strategy and their multiple stimulus-response behaviors. Chem. Commun. 2015, 51, 16813–16816. [Google Scholar] [CrossRef]
- Nair, K.P.; Breedveld, V.; Weck, M. Multiresponsive Reversible Polymer Networks Based on Hydrogen Bonding and Metal Coordination. Macromolecules 2011, 44, 3346–3357. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Xia, H. Bioinspired ultrasound-responsive fluorescent metal-ligand cross-linked polymer assemblies. Polym. Chem. 2017, 8, 2581–2585. [Google Scholar] [CrossRef]
- Kumpfer, J.R.; Rowan, S.J. Thermo-, Photo-, and Chemo-Responsive Shape-Memory Properties from Photo-Cross-Linked Metallo-Supramolecular Polymers. J. Am. Chem. Soc. 2011, 133, 12866–12874. [Google Scholar] [CrossRef]
- Sanoja, G.E.; Schauser, N.S.; Bartels, J.M.; Evans, C.M.; Helgeson, M.E.; Seshadri, R.; Segalman, R.A. Ion Transport in Dynamic Polymer Networks Based on Metal-Ligand Coordination: Effect of Cross-Linker Concentration. Macromolecules 2018, 51, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A 2014, 2, 19036–19045. [Google Scholar] [CrossRef]
- Brassinne, J.; Fustin, C.-A.; Gohy, J.-F. Polymer Gels Constructed Through Metal-Ligand Coordination. J. Inorg. Organomet. Polym. Mater. 2013, 23, 24–40. [Google Scholar] [CrossRef]
- Lewis, A.L.; Miller, J.D. Coordinative cross-linking of pyridyl- and bipyridyl-based hydrogel polymer membranes. Polymer 1993, 34, 2453–2457. [Google Scholar] [CrossRef]
- Shi, L.; Ding, P.; Wang, Y.; Zhang, Y.; Ossipov, D.; Hilborn, J. Self-Healing Polymeric Hydrogel Formed by Metal-Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications. Macromol. Rapid Commun. 2019, 40, 1800837. [Google Scholar] [CrossRef]
- Calvino, C.; Sagara, Y.; Buclin, V.; Haehnel, A.P.; del Prado, A.; Aeby, C.; Simon, Y.C.; Schrettl, S.; Weder, C. Mechanoresponsive, Luminescent Polymer Blends Based on an Excimer-Forming Telechelic Macromolecule. Macromol. Rapid Commun. 2019, 40, 1800705. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, G.; Kim, D.; Kim, J.; Lee, T.S. Fluorescence sensing of glucose using glucose oxidase incorporated into a fluorophore-containing PNIPAM hydrogel. Polym. Chem. 2016, 7, 1907–1912. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, K.-S.; Yoo, S.I.; Sohn, B.-H. Dispersion of micelle-encapsulated fluorophores in a polymer matrix for control of color of light emitted by light-emitting diodes. Thin Solid Film. 2011, 519, 8161–8165. [Google Scholar] [CrossRef]
- Kim, H.N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev. 2011, 40, 79–93. [Google Scholar] [CrossRef]
- Kovalchuk, A.; Huang, K.; Xiang, C.; Martí, A.A.; Tour, J.M. Luminescent Polymer Composite Films Containing Coal-Derived Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2015, 7, 26063–26068. [Google Scholar] [CrossRef]
- Wang, X.-F.; Wang, G.-G.; Li, J.-B.; Liu, Z.; Zhao, W.-F.; Han, J.-C. Towards high-powered remote WLED based on flexible white-luminescent polymer composite films containing S, N co-doped graphene quantum dots. Chem. Eng. J. 2018, 336, 406–415. [Google Scholar] [CrossRef]
