Effect of Polymers on Behavior of Ultra-High-Strength Concrete
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Mixing and Curing Conditions
2.3. Mix Design Proportions
2.4. Test Procedure
2.4.1. Mechanical Strength
2.4.2. Sorptivity Test
2.4.3. Scanning Electron Microscopy (SEM) Analysis
2.4.4. Sulfate Resistance
3. Results and Discussion
3.1. Mechanical Strength
3.2. SEM Analysis
3.3. Capillary Water Absorption
3.4. Sulfate Resistance
4. Conclusions
- The microstructure of the UHPC incorporating high polymer content was dense and high compressive strength at later ages was achieved. This is attributed to the polymer matrix that enclosed cement particles and in turn prevented cement particles’ contact with water, resulting in a delay in the hydration of anhydrate cement particles and microstructural development.
- The inclusion of polymers can substantially enhance the tensile strength of UHPC. The tensile strength of polymeric UHPC without steel fibers and with 20 wt.% polymer was enhanced by 50%. This demonstrates the possibility of replacing steel fibers with polymers to enhance tensile strength.
- Steam curing was the most appropriate curing condition for polymeric UHPC.
- The effectiveness of polymers varied widely depending on the percentage of polymers and the curing techniques.
- It was concluded that using polymer may increase the water absorption in concrete. This may be related to the importance of replacing the water content in the mix design with added polymers due to the increase of the water content in the polymer ingredients.
- An enhancement was observed in the sulfate resistance of UHPC after the addition of both polymers and steel fibers.
- Further studies are needed to investigate the effect of other curing techniques along with the optimum polymer content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lam, L.; Huang, L.; Xie, J.H.; Chen, J.F. Compressive behavior of ultra-high performance concrete confined with FRP. Compos. Struct. 2021, 274, 114321. [Google Scholar] [CrossRef]
- Abdulkareem, O.M.; Fraj, A.B.; Bouasker, M.; Khelidj, A. Mixture design and early age investigations of more sustainable UHPC. Constr. Build. Mater. 2018, 163, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Smarzewski, P.; Barnat-Hunek, D. Property assessment of hybrid fiber-reinforced ultra-high-performance concrete. Int. J. Civ. Eng. 2018, 16, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Abadel, A.; Abbas, H.; Almusallam, T.; Alshaikh, I.M.H.; Khawaji, M.; Alghamdi, H.; Salah, A.A. Experimental study of shear behavior of CFRP strengthened ultra-high-performance fiber-reinforced concrete deep beams. Case Stud. Constr. Mater. 2022, 16, e01103. [Google Scholar] [CrossRef]
- Mayhoub, O.A.; Nasr, E.S.A.R.; Ali, Y.A.; Kohail, M. The influence of ingredients on the properties of reactive powder concrete: A review. Ain Shams Eng. J. 2021, 12, 145–158. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Nascimento, M.; Carmo, D.D.; Marvila, M.T.; Xavier, G.D.C.; Monteiro, S.N. Environmental and Durability Perspective of the Use of Curaua Fiber Treated in Mortars. J. Renew. Mater. 2022, 10, 2409–2429. [Google Scholar] [CrossRef]
- Marvila, M.; de Azevedo, A.; de Matos, P.; Monteiro, S.; Vieira, C. Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials 2021, 14, 4304. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Syamsir, A.; Nurazzi, N.M.; Sabaruddin, F.A.; Shazleen, S.S.; Norrrahim, M.N.F.; Rafidah, M.; Ilyas, R.A.; Rashid, M.Z.A.; et al. Mechanical properties of oil palm fibre-reinforced polymer composites: A review. J. Mater. Res. Technol. 2022, 17, 33–65. [Google Scholar] [CrossRef]
