Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy
Abstract
:1. Introduction
2. Natural Biopolymers
2.1. Chitin and Chitosan
2.2. Hyaluronic Acid
2.3. Agarose
2.4. Collagen
2.5. Sodium Alginate
Biopolymer | Polymer Type | In vitro Tests | In vivo Test | Disease/ Disorder | Reference |
---|---|---|---|---|---|
Chitosan | Porcine collagen-chitosan | HUVECs cell survival and proliferation increases. | Improved angiogenesis and proliferation. Higher cell infiltration near the endothelial implant. | Subcutaneal implantation in CD1 mice. | [43] |
Chitosan/β-GP gel with DFO | hMSCs proliferation and survival induction; successful DFO release in HUVECs co-culture, increasing VEGF. | Not applicable. | Methodology protocol for CLI. | [44] | |
Acidic chitosan | Induction rMSCs and hMSCs survival and proliferation. HUVEC cell growth by co-culture of encapsulated MSC. | Encapsulated Celastrol-treated cells induced increased vessel density, although the microcapsule induced an inflammatory response surrounding the implant with polynuclear cells and lymphocytes, as well as granulation tissue. Sprague Dawley rats. | Methodology protocol for CVD. | [46] | |
CS-IGF1C | Increased ADSC proliferation and survival; hydrogel cell cryo-protection. | Engraftment enhancement and angiogenic induction. | Acute kidney injury in FVB mice. | [45] | |
HBC-RGD hydrogel | Suitable BSA adsorption; BMSC viability and proliferation improvements. | Decreased keloid fibroblasts in ex vivo biopsies. | Keloid biopsy. | [48] | |
CS—90% deacetylation | BMSC cell proliferation and survival; HUVEC pyroptosis suppression. | Improved engraftment in MI; decreased inflammatory response by cytokines (e.g., IL-6, TNF-α, IL-18) and caspases-11 and -1. | Acute myocardial infarction in FVB-Fluc/GFP mice. | [47] | |
Chitin | CMCH | Proliferation induction (HeLa and COS-7 cells). Unwanted precipitation of COS-7 cells. | Subcutaneal injection in C57BL/6J. No inflammation or cell death, suggesting a suitable milieu for cell viability. | Not applicable. | [49] |
Alginate | Sodium alginate | Survival and differentiation induction of hMSCs into IPC cells with insulin production. | Greater insulin levels in male Swiss mice induced by a 50 mg/kg streptozotocin injection and glucose blood normalization. | Methodology protocol for diabetes. | [109] |
Alginate-GC | Increased survival and time-dependent insulin release in pancreatic islets from piglets, decreasing on the 32nd day. | Peritoneal injection in CD1 mice with HMW/LMW-GC-Alginate pancreatic islet encapsulation. Fibrotic response induction related to acrylate groups in the microbeads. | Methodology protocol addressed to diabetes. | [110] | |
Collagen-Dextran sulfate-agarose | Encapsulated BMSCs or fibroblasts increased VEGF production and mixture-dependent cell differentiation and viability. Col-Fb-DxS100 exhibited better results. | Environment healing around the microcapsules with the presence of macrophages M1 (biomaterial phagocytosis) and M2 (anti-inflammatory milieu). Np fibrotic response induction. | Wistar rats—Myocardial ischemia model. | [136] | |
Alginate core-shell microcapsule | rMSCs survival and differentiation induction. | Improvement in cardiac function and MSC migration into cardiac ischemic tissue. Sprague Dawley rats presenting induced MI. | Methodology protocol addressed to MI. | [119] | |
Ultrapure alginate, low viscosity and high guloronic | Safety and metabolic function improvements in human hepatocyte allotransplantation. | Improvement of the liver and in metabolic function and no inflammatory response, although granulomatose inflammation was observed in the patients with fully recovered liver function. | Children with acute liver failure. | [115] | |
APA microcapsule | Survival maintenance of intracardially cardiosphere-derived injected cells. | No difference was observed between the control and experimental groups, although an immune response was observed around the capsule. | Pigs with induced MI. | [120] | |
Collagen | Collagen-HA | Survival and metabolic function increases following hASC encapsulated administration. | Increased cell migration to a porcine cornea culture from encapsulated hASCs. | Not applicable. | [90] |
Collagen-alginate | Encapsulated IPC cells significantly induced insulin levels. | Encapsulated IPC cells were transplanted intra-dermally, and glucose blood levels returned to normal after 4 weeks. | BALB/C-Diabetes mice model. | [91] | |
Hyaluronic acid | Dexa-CB-1[6]/RA-DAH-HA | eMSC cell survival and function. | Survival after 60 days and IL-12M production, inducing tumor growth decreases. SKH1-E hairless mice and C57BL/6J tumor induced by the subcutaneous injection of B16F10 melanoma cells. | Tumor growth. | [67] |
MAP-HA coacervate | Maintenance of encapsulated rASCs survival and proliferation. | Favorable stem cell niche replacement from rASCs encapsulated by employing coacervate methods. In addition, increased VEGF and FGF2 production and platelet adhesion were noted following subcutaneal rat injections. | Methodology protocol for vessel impairment. | [68] | |