- Gaponik, N.; Radtchenko, I.L.; Sukhorukov, G.B.; Rogach, A.L. Luminescent Polymer Microcapsules Addressable by a Magnetic Field. Langmuir 2004, 20, 1449–1452. [Google Scholar] [CrossRef] [PubMed]
- Firth, A.V.; Haggata, S.W.; Khanna, P.K.; Williams, S.J.; Allen, J.W.; Magennis, S.W.; Samuel, I.D.; Cole-Hamilton, D.J. Production and luminescent properties of CdSe and CdS nanoparticle–polymer composites. J. Lumin. 2004, 109, 163–172. [Google Scholar] [CrossRef]
- Boyer, J.C.; Johnson, N.J.J.; van Veggel, F.C.J.M. Upconverting Lanthanide-Doped NaYF 4 −PMMA Polymer Composites Prepared by in Situ Polymerization. Chem. Mater. 2009, 21, 2010–2012. [Google Scholar] [CrossRef]
- Banks, E.; Okamoto, Y.; Ueba, Y. Synthesis and characterization of rare earth metal-containing polymers. I. Fluorescent properties of ionomers containing Dy3, Er3, Eu3, and Sm3. J. Appl. Polym. Sci. 1980, 25, 359–368. [Google Scholar] [CrossRef]
- Hu, M.; Shu, Y.; Kirillov, A.; Liu, W.; Yang, L.; Dou, W. Epoxy Functional Composites Based on Lanthanide Metal–Organic Frameworks for Luminescent Polymer Materials. ACS Appl. Mater. Interfaces 2021, 13, 7625–7634. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Yamamuro, M.; Wada, Y.; Kanehisa, N.; Kai, Y.; Yanagida, S. Luminescent Polymer Containing the Eu(III) Complex Having Fast Radiation Rate and High Emission Quantum Efficiency. J. Phys. Chem. A 2003, 107, 1697–1702. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Lin, Q.; Fu, L.; Zhang, H.; Yang, B. Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. J. Mater. Chem. 2003, 13, 2279. [Google Scholar] [CrossRef]
- Chen, B.; Feng, J. White-Light-Emitting Polymer Composite Film Based on Carbon Dots and Lanthanide Complexes. J. Phys. Chem. C 2015, 119, 7865–7872. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, H. Hybrid materials based on lanthanide organic complexes: A review. Chem. Soc. Rev. 2013, 42, 387–410. [Google Scholar] [CrossRef]
- Chen, B.; Wen, G.; Wu, J.; Feng, J. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry. Macromol. Rapid Commun. 2015, 36, 1836–1840. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, Y.; Xu, H.; Kong, X.; Long, L.; Zheng, L. Preparation of a Lanthanide–Titanium Oxo Cluster–Polymer Composite by Cu I -Catalyzed Click Chemistry. Chem.—Eur. J. 2021, 27, 614–617. [Google Scholar] [CrossRef]
- Song, K.; He, L.; Zhang, L.; Tao, G. Renewable Lanthanide Ionic Liquid/Polymer Composites for High-Efficient Adsorption of Particulate Matter. Adv. Mater. Interfaces 2018, 5, 1700448. [Google Scholar] [CrossRef]
- Pucci, A.; Bizzarri, R.; Ruggeri, G. Polymer composites with smart optical properties. Soft Matter 2011, 7, 3689. [Google Scholar] [CrossRef]
- Tegge, G. Ullmann’s Encyclopedia of Industrial Chemistry. Fifth, Completely Revised Edition. Volume B 4: Principles of Chemical Reaction Engineering and Plant Design. VCH Verlagsgesellschaft mbH, D-6940 Weinheim (Fed. Rep. of Germany), 1992. ISBN 3-527-20134-3 (Wei). Starch—Stärke 1993, 45, 201. [Google Scholar] [CrossRef]
- Zuo, Y.; Gou, Z.; Quan, W.; Lin, W. Silicon-assisted unconventional fluorescence from organosilicon materials. Coord. Chem. Rev. 2021, 438, 213887. [Google Scholar] [CrossRef]