- Faried, A.S.; Mostafa, S.A.; Tayeh, B.A.; Tawfik, T.A. Mechanical and durability properties of ultra-high performance concrete incorporated with various nano waste materials under different curing conditions. J. Build. Eng. 2021, 43, 102569. [Google Scholar] [CrossRef]
- Du, J.; Meng, W.; Khayat, K.H.; Bao, Y.; Guo, P.; Lyu, Z.; Abu-obeidah, A.; Nassif, H.; Wang, H. New development of ultra-high-performance concrete (UHPC). Compos. Part B Eng. 2021, 224, 109220. [Google Scholar] [CrossRef]
- Abadel, A.; Abbas, H.; Almusallam, T.; Al-Salloum, Y.; Siddiqui, N. Mechanical properties of hybrid fibre-reinforced concrete—Analytical modelling and experimental behaviour. Mag. Concr. Res. 2016, 68, 823–843. [Google Scholar] [CrossRef]
- Jayakumar, G.; Mathews, M.E.; Kiran, T.; Yadav, B.S.K.; Kanagaraj, B.; Anand, N. Development and strength assessment of sustainable high strength fiber reinforced concrete. Mater. Today Proc. 2022, 49, 1148–1153. [Google Scholar] [CrossRef]
- Öksüzer, N.; Anil, Ö.; Aldemir, A.; Şahmaran, M. Investigation of mechanical properties of high-performance hybrid fiber concretes adding nanomaterials using with coarse aggregate. Structures 2021, 33, 2893–2902. [Google Scholar] [CrossRef]
- Abadel, A.A.; Alharbi, Y.R. Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures. Mater. Sci. 2021, 39, 478–490. [Google Scholar] [CrossRef]
- Almusallam, T.; Ibrahim, S.M.; Al-Salloum, Y.; Abadel, A.; Abbas, H. Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cem. Concr. Compos. 2016, 74, 201–217. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Marvila, M.T.; Antunes, M.L.P.; Rangel, E.C.; Fediuk, R. Technological Perspective for Use the Natural Pineapple Fiber in Mortar to Repair Structures. Waste Biomass Valorization 2021, 12, 5131–5145. [Google Scholar] [CrossRef]
- Farooq, M.; Banthia, N. Strain-hardening fiber reinforced polymer concrete with a low carbon footprint. Constr. Build. Mater. 2022, 314, 125705. [Google Scholar] [CrossRef]
- Silvestro, L.; Ruviaro, A.; Lima, G.; de Matos, P.; de Azevedo, A.R.G.; Monteiro, S.N.; Gleize, P. Influence of Ultrasonication of Functionalized Carbon Nanotubes on the Rheology, Hydration, and Compressive Strength of Portland Cement Pastes. Materials 2021, 14, 5248. [Google Scholar] [CrossRef]
- de Lima, T.E.S.; de Azevedo, A.R.G.; Marvila, M.T.; Candido, V.S.; Fediuk, R.; Monteiro, S.N. Potential of Using Amazon Natural Fibers to Reinforce Cementitious Composites: A Review. Polymers 2022, 14, 647. [Google Scholar] [CrossRef]
- Zhang, X.; Du, M.; Fang, H.; Shi, M.; Zhang, C.; Wang, F. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges. Constr. Build. Mater. 2021, 299, 124290. [Google Scholar] [CrossRef]
- Liang, R.; Liu, Q.; Hou, D.; Li, Z.; Sun, G. Flexural strength enhancement of cement paste through monomer incorporation and in situ bond formation. Cem. Concr. Res. 2022, 152, 106675. [Google Scholar] [CrossRef]
- Kong, X.; Pakusch, J.; Jansen, D.; Emmerling, S.; Neubauer, J.; Goetz-Neuhoeffer, F. Effect of polymer latexes with cleaned serum on the phase development of hydrating cement pastes. Cem. Concr. Res. 2016, 84, 30–40. [Google Scholar] [CrossRef]