Polyethylene glycol diacrylate-the ME-HA hydrogel microsphere | Maintenance of canine islet cell viability. | The microsphere attached the peritoneal wall; however, the xenotransplantation induces glucose blood normalization in NOD/SCID mice. | Methodology protocol for diabetes disorders. | [69] |
3. Cell Encapsulation Methods for Cell Therapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mucha, K.; Foroncewicz, B.; Orłowski, T.; Religioni, J.; Bobek-Billewicz, B.; Jarząb, B.; Raczyńska, J.; Krawczyk, M.; Pączek, L. Atypical Presentation of Invasive Pulmonary Aspergillosis in a Liver Transplant Recipient. Ann. Transpl. 2013, 18, 238–242. [Google Scholar] [CrossRef]
- Zivković, S.A.; Abdel-Hamid, H. Neurologic Manifestations of Transplant Complications. Neurol. Clin. 2010, 28, 235–251. [Google Scholar] [CrossRef]
- Zivković, S.A.; Jumaa, M.; Barisić, N.; McCurry, K. Neurologic Complications Following Lung Transplantation. J. Neurol. Sci. 2009, 280, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, C.D.; Angele, M.K.; Schwarz, B.; Pratschke, S.; Rentsch, M.; Khandoga, A.; Guba, M.; Jauch, K.-W.; Bruns, C.; Graeb, C. Impact of Cyclosporine versus Tacrolimus on the Incidence of de Novo Malignancy Following Liver Transplantation: A Single Center Experience with 609 Patients. Transpl. Int. 2013, 26, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Teperman, L.; Moonka, D.; Sebastian, A.; Sher, L.; Marotta, P.; Marsh, C.; Koneru, B.; Goss, J.; Preston, D.; Roberts, J.P.; et al. Calcineurin Inhibitor-Free Mycophenolate Mofetil/Sirolimus Maintenance in Liver Transplantation: The Randomized Spare-the-Nephron Trial. Liver. Transpl. 2013, 19, 675–689. [Google Scholar] [CrossRef]
- Tasdogan, B.E.; Ma, M.; Simsek, C.; Saberi, B.; Gurakar, A. Update on Immunosuppression in Liver Transplantation. Euroasian J. Hepatogastroenterol. 2019, 9, 96–101. [Google Scholar] [CrossRef]
- Tönshoff, B.; Höcker, B. Treatment Strategies in Pediatric Solid Organ Transplant Recipients with Calcineurin Inhibitor-Induced Nephrotoxicity. Pediatr. Transpl. 2006, 10, 721–729. [Google Scholar] [CrossRef]
- De Simone, P.; Carrai, P.; Coletti, L.; Ghinolfi, D.; Petruccelli, S.; Filipponi, F. Modification of Immunosuppressive Therapy as Risk Factor for Complications after Liver Transplantation. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 199–209. [Google Scholar] [CrossRef]
- Karpe, K.M.; Talaulikar, G.S.; Walters, G.D. Calcineurin Inhibitor Withdrawal or Tapering for Kidney Transplant Recipients. Cochrane Database Syst. Rev. 2017, 7, CD006750. [Google Scholar] [CrossRef]
- Nedredal, G.I.; Picon, R.V.; Chedid, M.F.; Foss, A. Immunosuppression in Liver Transplantation: State of the Art and Future Perspectives. Curr. Pharm. Des. 2020, 26, 3389–3401. [Google Scholar] [CrossRef]
- Mawad, D.; Boughton, E.A.; Boughton, P.; Lauto, A. Advances in Hydrogels Applied to Degenerative Diseases. Curr. Pharm. Des. 2012, 18, 2558–2575. [Google Scholar] [CrossRef] [PubMed]
- Bisceglie, V. Ueber Die Antineoplastische Immunitat; Ueber Die Wachstumsfaehigkeit Der Heterologen Geschwuelste in Erwachsenen Tieren Nach Einpflanzung in Kollodiumsaeckchen. Ztschr Krebsforsch 1933, 40, 141. [Google Scholar] [CrossRef]
- Chang, T.M. Semipermeable microcapsules. Science 1964, 146, 524–525. [Google Scholar] [CrossRef]
- Gasperini, L.; Mano, J.F.; Reis, R.L. Natural Polymers for the Microencapsulation of Cells. J. R. Soc. Interface 2014, 11, 20140817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murua, A.; Orive, G.; Hernández, R.M.; Pedraz, J.L. Xenogeneic Transplantation of Erythropoietin-Secreting Cells Immobilized in Microcapsules Using Transient Immunosuppression. J. Control. Release 2009, 137, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Uludag, H.; De Vos, P.; Tresco, P.A. Technology of Mammalian Cell Encapsulation. Adv. Drug Deliv. Rev. 2000, 42, 29–64. [Google Scholar] [CrossRef]
- Montanucci, P.; Pennoni, I.; Pescara, T.; Basta, G.; Calafiore, R. Treatment of Diabetes Mellitus with Microencapsulated Fetal Human Liver (FH-B-TPN) Engineered Cells. Biomaterials 2013, 34, 4002–4012. [Google Scholar] [CrossRef]
- Montanucci, P.; Pescara, T.; Greco, A.; Leonardi, G.; Marini, L.; Basta, G.; Calafiore, R. Co-Microencapsulation of Human Umbilical Cord-Derived Mesenchymal Stem and Pancreatic Islet-Derived Insulin Producing Cells in Experimental Type 1 Diabetes. Diabetes Metab. Res. Rev. 2021, 37, e3372. [Google Scholar] [CrossRef]
- Leong, W.Y.; Soon, C.F.; Wong, S.C.; Tee, K.S.; Cheong, S.C.; Gan, S.H.; Youseffi, M. In Vitro Growth of Human Keratinocytes and Oral Cancer Cells into Microtissues: An Aerosol-Based Microencapsulation Technique. Bioengineering 2017, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Konagaya, S.; Iwata, H. Microencapsulation of Dopamine Neurons Derived from Human Induced Pluripotent Stem Cells. Biochim. Biophys. Acta 2015, 1850, 22–32. [Google Scholar] [CrossRef]