- Wang, N.; Feng, L.; Xu, X.; Feng, S. Dynamic Covalent Bond Cross-Linked Luminescent Silicone Elastomer with Self-Healing and Recyclable Properties. Macromol. Rapid Commun. 2022, 43, 2100885. [Google Scholar] [CrossRef]
- Yang, J.; Wang, T.; Guo, R.; Yao, D.; Guo, W.; Liu, S.; Li, Z.; Wang, Y.; Li, H. Self-Healing Material with Reversible Luminescence Switch Behavior. ACS Appl. Mater. Interfaces 2020, 12, 54026–54034. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, J.; Wang, Y.; Li, H. Luminescent self-healing materials constructed via coordination between lanthanide ions and phenanthroline-tethered to polymer chain. Dye. Pigment. 2022, 197, 109864. [Google Scholar] [CrossRef]
- de Jesus, F.A.; Santana, B.V.; Bispo, G.F.d.C.; Filho, C.I.d.S.; Júnior, S.A.; Valério, M.E.G.; Caiut, J.M.A.; Sarmento, V.H.V. Fine tuning of polymer content for enhanced structure and luminescent properties of Eu3+:siloxane–poly(methyl methacrylate) hybrids to be applied in photonics. Polymer 2019, 181, 121767. [Google Scholar] [CrossRef]
- Manzani, D.; Nigoghossian, K.; Iastrensk, M.F.; Coelho, G.R.; dos Santos, M.V.; Maia, L.J.Q.; Ribeiro, S.J.L.; Segatelli, M.G. Luminescent silicone materials containing Eu 3+ -complexes for photonic applications. J. Mater. Chem. C 2018, 6, 8258–8265. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, L.; Qu, F.; Tang, K.; Wang, H.; Yu, W.W. A silicone polymer modified by fluoranthene groups as a new approach for detecting nitroaromatic compounds. Polym. Chem. 2019, 10, 4818–4824. [Google Scholar] [CrossRef]
- Basu, B.J.; Rajam, K.S. Comparison of the oxygen sensor performance of some pyrene derivatives in silicone polymer matrix. Sens. Actuators B Chem. 2004, 99, 459–467. [Google Scholar] [CrossRef]
- Gaspar, R.D.L.; Ferraz, S.M.M.; Padovani, P.C.; Fortes, P.R.; Mazali, I.O.; Sigoli, F.A.; Raimundo, I.M. Luminescent oxygen probes based on TbIII complexes chemically bonded to polydimethylsiloxane. Sens. Actuators B Chem. 2019, 287, 557–568. [Google Scholar] [CrossRef]
- Dobrynin, M.V.; Sokolova, E.V.; Kinzhalov, M.A.; Smirnov, A.S.; Starova, G.L.; Kukushkin, V.Y.; Islamova, R.M. Cyclometalated Platinum(II) Complexes Simultaneously Catalyze the Cross-Linking of Polysiloxanes and Function as Luminophores. ACS Appl. Polym. Mater. 2021, 3, 857–866. [Google Scholar] [CrossRef]
- Islamova, R.M.; Dobrynin, M.V.; Vlasov, A.V.; Eremina, A.A.; Kinzhalov, M.A.; Kolesnikov, I.E.; Zolotarev, A.A.; Masloborodova, E.A.; Luzyanin, K.V. Iridium (iii)-catalysed cross-linking of polysiloxanes leading to the thermally resistant luminescent silicone rubbers. Catal. Sci. Technol. 2017, 7, 5843–5846. [Google Scholar] [CrossRef] [Green Version]
- Lai, Q.; Lu, H.; Wang, D.; Wang, H.; Feng, S.; Zhang, J. Color-Tunable Luminescent Materials Based on Functional Polysiloxane and Lanthanide Ions. Macromol. Chem. Phys. 2011, 212, 1435–1442. [Google Scholar] [CrossRef]
- Feng, M.; Wang, N.; Li, J.; Feng, S.; Xu, X.-D. Facile construction of luminescent silicone elastomers from the compatibilization of porphyrins via the Piers-Rubinsztajn reaction. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128646. [Google Scholar] [CrossRef]