- Han, D.; Chen, W.; Zhong, S. Physical retardation mechanism of latex polymer on the early hydration of cement. Adv. Cem. Res. 2018, 30, 113–122. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, W.J. Combustion and Mechanical Properties of Polymer-Modified Cement Mortar at High Temperature. Adv. Mater. Sci. Eng. 2017, 2017, 5853687. [Google Scholar] [CrossRef] [Green Version]
- Farooq, S.; Nie, J.; Cheng, Y.; Yan, Z.; Li, J.; Bacha, S.A.S.; Mushtaq, A.; Zhang, H. Molecularly imprinted polymers’ application in pesticide residue detection. Analyst 2018, 143, 3971–3989. [Google Scholar] [CrossRef]
- Farooq, S.; Wu, H.; Nie, J.; Ahmad, S.; Muhammad, I.; Zeeshan, M.; Khan, R.; Asim, M. Application, advancement and green aspects of magnetic molecularly imprinted polymers in pesticide residue detection. Sci. Total Environ. 2022, 804, 150293. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, R.; Lu, Q. Influence of polymer latex on the setting time, mechanical properties and durability of calcium sulfoaluminate cement mortar. Constr. Build. Mater. 2018, 169, 911–922. [Google Scholar] [CrossRef]
- Mirza, J.; Mirza, M.S.; Lapointe, R. Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Constr. Build. Mater. 2002, 16, 365–374. [Google Scholar] [CrossRef]
- Won, J.P.; Kang, H.B.; Lee, S.J.; Kang, J.W. Eco-friendly fireproof high-strength polymer cementitious composites. Constr. Build. Mater. 2012, 30, 406–412. [Google Scholar] [CrossRef]
- Wang, R.; Wang, P.M.; Li, X.G. Physical and mechanical properties of styrene–butadiene rubber emulsion modified cement mortars. Cem. Concr. Res. 2005, 35, 900–906. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Zheng, S.; Farhan, S.; Yao, H.; Jiang, H. Research on the chemical mechanism in the polyacrylate latex modified cement system. Cem. Concr. Res. 2015, 76, 62–69. [Google Scholar] [CrossRef]
- Cho, H.Y.; Suh, J.M. Effects of the synthetic conditions of poly{carboxylate-g-(ethylene glycol) methyl ether} on the dispersibility in cement paste. Cem. Concr. Res. 2005, 35, 891–899. [Google Scholar] [CrossRef]
- Schröfl, C.; Gruber, M.; Plank, J. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC). Cem. Concr. Res. 2012, 42, 1401–1408. [Google Scholar] [CrossRef]
- Qin, L.; Guo, C.; Sun, W.; Guan, H.; Yan, W.; Wang, F. Experimental investigation on the interfacial shear bond performance of non-water reacting polymer and concrete. Constr. Build. Mater. 2022, 331, 127351. [Google Scholar] [CrossRef]
- Mohammed, H.; Giuntini, F.; Sadique, M.; Shaw, A.; Bras, A. Polymer modified concrete impact on the durability of infrastructure exposed to chloride environments. Constr. Build. Mater. 2022, 317, 125771. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.G.; Wang, P.M. Influence of polymer on cement hydration in SBR-modified cement pastes. Cem. Concr. Res. 2006, 36, 1744–1751. [Google Scholar] [CrossRef]
- Bi, L.; Long, G.; Tang, Z.; Guo, M.; Zeng, X.; Xie, Y. The effect of phase change materials on cement hydrate in steam-cured cement-based materials. Constr. Build. Mater. 2021, 310, 125268. [Google Scholar] [CrossRef]
- Gagandeep, Experimental study on strength characteristics of polymer concrete with epoxy resin. Mater. Today Proc. 2020, 37, 2886–2889. [CrossRef]
- Varun, B.K.; Kumar, C.A. Strength characteristics of polymer modified high volume fly ash concrete. Mater. Today Proc. 2021, 46, 285–288. [Google Scholar] [CrossRef]
- Chen, D.; Liu, F.; Yang, F.; Jing, L.; Feng, W.; Lv, J.; Luo, Q. Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages. Constr. Build. Mater. 2018, 177, 477–498. [Google Scholar] [CrossRef]