- Gal, I.; Edri, R.; Noor, N.; Rotenberg, M.; Namestnikov, M.; Cabilly, I.; Shapira, A.; Dvir, T. Injectable Cardiac Cell Microdroplets for Tissue Regeneration. Small 2020, 16, e1904806. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Ma, J.; Khoo, T.S.; Abdullah, N.; Nik Md Noordin Kahar, N.N.F.; Abdul Hamid, Z.A.; Mustapha, M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front. Bioeng. Biotechnol. 2021, 9, 735090. [Google Scholar] [CrossRef] [PubMed]
- de Klerk, E.; Hebrok, M. Stem Cell-Based Clinical Trials for Diabetes Mellitus. Front. Endocrinol. 2021, 12, 631463. [Google Scholar] [CrossRef]
- Jacobs-Tulleneers-Thevissen, D.; Chintinne, M.; Ling, Z.; Gillard, P.; Schoonjans, L.; Delvaux, G.; Strand, B.L.; Gorus, F.; Keymeulen, B.; Pipeleers, D.; et al. Sustained Function of Alginate-Encapsulated Human Islet Cell Implants in the Peritoneal Cavity of Mice Leading to a Pilot Study in a Type 1 Diabetic Patient. Diabetologia 2013, 56, 1605–1614. [Google Scholar] [CrossRef] [Green Version]
- Alagpulinsa, D.A.; Cao, J.J.L.; Driscoll, R.K.; Sîrbulescu, R.F.; Penson, M.F.E.; Sremac, M.; Engquist, E.N.; Brauns, T.A.; Markmann, J.F.; Melton, D.A.; et al. Alginate-Microencapsulation of Human Stem Cell–Derived β Cells with CXCL12 Prolongs Their Survival and Function in Immunocompetent Mice without Systemic Immunosuppression. Am. J. Transplant. 2019, 19, 1930–1940. [Google Scholar] [CrossRef]
- Chen, T.; Yuan, J.; Duncanson, S.; Hibert, M.L.; Kodish, B.C.; Mylavaganam, G.; Maker, M.; Li, H.; Sremac, M.; Santosuosso, M.; et al. Alginate Encapsulant Incorporating CXCL12 Supports Long-Term Allo- and Xenoislet Transplantation without Systemic Immune Suppression. Am. J. Transplant. 2015, 15, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21, 3307–3329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huebsch, N.; Arany, P.R.; Mao, A.S.; Shvartsman, D.; Ali, O.A.; Bencherif, S.A.; Rivera-Feliciano, J.; Mooney, D.J. Harnessing Traction-Mediated Manipulation of the Cell/Matrix Interface to Control Stem-Cell Fate. Nat. Mater. 2010, 9, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.H.; Alves, A.; Ferreira, B.M.; Oliveira, J.M.; Reys, L.L.; Ferreira, R.J.F.; Sousa, R.A.; Silva, S.S.; Mano, J.F.; Reis, R.L. Materials of Marine Origin: A Review on Polymers and Ceramics of Biomedical Interest. Int. Mater. Rev. 2012, 57, 276–307. [Google Scholar] [CrossRef] [Green Version]
- Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural-Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bale, S.; Baker, N.; Crook, H.; Rayman, A.; Rayman, G.; Harding, K.G. Exploring the Use of an Alginate Dressing for Diabetic Foot Ulcers. J. Wound Care 2001, 10, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Queen, D.; Orsted, H.; Sanada, H.; Sussman, G. A Dressing History. Int. Wound J. 2004, 1, 59–77. [Google Scholar] [CrossRef] [PubMed]
- De Ruigh, A.; Roman, S.; Chen, J.; Pandolfino, J.E.; Kahrilas, P.J. Gaviscon Double Action Liquid (Antacid & Alginate) Is More Effective than Antacid in Controlling Post-Prandial Oesophageal Acid Exposure in GERD Patients: A Double-Blind Crossover Study. Aliment. Pharmacol. Ther. 2014, 40, 531–537. [Google Scholar] [CrossRef]
- Rohof, W.O.; Bennink, R.J.; Smout, A.J.P.M.; Thomas, E.; Boeckxstaens, G.E. An Alginate-Antacid Formulation Localizes to the Acid Pocket to Reduce Acid Reflux in Patients with Gastroesophageal Reflux Disease. Clin. Gastroenterol. Hepatol. 2013, 11, 1585–1591. [Google Scholar] [CrossRef]
- Tytgat, G.N.; Simoneau, G. Clinical and Laboratory Studies of the Antacid and Raft-Forming Properties of Rennie Alginate Suspension. Aliment. Pharmacol. Ther. 2006, 23, 759–765. [Google Scholar] [CrossRef]
- Abramowitz, L.; Weyandt, G.H.; Havlickova, B.; Matsuda, Y.; Didelot, J.-M.; Rothhaar, A.; Sobrado, C.; Szabadi, A.; Vitalyos, T.; Wiesel, P. The Diagnosis and Management of Haemorrhoidal Disease from a Global Perspective. Aliment. Pharmacol. Ther. 2010, 31 (Suppl. S1), 1–58. [Google Scholar] [CrossRef]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized Bone Matrix in Bone Repair: History and Use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef]
- Al Machot, E.; Hoffmann, T.; Lorenz, K.; Khalili, I.; Noack, B. Clinical Outcomes after Treatment of Periodontal Intrabony Defects with Nanocrystalline Hydroxyapatite (Ostim) or Enamel Matrix Derivatives (Emdogain): A Randomized Controlled Clinical Trial. Biomed. Res. Int. 2014, 2014, 786353. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.Z.; Rathe, F.; Gilissen, C.; van der Zande, M.; Veltman, J.; Junker, R.; Yang, F.; Jansen, J.A.; Walboomers, X.F. The Effect of Enamel Matrix Derivative (Emdogain®) on Gene Expression Profiles of Human Primary Alveolar Bone Cells. J. Tissue Eng. Regen Med. 2014, 8, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Barzegari, A.; Saei, A.A. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors. Bioimpacts 2012, 2, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.-L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.R.E.; Laurent, T.C.; Laurent, U.B.G. Hyaluronan: Its Nature, Distribution, Functions and Turnover. J. Intern. Med. 1997, 242, 27–33. [Google Scholar] [CrossRef]
