A Structural Design Method of 3D Electromagnetic Wave-Absorbing Woven Fabrics
Abstract
:1. Introduction
2. The Structural Design Method
2.1. The Equivalent EM Parameter Model of 3D Woven Fabrics
2.2. The Equations Satisfying the Condition of Zero Reflection
2.3. Calculation of the Equivalent EM Parameters of a Single Layer under Initial Conditions
2.4. A Structural Design for Multilayer Absorbing Fabrics
3. The Simulation
4. The Experiment
4.1. Preparation of the Samples
4.2. Experimental Methods
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acharya, S.; Datar, S. Wideband (8–18 GHz) Microwave Absorption Dominated Electromagnetic Interference (EMI) Shielding Composite Using Copper Aluminum Ferrite and Reduced Graphene Oxide in Polymer Matrix. J. Appl. Phys. 2020, 128, 104902. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.K.; Kim, H.G.; Kim, K.B.; Kim, H.R. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol. Ther. 2019, 27, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.N.; Wang, Y.; Yue, T.N.; Weng, Y.X.; Wang, M. Multifunctional Cotton Non-Woven Fabrics Coated with Silver Nanoparticles and Polymers for Antibacterial, Superhydrophobic and High Performance Microwave Shielding. J. Colloid Interface Sci. 2021, 582, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Luo, J.; Wang, L.; Huang, X.; Wang, H.; Song, X.; Hu, M.; Tang, L.C.; Xue, H. Flexible, Superhydrophobic and Highly Conductive Composite Based on Non-Woven Polypropylene Fabric for Electromagnetic Interference Shielding. Chem. Eng. J. 2019, 364, 493–502. [Google Scholar] [CrossRef]
- Ghosh, S.; Remanan, S.; Mondal, S.; Ganguly, S.; Das, P.; Singha, N.; Das, N.C. An Approach to Prepare Mechanically Robust Full IPN Strengthened Conductive Cotton Fabric for High Strain Tolerant Electromagnetic Interference Shielding. Chem. Eng. J. 2018, 344, 138–154. [Google Scholar] [CrossRef]
- Ma, W.; Liu, K.; Fan, W.; Huang, Z.; Yin, J.J. 3D Angle-Interlock Woven Fabric Based on Plain Group P4mm Symmetry. Compos. Struct. 2020, 231, 111539. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Yin, J.J.; Ma, W.; Gao, Z.; Lei, X.; Jia, C. A Review of Electromagnetic Shielding Fabric, Wave-Absorbing Fabric and Wave-Transparent Fabric. Polymers 2022, 14, 377. [Google Scholar] [CrossRef]
- Wang, H.; Long, J.; Wang, Y.; Liang, Y.; Hu, J.; Jiang, H. The Influence of Carbon Fiber Diameter and Content on the Dielectric Properties of Wet-Laid Nonwoven Fabric. Text. Res. J. 2018, 89, 2542–2552. [Google Scholar] [CrossRef]
- Zou, L.; Shen, J.; Xu, Z.; Ruan, F.; Qiu, Y.; Liu, Z. Electromagnetic Wave Absorbing Properties of Cotton Fabric with Carbon Nanotubes Coating. Fibres Text. East. Eur. 2020, 28, 82–90. [Google Scholar]
- Xie, S.; Ji, Z.; Shui, Z.; Li, B.; Hou, G.; Wang, J. Effect of 3D Woven Fabrics on the Microwave Absorbing and Mechanical Properties of Gypsum Composites Using Carbon Black as an Absorbent. Mater. Res. Express 2017, 4, 085606. [Google Scholar] [CrossRef]
- Simayee, M.; Montazer, M. A Protective Polyester Fabric with Magnetic Properties Using Mixture of Carbonyl Iron and Nano Carbon Black along with Aluminium Sputtering. J. Ind. Text. 2016, 47, 674–685. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Zhao, X. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide Double Coated Polyester Woven Fabric. J. Text. Inst. 2018, 109, 106–112. [Google Scholar] [CrossRef]
- Xue, L.; Fan, W.; Wu, F.; Zhang, Y.; Guo, K.; Li, J.; Yuan, L.; Dang, W.; Sun, R. The Influence of Thermo-Oxidative Aging on the Electromagnetic Absorbing Properties of 3D Quasi-Isotropic Braided Carbon/Glass Bismaleimide Composite. Polym. Degrad. Stab. 2019, 168, 168. [Google Scholar] [CrossRef]
- Alonso-Gonzalez, L.; Ver-Hoeye, S.; Fernandez-Garcia, M.; Andres, F.L. Layer-to-Layer Angle Interlock 3D Woven Bandstop Frequency Selective Surface. Prog. Electromagn. Res. Pier 2018, 162, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Li, D.D.; Li, J.L.; Li, J.Z.; Yuan, L.J.; Xue, L.L.; Sun, R.J.; Meng, J.G. Electromagnetic Properties of Three-Dimensional Woven Carbon Fiber Fabric/Epoxy Composite. Text. Res. J. 2018, 88, 2353–2361. [Google Scholar] [CrossRef]