- Lu, H.; Liu, L.; Feng, S. A new way to construct luminescent functionalized polysiloxane based on ternary lanthanide complexes of 1, 10-phenanthroline. J. Appl. Polym. Sci. 2012, 123, 1884–1888. [Google Scholar] [CrossRef]
- Wang, X.; Lu, H.; Wang, H.; Feng, S. Synthesis and photophysical properties of rare earth-containing luminescent silicone resin from cooperative molecular design and assembly. J. Non. Cryst. Solids 2010, 356, 1581–1586. [Google Scholar] [CrossRef]
- Wang, X. Construction and photoluminescence of amorphous silicone resins containing lanthanide ions as luminescent center. J. Non. Cryst. Solids 2012, 358, 765–770. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Wybourne, B.G. Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+. J. Chem. Phys. 1965, 42, 3797–3806. [Google Scholar] [CrossRef]
- Junker, A.K.R.; Hill, L.R.; Thompson, A.L.; Faulkner, S.; Sørensen, T.J. Shining light on the antenna chromophore in lanthanide based dyes. Dalt. Trans. 2018, 47, 4794–4803. [Google Scholar] [CrossRef]
- Nehra, K.; Dalal, A.; Hooda, A.; Bhagwan, S.; Saini, R.K.; Mari, B.; Kumar, S.; Singh, D. Lanthanides β-diketonate complexes as energy-efficient emissive materials: A review. J. Mol. Struct. 2022, 1249, 131531. [Google Scholar] [CrossRef]
- Reddy, M.L.P.; Divya, V.; Pavithran, R. Visible-light sensitized luminescent europium(iii)-β-diketonate complexes: Bioprobes for cellular imaging. Dalt. Trans. 2013, 42, 15249. [Google Scholar] [CrossRef]
- Clegg, J.K.; Li, F.; Lindoy, L.F. Oligo-β-diketones as versatile ligands for use in metallo-supramolecular chemistry: Recent progress and perspectives. Coord. Chem. Rev. 2022, 455, 214355. [Google Scholar] [CrossRef]
- Li, H.-F.; Yan, P.-F.; Chen, P.; Wang, Y.; Xu, H.; Li, G.-M. Highly luminescent bis-diketone lanthanide complexes with triple-stranded dinuclear structure. Dalt. Trans. 2012, 41, 900–907. [Google Scholar] [CrossRef]
- Murugavel, R.; Voigt, A.; Walawalkar, M.G.; Roesky, H.W. Hetero- and Metallasiloxanes Derived from Silanediols, Disilanols, Silanetriols, and Trisilanols. Chem. Rev. 1996, 96, 2205–2236. [Google Scholar] [CrossRef]
- Korlyukov, A.A.; Eskova, M.A.; Tkachenko, I.M.; Kononevich, Y.N.; Shchegolikhina, O.I.; Muzafarov, A.M. Heteroligand nickel siloxane with 4-vinylbenzyl substituents. Mendeleev Commun. 2015, 25, 226–228. [Google Scholar] [CrossRef]
- Lorenz, V.; Fischer, A.; Gießmann, S.; Gilje, J.W.; Gun’ko, Y.; Jacob, K.; Edelmann, F.T. Disiloxanediolates and polyhedral metallasilsesquioxanes of the early transition metals and f-elements. Coord. Chem. Rev. 2000, 206–207, 321–368. [Google Scholar] [CrossRef]
- Anisimov, A.A.; Kononevich, Y.N.; Zhemchugov, P.V.; Milenin, S.A.; Korlyukov, A.A.; Tsareva, U.S.; Peregudov, A.S.; Dorovatovskii, P.V.; Molodtsova, Y.A.; Takazova, R.U.; et al. Synthesis and structure of new polyhedral Ni, Na- and Cu, Na-metallasiloxanes with tolyl substituent at the silicon atom. RSC Adv. 2016, 6, 22052–22060. [Google Scholar] [CrossRef]