- Cutting, K.F. Wound Healing through Synergy of Hyaluronan and an Iodine Complex. J. Wound Care 2011, 20, 424–430. [Google Scholar] [CrossRef]
- Freier, T.; Koh, H.S.; Kazazian, K.; Shoichet, M.S. Controlling Cell Adhesion and Degradation of Chitosan Films by N-Acetylation. Biomaterials 2005, 26, 5872–5878. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [Green Version]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a Bioactive Polymer: Processing, Properties and Applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef]
- Lizardi-Mendoza, J.; Argüelles Monal, W.M.; Goycoolea Valencia, F.M. Chemical Characteristics and Functional Properties of Chitosan; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128027356. [Google Scholar]
- Wang, W.; Xue, C.; Mao, X. Chitosan: Structural Modification, Biological Activity and Application. Int. J. Biol. Macromol. 2020, 164, 4532–4546. [Google Scholar] [CrossRef]
- Cunha, L.; Rodrigues, S.; Rosa da Costa, A.M.; Faleiro, L.; Buttini, F.; Grenha, A. Inhalable Chitosan Microparticles for Simultaneous Delivery of Isoniazid and Rifabutin in Lung Tuberculosis Treatment. Drug Dev. Ind. Pharm. 2019, 45, 1313–1320. [Google Scholar] [CrossRef]
- Li, L.; Yang, L.; Li, M.; Zhang, L. A Cell-Penetrating Peptide Mediated Chitosan Nanocarriers for Improving Intestinal Insulin Delivery. Carbohydr. Polym. 2017, 174, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent Advances in Chitosan-Based Carriers for Gene Delivery. Marine Drugs 2019, 17, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.; Büning, H.; Ling, C. Rational Design of Gene Therapy Vectors. Mol. Ther. Methods Clin. Dev. 2019, 12, 246–247. [Google Scholar] [CrossRef] [Green Version]
- Alinejad, Y.; Bitar, C.M.E.; Martinez Villegas, K.; Perignon, S.; Hoesli, C.A.; Lerouge, S. Chitosan Microbeads Produced by One-Step Scalable Stirred Emulsification: A Promising Process for Cell Therapy Applications. ACS Biomater. Sci. Eng. 2020, 6, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yan, H.; Liu, Y.; Xiao, D.; Li, W.; Wang, Q.; Zhao, Y.; Sun, K.; Zhang, M.; Lu, M. Adipose-Derived Stem-Cell-Implanted Poly(ϵ-Caprolactone)/Chitosan Scaffold Improves Bladder Regeneration in a Rat Model. Regen. Med. 2018, 13, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, P.; Vulesevic, B.; Kuraitis, D.; Li, F.; Yang, A.F.; Griffith, M.; Ruel, M.; Suuronen, E.J. A Collagen–Chitosan Hydrogel for Endothelial Differentiation and Angiogenesis. Tissue Eng. Part A 2010, 16, 3099–3109. [Google Scholar] [CrossRef]
- Hastings, C.L.; Kelly, H.M.; Murphy, M.J.; Barry, F.P.; O’Brien, F.J.; Duffy, G.P. Development of a Thermoresponsive Chitosan Gel Combined with Human Mesenchymal Stem Cells and Desferrioxamine as a Multimodal Pro-Angiogenic Therapeutic for the Treatment of Critical Limb Ischaemia. J. Control. Release 2012, 161, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, G.; Zhang, J.; Li, Y.; Nie, Y.; Zhu, D.; Wang, R.; Liu, J.; Gao, J.; Liu, N.; He, N.; et al. IGF-1 C Domain–Modified Hydrogel Enhances Cell Therapy for AKI. J. Am. Soc. Nephrol. 2016, 27, 2357–2369. [Google Scholar] [CrossRef] [Green Version]
- Touani, F.K.; Borie, M.; Azzi, F.; Trudel, D.; Noiseux, N.; Der Sarkissian, S.; Lerouge, S. Pharmacological Preconditioning Improves the Viability and Proangiogenic Paracrine Function of Hydrogel-Encapsulated Mesenchymal Stromal Cells. Stem. Cells Int. 2021, 2021, 6663467. [Google Scholar] [CrossRef]
- Liu, Y.; Li, P.; Qiao, C.; Wu, T.; Sun, X.; Wen, M.; Zhang, W. Chitosan Hydrogel Enhances the Therapeutic Efficacy of Bone Marrow–Derived Mesenchymal Stem Cells for Myocardial Infarction by Alleviating Vascular Endothelial Cell Pyroptosis. J. Cardiovasc. Pharmacol. 2020, 75, 75–83. [Google Scholar] [CrossRef]
- Qu, C.; Bao, Z.; Zhang, X.; Wang, Z.; Ren, J.; Zhou, Z.; Tian, M.; Cheng, X.; Chen, X.; Feng, C. A Thermosensitive RGD-Modified Hydroxybutyl Chitosan Hydrogel as a 3D Scaffold for BMSCs Culture on Keloid Treatment. Int. J. Biol. Macromol. 2019, 125, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, J.; Qi, C.; Fang, Y.; Zhang, L.; Zhuo, R.; Jiang, X. Thermosensitive Injectable In-Situ Forming Carboxymethyl Chitin Hydrogel for Three-Dimensional Cell Culture. Acta Biomater. 2016, 35, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Huh, M.S.; Lee, E.J.; Koo, H.; Yhee, J.Y.; Oh, K.S.; Son, S.; Lee, S.; Kim, S.H.; Kwon, I.C.; Kim, K. Polysaccharide-Based Nanoparticles for Gene Delivery. Top Curr. Chem. 2017, 375, 31. [Google Scholar] [CrossRef] [PubMed]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef]