- Haddad, H.; Al Kobaisi, M. Influence of moisture content on the thermal and mechanical properties and curing behavior of polymeric matrix and polymer concrete composite. Mater. Des. 2013, 49, 850–856. [Google Scholar] [CrossRef]
- ASTM C150, ASTM-C150; Standard Specification for Portland Cement, Annu. B. ASTM Stand; ASTM International: West Conshohocken, PA, USA, 2011. [CrossRef]
- ASTM. Standard Specification for Silica Fume Used in Cementitious Mixtures; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar] [CrossRef]
- ASTM C496/C496M−17; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens ASTM C-496; ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM C1585-13; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes; ASTM International: West Conshohocken, PA, USA, 2013; Volume 41, pp. 1–6. [CrossRef]
- Jang, Y.S.; Yoo, D.-Y. Combined chelating and corrosion effects of steel fiber on the interfacial bond and tensile behaviors of ultra-high-performance concrete. Cem. Concr. Compos. 2022, 129, 104505. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Shin, W.; Banthia, N. Corrosion of partially and fully debonded steel fibers from ultra-high-performance concrete and its influence on pullout resistance. Cem. Concr. Compos. 2021, 124, 104269. [Google Scholar] [CrossRef]
- Rossignolo, J.A. Interfacial interactions in concretes with silica fume and SBR latex. Constr. Build. Mater. 2009, 23, 817–821. [Google Scholar] [CrossRef]
Component/Property | OPC | SF | GGBFS |
---|---|---|---|
SiO2 | 20.8 | 91.5 | 39.8 |
Al2O3 | 4.82 | 0.47 | 11.2 |
Fe2O3 | 4 | 1.53 | 1.2 |
MgO | 1.4 | 1.6 | 7.6 |
CaO | 62.6 | 0.89 | 34.4 |
Na2O | 0.4 | 0.22 | 0.2 |
SO3 | 2.54 | 0.43 | 0.46 |
K2O | 0.24 | 1.11 | - |
TiO2 | - | - | - |
Loss on ignition | 1.9 | 2.3 | 1.2 |
Specific Gravity | 3.17 | 2.20 | 2.85 |
Specific Surface area (m2/g) | 0.350 | 20 | 15 |
Component (kg/m3) | CEM 1 | Silica Fume | Slag | Silica Sand | Quartz Powder | Steel Fiber | Polymer | HRWR * | Water | Curing Regime |
---|---|---|---|---|---|---|---|---|---|---|
Ctrl-S | 1126 | 282 | 141 | 422 | 141 | - | - | 23 | 245 | Steam |
F-S | 1126 | 282 | 141 | 422 | 141 | 156 | - | 23 | 245 | Steam |
P5%-S | 1070 | 282 | 141 | 422 | 141 | - | 56.3 | 23 | 245 | Steam |
P20%-S | 901 | 282 | 141 | 422 | 141 | - | 225 | 23 | 245 | Steam |
F-P20%-S | 901 | 282 | 141 | 422 | 141 | 156 | 225 | 23 | 245 | Steam |
P5%-A | 1070 | 282 | 141 | 422 | 141 | - | 56.3 | 23 | 245 | Air |
P20%-A | 901 | 282 | 141 | 422 | 141 | - | 225 | 23 | 245 | Air |
F-P20%-A | 901 | 282 | 141 | 422 | 141 | 156 | 225 | 23 | 245 | Air |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayhoub, O.A.; Abadel, A.A.; Alharbi, Y.R.; Nehdi, M.L.; de Azevedo, A.R.G.; Kohail, M. Effect of Polymers on Behavior of Ultra-High-Strength Concrete. Polymers 2022, 14, 2585. https://doi.org/10.3390/polym14132585
Mayhoub OA, Abadel AA, Alharbi YR, Nehdi ML, de Azevedo ARG, Kohail M. Effect of Polymers on Behavior of Ultra-High-Strength Concrete. Polymers. 2022; 14(13):2585. https://doi.org/10.3390/polym14132585
Chicago/Turabian StyleMayhoub, Ola A., Aref A. Abadel, Yousef R. Alharbi, Moncef L. Nehdi, Afonso R. G. de Azevedo, and Mohamed Kohail. 2022. "Effect of Polymers on Behavior of Ultra-High-Strength Concrete" Polymers 14, no. 13: 2585. https://doi.org/10.3390/polym14132585
APA StyleMayhoub, O. A., Abadel, A. A., Alharbi, Y. R., Nehdi, M. L., de Azevedo, A. R. G., & Kohail, M. (2022). Effect of Polymers on Behavior of Ultra-High-Strength Concrete. Polymers, 14(13), 2585. https://doi.org/10.3390/polym14132585