- Blagodatskikh, I.V.; Molodtsova, Y.A.; Pozdnyakova, Y.A.; Shchegolikhina, O.I.; Khokhlov, A.R. Nanodisperse systems as transient state upon the formation of crystalline organometalsiloxanes. Colloid J. 2008, 70, 407–415. [Google Scholar] [CrossRef]
- Kononevich, Y.N.; Anisimov, A.A.; Korlyukov, A.A.; Tsareva, U.S.; Shchegolikhina, O.I.; Muzafarov, A.M. Synthesis and structures of novel tetra- and pentanuclear copper sandwich-like metallasiloxanes with pyridine ligands. Mendeleev Commun. 2017, 27, 332–334. [Google Scholar] [CrossRef]
- Anisimov, A.A.; Vysochinskaya, Y.S.; Kononevich, Y.N.; Dolgushin, F.M.; Muzafarov, A.M.; Shchegolikhina, O.I. Polyhedral phenylnickelsodiumsiloxanolate transformation in the presence of aromatic nitrogen-containing ligands. Inorg. Chim. Acta 2021, 517, 120160. [Google Scholar] [CrossRef]
- Pryakhina, T.A.; Shragin, D.I.; Strelkova, T.V.; Kotov, V.M.; Buzin, M.I.; Demchenko, N.V.; Muzafarov, A.M. Synthesis and thermal properties of polydimethylsiloxanes modified by decyl and methylundecylenate substituents. Russ. Chem. Bull. 2014, 63, 1416–1422. [Google Scholar] [CrossRef]
- Ionov, D.S.; Yurasik, G.A.; Kononevich, Y.N.; Surin, N.M.; Svidchenko, E.A.; Sazhnikov, V.A.; Muzafarov, A.M.; Alfimov, M.V. Ink-Jet Printing of Chemosensing Layers Based on Surface-Functionalized Silica Nanoparticles. Nanotechnol. Russ. 2017, 12, 338–351. [Google Scholar] [CrossRef]
- Kim, E.E.; Kononevich, Y.N.; Anisimov, A.A.; Buzin, M.I.; Vasil’ev, V.G.; Korlyukov, A.A.; Ionov, D.S.; Khanin, D.A.; Shtykova, E.V.; Volkov, V.V.; et al. Cross-linked polymer networks based on polysiloxane and nickel β-diketonate precursors. React. Funct. Polym. 2021, 164, 104896. [Google Scholar] [CrossRef]
- Yahya, S.N.; Lin, C.K.; Ramli, M.R.; Jaafar, M.; Ahmad, Z. Effect of cross-link density on optoelectronic properties of thermally cured 1,2-epoxy-5-hexene incorporated polysiloxane. Mater. Des. 2013, 47, 416–423. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Sanchez, C.; Su, B.-L. Hierarchically porous materials: Synthesis strategies and structure design. Chem. Soc. Rev. 2017, 46, 481–558. [Google Scholar] [CrossRef] [Green Version]
- Camino, G.; Lomakin, S.; Lazzari, M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer 2001, 42, 2395–2402. [Google Scholar] [CrossRef]
- Ahner, J.; Pretzel, D.; Enke, M.; Geitner, R.; Zechel, S.; Popp, J.; Schubert, U.S.; Hager, M.D. Conjugated Oligomers as Fluorescence Marker for the Determination of the Self-Healing Efficiency in Mussel-Inspired Polymers. Chem. Mater. 2018, 30, 2791–2799. [Google Scholar] [CrossRef]
- Enke, M.; Bode, S.; Vitz, J.; Schacher, F.H.; Harrington, M.J.; Hager, M.D.; Schubert, U.S. Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer 2015, 69, 274–282. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Mirochnik, A.G.; Petrochenkova, N.V.; Shishov, A.S.; Bukvetskii, B.V.; Emelina, T.B.; Sergeev, A.A.; Voznesenskii, S.S. Europium(III) tris-dibenzoylmethanate as an efficient chemosensor for detection of ammonia. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 155, 111–115. [Google Scholar] [CrossRef]
Compound | Mn (Da) | Mw (Da) | PDI | R in [(RSiO1.5)3Eu]n | Ratio Ligand:Eu3+ Ion | Gel Fraction (%) |