- Peters, A.; Sherman, L.S. Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int. J. Mol. Sci. 2020, 21, 5988. [Google Scholar] [CrossRef]
- Litwiniuk, M.; Krejner, A.; Speyrer, M.S.; Gauto, A.R.; Grzela, T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds 2016, 28, 78–88. [Google Scholar]
- Cortes, H.; Caballero-Florán, I.H.; Mendoza-Muñoz, N.; Córdova-Villanueva, E.N.; Escutia-Guadarrama, L.; Figueroa-González, G.; Reyes-Hernández, O.D.; González-Del Carmen, M.; Varela-Cardoso, M.; Magaña, J.J.; et al. Hyaluronic Acid in Wound Dressings. Cell. Mol. Biol. 2020, 66, 191–198. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic Acid, a Promising Skin Rejuvenating Biomedicine: A Review of Recent Updates and Pre-Clinical and Clinical Investigations on Cosmetic and Nutricosmetic Effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef]
- Dong, Y.; Cui, M.; Qu, J.; Wang, X.; Kwon, S.H.; Barrera, J.; Elvassore, N.; Gurtner, G.C. Conformable Hyaluronic Acid Hydrogel Delivers Adipose-Derived Stem Cells and Promotes Regeneration of Burn Injury. Acta Biomater. 2020, 108, 56–66. [Google Scholar] [CrossRef]
- Bonafè, F.; Govoni, M.; Giordano, E.; Caldarera, C.M.; Guarnieri, C.; Muscari, C. Hyaluronan and Cardiac Regeneration. J. Biomed. Sci. 2014, 21, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vasvani, S.; Kulkarni, P.; Rawtani, D. Hyaluronic Acid: A Review on Its Biology, Aspects of Drug Delivery, Route of Administrations and a Special Emphasis on Its Approved Marketed Products and Recent Clinical Studies. Int. J. Biol. Macromol. 2020, 151, 1012–1029. [Google Scholar] [CrossRef] [PubMed]
- Sieger, D.; Korzinskas, T.; Jung, O.; Stojanovic, S.; Wenisch, S.; Smeets, R.; Gosau, M.; Schnettler, R.; Najman, S.; Barbeck, M. The Addition of High Doses of Hyaluronic Acid to a Biphasic Bone Substitute Decreases the Proinflammatory Tissue Response. Int. J. Mol. Sci. 2019, 20, 1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Liu, P.; Zhu, J.; Lan, J.; Li, Y.; Zhang, L.; Zhu, J.; Tao, J. Hyaluronic Acid-Based Dissolving Microneedle Patch Loaded with Methotrexate for Improved Treatment of Psoriasis. ACS Appl. Mater. Interfaces 2019, 11, 43588–43598. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, E.; Dorati, R.; Conti, B.; Modena, T.; Cova, E.; Meloni, F.; Genta, I. Hyaluronic Acid-Decorated Chitosan Nanoparticles for CD44-Targeted Delivery of Everolimus. Int. J. Mol. Sci. 2018, 19, 2310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Hou, J.; Su, C.; Zhao, L.; Shi, Y. Hyaluronic Acid-Coated Chitosan Nanoparticles Induce ROS-Mediated Tumor Cell Apoptosis and Enhance Antitumor Efficiency by Targeted Drug Delivery via CD44. J. Nanobiotechnology 2017, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic Acid—Based Wound Dressings: A Review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef]
- Taskan, M.M.; Balci Yuce, H.; Karatas, O.; Gevrek, F.; Isiker Kara, G.; Celt, M.; Sirma Taskan, E. Hyaluronic Acid with Antioxidants Improve Wound Healing in Rats. Biotech. Histochem. 2021, 96, 536–545. [Google Scholar] [CrossRef]
- Li, X.; Li, A.; Feng, F.; Jiang, Q.; Sun, H.; Chai, Y.; Yang, R.; Wang, Z.; Hou, J.; Li, R. Effect of the Hyaluronic Acid-poloxamer Hydrogel on Skin-wound Healing: In Vitro and in Vivo Studies. Anim. Models Exp. Med. 2019, 2, 107–113. [Google Scholar] [CrossRef]
- Cañibano-Hernández, A.; Saenz del Burgo, L.; Espona-Noguera, A.; Orive, G.; Hernández, R.M.; Ciriza, J.; Pedraz, J.L. Hyaluronic Acid Enhances Cell Survival of Encapsulated Insulin-Producing Cells in Alginate-Based Microcapsules. Int. J. Pharm. 2019, 557, 192–198. [Google Scholar] [CrossRef]
- Yeom, J.; Kim, S.J.; Jung, H.; Namkoong, H.; Yang, J.; Hwang, B.W.; Oh, K.; Kim, K.; Sung, Y.C.; Hahn, S.K. Supramolecular Hydrogels for Long-Term Bioengineered Stem Cell Therapy. Adv. Healthc. Mater 2015, 4, 237–244. [Google Scholar] [CrossRef]
- Park, T.Y.; Jeon, E.Y.; Kim, H.J.; Choi, B.-H.; Cha, H.J. Prolonged Cell Persistence with Enhanced Multipotency and Rapid Angiogenesis of Hypoxia Pre-Conditioned Stem Cells Encapsulated in Marine-Inspired Adhesive and Immiscible Liquid Micro-Droplets. Acta Biomater. 2019, 86, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Harrington, S.; Ott, L.; Karanu, F.; Ramachandran, K.; Stehno-Bittel, L. A Versatile Microencapsulation Platform for Hyaluronic Acid and Polyethylene Glycol. Tissue Eng. Part A 2021, 27, 153–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngadimin, K.D.; Stokes, A.; Gentile, P.; Ferreira, A.M. Biomimetic Hydrogels Designed for Cartilage Tissue Engineering. Biomater. Sci. 2021, 9, 4246–4259. [Google Scholar] [CrossRef] [PubMed]
- Fakhari, A.; Berkland, C. Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, as a Dermal Filler, and in Osteoarthritis Treatment Amir. Bone 2008, 23, 1–7. [Google Scholar] [CrossRef]