- Fan, W.; Yuan, L.; D’Souza, N.; Xu, B.; Dang, W.; Xue, L.; Li, J.; Tonoy, C.; Sun, R. Enhanced Mechanical and Radar Absorbing Properties of Carbon/Glass Fiber Hybrid Composites with Unique 3D Orthogonal Structure. Polym. Test. 2018, 69, 71–79. [Google Scholar] [CrossRef]
- Ayan, M.Ç.; Kiriş, S.; Yapici, A.; Karaaslan, M.; Akgöl, O.; Altıntaş, O.; Ünal, E. Investigation of Cotton Fabric Composites as a Natural Radar-Absorbing Material. Aircr. Eng. Aerosp. Technol. 2020, 92, 1275–1280. [Google Scholar] [CrossRef]
- Jianjun, Y.; Wensuo, M.; Zuobin, G.; Chenhui, J.; Xianqing, L. A model for predicting electromagnetic wave absorption of 3D bidirectional angle-interlock woven fabric. Polym. Test. 2021, 100, 107272. [Google Scholar] [CrossRef]
- Xue, W.; Cheng, L.; Li, A.; Jiao, N.N.; Chen, B.W.; Zhang, T.H. Research on Electromagnetic Shielding Effectiveness of Composite Fabrics Made by Stainless Steel Fiber. Adv. Mater. Res. 2013, 821–822, 888–893. [Google Scholar] [CrossRef]
- Schulz, R.B.; Plantz, V.C.; Brush, D.R. Shielding Theory and Practice. IEEE Trans. Electromagn. Compat. 1988, 30, 187–201. [Google Scholar] [CrossRef]
- Eddib, A.A.; Chung, D.D.L. Electric permittivity of carbon fiber. Carbon 2019, 143, 475–480. [Google Scholar] [CrossRef]
- Brekhovskikh, L. Waves in Layered Media. SIAM Rev. 1982, 24, 239–241. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.A. Scattering of electromagnetic waves from random media with strong permittivity fluctuations. Radio Sci. 1981, 16, 303–320. [Google Scholar] [CrossRef]
- Liu, L.; He, P.; Zhou, K.; Chen, T.F. Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. J. Mater. Sci. 2014, 49, 4379–4386. [Google Scholar] [CrossRef]
- Lv, H.; Liang, X.; Ji, G.; Zhang, H.Q.; Du, Y.W. Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783. [Google Scholar] [CrossRef]
- Li, Z.; Haigh, A.; Soutis, C. Dielectric constant of a three-dimensional woven glass fibre composite: Analysis and measurement. Compos. Struct. 2017, 180, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Cullen, A.L.; Yu, P.K. The Accurate Measurement of Permittivity by Means of an Open Resonator. Proc. R. Soc. A Math. Phys. Eng. Sci. 1971, 325, 493–509. [Google Scholar]
Samples | (GHz) | |||
---|---|---|---|---|
S1 | 5 | 20.2859 | 220.51 | 0.4777 |
S2 | 8 | 18.0316 | 196.00 | 0.4689 |
S3 | 12 | 16.2868 | 177.04 | 0.4605 |
Producer | Form | Tex | Density | Thickness |
---|---|---|---|---|
AGY company | Yarn | 66 | 2.49 g/cm3 | 1 mm |
Sample | d1 (mm) | d2 (mm) | |||
---|---|---|---|---|---|
P1 | 10 | 3 | 20.2859–220.51j | 5.2 | 0.4777 |
P2 | 10 | 3 | 18.0316–196.00j | 5.2 | 0.4689 |
P3 | 10 | 3 | 16.2868–177.04j | 5.2 | 0.4605 |
Producer | Tensile Strength | Tensile Modulus | Density | Form |
---|---|---|---|---|
Toray T800 | 5880 MPa | 294 GPa | 1.80 g/cm3 | No twist |
Number of Samples | Types of Fibers | Size (mm × mm × mm) | Parameters of Structure (mm) | Fiber Volume Fraction |
---|---|---|---|---|
P1 | T800-16K | 150 × 50 × 10 | a = 3, b = 1.2, l = 6 | 0.4777 |
P2 | T800-16K | 150 × 50 × 10 | a = 3, b = 1.3, l = 6.2 | 0.4689 |
P3 | T800-16K | 150 × 50 × 10 | a = 3, b = 1.4, l = 6.4 | 0.4605 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Ma, W.; Gao, Z.; Lei, X.; Jia, C. A Structural Design Method of 3D Electromagnetic Wave-Absorbing Woven Fabrics. Polymers 2022, 14, 2635. https://doi.org/10.3390/polym14132635
Yin J, Ma W, Gao Z, Lei X, Jia C. A Structural Design Method of 3D Electromagnetic Wave-Absorbing Woven Fabrics. Polymers. 2022; 14(13):2635. https://doi.org/10.3390/polym14132635
Chicago/Turabian StyleYin, Jianjun, Wensuo Ma, Zuobin Gao, Xianqing Lei, and Chenhui Jia. 2022. "A Structural Design Method of 3D Electromagnetic Wave-Absorbing Woven Fabrics" Polymers 14, no. 13: 2635. https://doi.org/10.3390/polym14132635
APA StyleYin, J., Ma, W., Gao, Z., Lei, X., & Jia, C. (2022). A Structural Design Method of 3D Electromagnetic Wave-Absorbing Woven Fabrics. Polymers, 14(13), 2635. https://doi.org/10.3390/polym14132635