---|---|---|---|---|---|---|
4 | 29,500 | 49,600 | 1.68 | - | - | - |
6 | 47,000 | 123,000 | 2.61 | - | - | - |
7 a | - | - | - | Ph | - | - |
7 b | - | - | - | Et | - | - |
8 a | - | - | - | Ph | 3:1 | 84 |
8 b | - | - | - | Ph | 3:2 | 79 |
8 c | - | - | - | Et | 3:1 | 53 |
8 d | - | - | - | Et | 3:2 | 89 |
Polymer | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) |
---|---|---|---|
8 a | 0.81 | 520 | 0.47 |
8 b | 1.75 | 300 | 1.14 |
8 c | 0.42 | 380 | 0.24 |
8 d | 1.74 | 160 | 1.81 |
Compound | Td5% (°C) | Residue after Decomposition (%) | Tg (°C) | Tcc (°C) | ΔHcc (J/g) | Tm (°C) | ΔHm (J/g) | ||
---|---|---|---|---|---|---|---|---|---|
In Air | In Argon | IN Air | In Argon | ||||||
4 | 396 | 417 | 41 | 0 | −126 | −90 | 9.5 | −51 (−42) | 32.8 |
6 | 378 | 415 | 19 | 2 | −117 | - | - | - | - |
7 a | 147 | 160 | 53 | 65 | - | - | - | - | - |
7 b | 146 | 131 | 77 | 75 | - | - | - | - | - |
8 a | 313 | 340 | 18 | 8 | −120 | - | - | - | - |
8 b | 304 | 347 | 34 | 24 | −122 | - | - | - | - |
8 c | 297 | 330 | 26 | 4 | −122 | - | - | - | - |
8 d | 312 | 309 | 16 | 5 | −119 | - | - | - | - |
Compound | τ (μs) | Arel (%) | Irel (%) | τav.Amp (μs) | τav.Int (μs) |
---|---|---|---|---|---|
8 aa | 188 | 37 | 14 | 512 | 681 |
548 | 39 | 42 | |||
958 | 24 | 44 | |||
8 ba | 188 | 6 | 2 | 681 | 759 |
548 | 57 | 46 | |||
958 | 38 | 53 | |||
8 cb | 114 | 37 | 12 | 341 | 494 |
383 | 52 | 58 | |||
866 | 12 | 30 | |||
8 db | 114 | 20 | 5 | 440 | 587 |
383 | 57 | 50 | |||
866 | 23 | 45 |
Compound | τ (μs) | Arel (%) | Irel (%) | τav.Amp (μs) | τav.Int (μs) |
---|---|---|---|---|---|
8 a + NH3 a | 179 | 25 | 12 | 388 | 405 |
450 | 74 | 85 | |||
1015 | 1 | 3 | |||
8 b + NH3 a | 179 | 30 | 13 | 413 | 327 |
450 | 62 | 68 | |||
1015 | 8 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.E.; Kononevich, Y.N.; Dyuzhikova, Y.S.; Ionov, D.S.; Khanin, D.A.; Nikiforova, G.G.; Shchegolikhina, O.I.; Vasil’ev, V.G.; Muzafarov, A.M. Cross-Linked Luminescent Polymers Based on β-Diketone-Modified Polysiloxanes and Organoeuropiumsiloxanes. Polymers 2022, 14, 2554. https://doi.org/10.3390/polym14132554
Kim EE, Kononevich YN, Dyuzhikova YS, Ionov DS, Khanin DA, Nikiforova GG, Shchegolikhina OI, Vasil’ev VG, Muzafarov AM. Cross-Linked Luminescent Polymers Based on β-Diketone-Modified Polysiloxanes and Organoeuropiumsiloxanes. Polymers. 2022; 14(13):2554. https://doi.org/10.3390/polym14132554
Chicago/Turabian StyleKim, Eleonora E., Yuriy N. Kononevich, Yulia S. Dyuzhikova, Dmitry S. Ionov, Dmitry A. Khanin, Galina G. Nikiforova, Olga I. Shchegolikhina, Viktor G. Vasil’ev, and Aziz M. Muzafarov. 2022. "Cross-Linked Luminescent Polymers Based on β-Diketone-Modified Polysiloxanes and Organoeuropiumsiloxanes" Polymers 14, no. 13: 2554. https://doi.org/10.3390/polym14132554
APA StyleKim, E. E., Kononevich, Y. N., Dyuzhikova, Y. S., Ionov, D. S., Khanin, D. A., Nikiforova, G. G., Shchegolikhina, O. I., Vasil’ev, V. G., & Muzafarov, A. M. (2022). Cross-Linked Luminescent Polymers Based on β-Diketone-Modified Polysiloxanes and Organoeuropiumsiloxanes. Polymers, 14(13), 2554. https://doi.org/10.3390/polym14132554