- Yu, Z.; Xiaoting, F.U.; Delin, D.; Jiachao, X.U.; Xin, G.A.O. Preparation and Characterization of Agar, Agarose, and Agaropectin from the Red Alga Ahnfeltia Plicata. J. Oceanol. Limnol. 2019, 37, 815–824. [Google Scholar]
- Araki, C. Structure of the Agarose Constituent of Agar-Agar. Bull. Chem. Soc. Jpn. 1956, 29, 543–544. [Google Scholar] [CrossRef]
- Arnott, S.; Fulmer, A.; Scott, W.E.; Dea, I.C.; Moorhouse, R.; Rees, D.A. The Agarose Double Helix and Its Function in Agarose Gel Structure. J. Mol. Biol. 1974, 90, 269–284. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Manouchehri, S.; Ahmadi, Z.; Saeb, M.R.; Urbanska, A.M.; Kaplan, D.L.; Mozafari, M. Agarose-Based Biomaterials for Tissue Engineering. Carbohydr. Polym. 2018, 187, 66–84. [Google Scholar] [CrossRef]
- Beaumont, M.; Tran, R.; Vera, G.; Niedrist, D.; Rousset, A.; Pierre, R.; Shastri, V.P.; Forget, A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22, 1027–1052. [Google Scholar] [CrossRef]
- Christy Chao, P. Ngo Le, B.P.E. SpheroidChip: Patterned Agarose Microwell Compartments Harboring HepG2 Spheroids Are Compatible with Genotoxicity Testing. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Su, T.; Zhang, M.; Zeng, Q.; Pan, W.; Huang, Y.; Qian, Y.; Dong, W.; Qi, X.; Shen, J. Mussel-Inspired Agarose Hydrogel Scaffolds for Skin Tissue Engineering. Bioact. Mater. 2021, 6, 579–588. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, A.M.; Ali, A.A.; El-Fiqi, A. Controlled Delivery of Therapeutic Ions and Antibiotic Drug of Novel Alginate-Agarose Matrix Incorporating Selenium-Modified Borosilicate Glass Designed for Chronic Wound Healing. J. Non-Cryst. Solids 2020, 534, 119889. [Google Scholar] [CrossRef]
- Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mater. 2019, 31, 1–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelse, K.; Pöschl, E.; Aigner, T. Collagens—Structure, Function, and Biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.H.; Singla, A.; Lee, Y. Biomedical Applications of Collagen. Int. J. Pharm. 2001, 221, 1–22. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, C.; Luo, X.; Wang, X.; Jiang, H. Recent Advances of Collagen-Based Biomaterials: Multi-Hierarchical Structure, Modification and Biomedical Applications. Mater. Sci. Eng. C 2019, 99, 1509–1522. [Google Scholar] [CrossRef]
- Vaissiere, G.; Chevallay, B.; Herbage, D.; Damour, O. Comparative Analysis of Different Collagen-Based Biomaterials as Scaffolds for Long-Term Culture of Human Fibroblasts. Med. Biol. Eng. Comput. 2000, 38, 205–210. [Google Scholar] [CrossRef]
- Shojaati, G.; Khandaker, I.; Sylakowski, K.; Funderburgh, M.L.; Du, Y.; Funderburgh, J.L. Compressed Collagen Enhances Stem Cell Therapy for Corneal Scarring. Stem Cells Transl. Med. 2018, 7, 487–494. [Google Scholar] [CrossRef]
- Jacques, E.; Hosoyama, K.; Biniam, B.; Eren Cimenci, C.; Sedlakova, V.; Steeves, A.J.; Variola, F.; Davis, D.R.; Stewart, D.J.; Suuronen, E.J.; et al. Collagen-Based Microcapsules As Therapeutic Materials for Stem Cell Therapies in Infarcted Myocardium. ACS Biomater. Sci. Eng. 2020, 6, 4614–4622. [Google Scholar] [CrossRef]
- Nocera, A.D.; Comín, R.; Salvatierra, N.A.; Cid, M.P. Development of 3D Printed Fibrillar Collagen Scaffold for Tissue Engineering. Biomed. Microdevices 2018, 20, 1–13. [Google Scholar] [CrossRef]
- Schmitt, T.; Kajave, N.; Cai, H.H.; Gu, L.; Albanna, M.; Kishore, V. In Vitro Characterization of Xeno-Free Clinically Relevant Human Collagen and Its Applicability in Cell-Laden 3D Bioprinting. J. Biomater. Appl. 2021, 35, 912–923. [Google Scholar] [CrossRef] [PubMed]
- Koivusalo, L.; Karvinen, J.; Sorsa, E.; Jönkkäri, I.; Väliaho, J.; Kallio, P.; Ilmarinen, T.; Miettinen, S.; Skottman, H.; Kellomäki, M. Hydrazone Crosslinked Hyaluronan-Based Hydrogels for Therapeutic Delivery of Adipose Stem Cells to Treat Corneal Defects. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 85, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltani, A.; Soleimani, M.; Ghiass, M.A.; Enderami, S.E.; Rabbani, S.; Jafarian, A.; Allameh, A. Treatment of Diabetic Mice by Microfluidic System-Assisted Transplantation of Stem Cells-Derived Insulin-Producing Cells Transduced with MiRNA. Life Sci. 2021, 274, 119338. [Google Scholar] [CrossRef]
- Lynn, A.K.; Yannas, I.V.; Bonfield, W. Antigenicity and Immunogenicity of Collagen. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Bixler, H.J.; Porse, H. A Decade of Change in the Seaweed Hydrocolloids Industry. J. Appl. Phycol. 2011, 23, 321–335. [Google Scholar] [CrossRef]
- Smidsrød, O.; Skja, G. Alginate as Immobilization Matrix for Cells. Trends Biotechnol. 1990, 8, 71–78. [Google Scholar] [CrossRef]
- Linker, A.; Jones, R.S. A New Polysaccharide Resembling Alginic Acid Isolated from Pseudomonads. J. Biol. Chem. 1966, 241, 3845–3851. [Google Scholar] [CrossRef]
- Hay, I.D.; Rehman, Z.U.; Moradali, M.F.; Wang, Y.; Rehm, B.H.A. Microbial Alginate Production, Modification and Its Applications. Microb. Biotechnol. 2013, 6, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Nivens, D.E.; Ohman, D.E.; Williams, J.; Franklin, M.J. Role of Alginate and Its O Acetylation in Formation of Pseudomonas Aeruginosa Microcolonies and Biofilms. J. Bacteriol. 2001, 183, 1047–1057. [Google Scholar] [CrossRef] [Green Version]
- Hay, I.D.; Gatland, K.; Campisano, A.; Jordens, J.Z.; Rehm, B.H.A. Impact of Alginate Overproduction on Attachment and Biofilm Architecture of a Supermucoid Pseudomonas Aeruginosa Strain. Appl. Environ. Microbiol. 2009, 75, 6022–6025. [Google Scholar] [CrossRef] [Green Version]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Kovačević, D.B.; Garofulić, I.E.; Dragović-Uzelac, V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ching, S.H.; Bansal, N.; Bhandari, B. Alginate Gel Particles–A Review of Production Techniques and Physical Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1133–1152. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.A.; Kipke, D.R.; Brandon, T. Calcium Alginate Gel: A Biocompatible and Mechanically Stable Polymer for Endovascular Embolization. J. Biomed. Mater. Res. 2001, 54, 76–86. [Google Scholar] [CrossRef]
- Dhamecha, D.; Movsas, R.; Sano, U.; Menon, J.U. Applications of Alginate Microspheres in Therapeutics Delivery and Cell Culture: Past, Present and Future. Int. J. Pharm. 2019, 569, 118627. [Google Scholar] [CrossRef] [PubMed]
- Reig-Vano, B.; Tylkowski, B.; Montané, X.; Giamberini, M. Alginate-Based Hydrogels for Cancer Therapy and Research. Int. J. Biol. Macromol. 2021, 170, 424–436. [Google Scholar] [CrossRef]
- Bansal, D.; Gulbake, A.; Tiwari, J.; Jain, S.K. Development of Liposomes Entrapped in Alginate Beads for the Treatment of Colorectal Cancer. Int. J. Biol. Macromol. 2016, 82, 687–695. [Google Scholar] [CrossRef]
- Jayapal, J.J.; Dhanaraj, S. Exemestane Loaded Alginate Nanoparticles for Cancer Treatment: Formulation and in Vitro Evaluation. Int. J. Biol. Macromol. 2017, 105, 416–421. [Google Scholar] [CrossRef]
- Kojayan, G.G.; Flores, A.; Li, S.; Alexander, M.; Lakey, J.R. Cryopreserved Alginate-Encapsulated Islets Can Restore Euglycemia in a Diabetic Animal Model Better than Cryopreserved Non-Encapsulated Islets. Cell Med. 2019, 11, 215517901987664. [Google Scholar] [CrossRef] [Green Version]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global Estimates for the Prevalence of Diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Ngoc, P.K.; Phuc, P.V.; Nhung, T.H.; Thuy, D.T.; Nguyet, N.T.M. Improving the Efficacy of Type 1 Diabetes Therapy by Transplantation of Immunoisolated Insulin-Producing Cells. Hum. Cell 2011, 24, 86–95. [Google Scholar] [CrossRef]
- Hillberg, A.L.; Oudshoorn, M.; Lam, J.B.B.; Kathirgamanathan, K. Encapsulation of Porcine Pancreatic Islets within an Immunoprotective Capsule Comprising Methacrylated Glycol Chitosan and Alginate. J. Biomed. Mater Res. B Appl. Biomater. 2015, 103, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhou, J.; Huang, T.; Zhang, Z.; Xing, Q.; Zhou, X.; Zhang, K.; Yao, M.; Cheng, T.; Wang, X.; et al. Sodium Alginate/Collagen/Stromal Cell-Derived Factor-1 Neural Scaffold Loaded with BMSCs Promotes Neurological Function Recovery after Traumatic Brain Injury. Acta Biomater. 2021, 131, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Ruvinov, E.; Cohen, S. Alginate Biomaterial for the Treatment of Myocardial Infarction: Progress, Translational Strategies, and Clinical Outlook. From Ocean Algae to Patient Bedside. Adv. Drug Deliv. Rev. 2016, 96, 54–76. [Google Scholar] [CrossRef] [PubMed]
- Jitraruch, S.; Dhawan, A.; Hughes, R.D.; Filippi, C.; Soong, D.; Philippeos, C.; Lehec, S.C.; Heaton, N.D.; Longhi, M.S.; Mitry, R.R. Alginate Microencapsulated Hepatocytes Optimised for Transplantation in Acute Liver Failure. PLoS ONE 2014, 9, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.A.; Dhawan, A.; Iansante, V.; Lehec, S.; Khorsandi, S.E.; Filippi, C.; Walker, S.; Fernandez-Dacosta, R.; Heaton, N.; Bansal, S.; et al. Cryopreserved Neonatal Hepatocytes May Be a Source for Transplantation: Evaluation of Functionality toward Clinical Use. Liver Transplant. 2018, 24, 394–406. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, A.; Chaijitraruch, N.; Fitzpatrick, E.; Bansal, S.; Filippi, C.; Lehec, S.C.; Heaton, N.D.; Kane, P.; Verma, A.; Hughes, R.D.; et al. Alginate Microencapsulated Human Hepatocytes for the Treatment of Acute Liver Failure in Children. J. Hepatol. 2020, 72, 877–884. [Google Scholar] [CrossRef]
- Lv, K.; Li, Q.; Zhang, L.; Wang, Y.; Zhong, Z.; Zhao, J.; Lin, X.; Wang, J.; Zhu, K.; Xiao, C.; et al. Incorporation of Small Extracellular Vesicles in Sodium Alginate Hydrogel as a Novel Therapeutic Strategy for Myocardial Infarction. Theranostics 2019, 9, 7403–7416. [Google Scholar] [CrossRef]
- Saberianpour, S.; Karimi, A.; Nemati, S.; Amini, H.; Alizadeh Sardroud, H.; Khaksar, M.; Mamipour, M.; Nouri, M.; Rahbarghazi, R. Encapsulation of Rat Cardiomyoblasts with Alginate-Gelatin Microspheres Preserves Stemness Feature in Vitro. Biomed. Pharmacother. 2019, 109, 402–407. [Google Scholar] [CrossRef]
- Capin, L.; Abbassi, N.; Lachat, M.; Calteau, M.; Barratier, C.; Mojallal, A.; Bourgeois, S.; Auxenfans, C. Encapsulation of Adipose-Derived Mesenchymal Stem Cells in Calcium Alginate Maintains Clonogenicity and Enhances Their Secretory Profile. Int. J. Mol. Sci. 2020, 21, 6316. [Google Scholar] [CrossRef]
- Ghanta, R.K.; Aghlara-Fotovat, S.; Pugazenthi, A.; Ryan, C.T.; Singh, V.P.; Mathison, M.; Jarvis, M.I.; Mukherjee, S.; Hernandez, A.; Veiseh, O. Immune-Modulatory Alginate Protects Mesenchymal Stem Cells for Sustained Delivery of Reparative Factors to Ischemic Myocardium. Biomater. Sci. 2020, 8, 5061–5070. [Google Scholar] [CrossRef]
- Báez-Díaz, C.; Blanco-Blázquez, V.; Sánchez-Margallo, F.M.; López, E.; Martín, H.; Espona-Noguera, A.; Casado, J.G.; Ciriza, J.; Pedraz, J.L.; Crisóstomo, V. Intrapericardial Delivery of APA-Microcapsules as Promising Stem Cell Therapy Carriers in an Experimental Acute Myocardial Infarction Model. Pharmaceutics 2021, 13, 1824. [Google Scholar] [CrossRef] [PubMed]
- Dimitrioglou, N.; Kanelli, M.; Papageorgiou, E.; Karatzas, T.; Hatziavramidis, D. Paving the Way for Successful Islet Encapsulation. Drug Discov. Today 2019, 24, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, L.; Fang, Y.; Huang, H.; You, X.; Wu, J. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv. Healthc. Mater. 2021, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mogoşanu, G.D.; Grumezescu, A.M. Natural and Synthetic Polymers for Wounds and Burns Dressing. Int. J. Pharm. 2014, 463, 127–136. [Google Scholar] [CrossRef]
- Blocki, A.; Beyer, S.; Dewavrin, J.-Y.; Goralczyk, A.; Wang, Y.; Peh, P.; Ng, M.; Moonshi, S.S.; Vuddagiri, S.; Raghunath, M.; et al. Microcapsules Engineered to Support Mesenchymal Stem Cell (MSC) Survival and Proliferation Enable Long-Term Retention of MSCs in Infarcted Myocardium. Biomaterials 2015, 53, 12–24. [Google Scholar] [CrossRef]
- Kang, A.; Park, J.; Ju, J.; Jeong, G.S.; Lee, S.-H. Cell Encapsulation via Microtechnologies. Biomaterials 2014, 35, 2651–2663. [Google Scholar] [CrossRef]
- Rabanel, J.-M.; Banquy, X.; Zouaoui, H.; Mokhtar, M.; Hildgen, P. Progress Technology in Microencapsulation Methods for Cell Therapy. Biotechnol. Prog. 2009, 25, 946–963. [Google Scholar] [CrossRef]
- Steele, J.A.M.; Hallé, J.-P.; Poncelet, D.; Neufeld, R.J. Therapeutic Cell Encapsulation Techniques and Applications in Diabetes. Adv. Drug Deliv. Rev. 2014, 67, 74–83. [Google Scholar] [CrossRef]
- Bidoret, A.; Martins, E.; De Smet, B.P.; Poncelet, D. Cell Microencapsulation: Dripping Methods. In Cell Microencapsulation: Methods and Protocols; Opara, E.C., Ed.; Springer: New York, NY, USA, 2017; pp. 43–55. ISBN 978-1-4939-6364-5. [Google Scholar]
- Wang, Y.-L.; Hu, J.-J. Sub-100-Micron Calcium-Alginate Microspheres: Preparation by Nitrogen Flow Focusing, Dependence of Spherical Shape on Gas Streams and a Drug Carrier Using Acetaminophen as a Model Drug. Carbohydr. Polym. 2021, 269, 118262. [Google Scholar] [CrossRef]
- Liao, Q.-Q.; Zhao, S.-K.; Cai, B.; He, R.-X.; Rao, L.; Wu, Y.; Guo, S.-S.; Liu, Q.-Y.; Liu, W.; Zhao, X.-Z. Biocompatible Fabrication of Cell-Laden Calcium Alginate Microbeads Using Microfluidic Double Flow-Focusing Device. Sens. Actuators A Phys. 2018, 279, 313–320. [Google Scholar] [CrossRef]
- Orive, G.; De Castro, M.; Kong, H.-J.; Hernández, R.M.; Ponce, S.; Mooney, D.J.; Pedraz, J.L. Bioactive Cell-Hydrogel Microcapsules for Cell-Based Drug Delivery. J. Control. Release 2009, 135, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriadou, D.; Evans, R.E.; Atkinson, E.; Abdalla, A.; Gavins, F.K.H.; Boyd, A.S.; Williams, G.R.; Knowles, J.C.; Roberton, V.H.; Phillips, J.B. An Alginate-Based Encapsulation System for Delivery of Therapeutic Cells to the CNS. RSC Adv. 2022, 12, 4005–4015. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, L.M.d.F.; Barreto, T.; Gama, J.F.G.; Alves, L.A. Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers 2022, 14, 2641. https://doi.org/10.3390/polym14132641
Cardoso LMdF, Barreto T, Gama JFG, Alves LA. Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers. 2022; 14(13):2641. https://doi.org/10.3390/polym14132641
Chicago/Turabian StyleCardoso, Liana Monteiro da Fonseca, Tatiane Barreto, Jaciara Fernanda Gomes Gama, and Luiz Anastacio Alves. 2022. "Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy" Polymers 14, no. 13: 2641. https://doi.org/10.3390/polym14132641
APA StyleCardoso, L. M. d. F., Barreto, T., Gama, J. F. G., & Alves, L. A. (2022). Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers, 14(13), 2641. https://doi.org/10.3390/polym14132641