Study on Bond-Slip Behavior between Seawater Sea-Sand Concrete and Carbon Fiber-Reinforced Polymer (CFRP) Bars with Different Surface Shapes
Abstract
:1. Introduction
2. Experimental Program
2.1. Material Properties
2.2. Specimens
2.3. Pull-Out Test
2.4. Test Results
2.4.1. Failure Mode
2.4.2. Bond-Slip Curves
3. Numerical Analysis
3.1. FE Models
3.2. Verification of Proposed FE Models
3.3. Parametric Study
3.3.1. Concrete Compressive Strength
3.3.2. Relative Size of Rib
4. Analytical Model
4.1. Bond Strength
4.2. Bond-Slip Curves
5. Conclusions
- In the pull-out test, the bond strength was highly dependent on the concrete compressive strength and the surface type of CFRP bars. The bond strength was higher if the concrete compressive strength value was larger, and the ribbed bar had significantly higher bond strength than the regular bar, which were further validated in the numerical simulations. From the numerical simulations, it is further observed that the increasing rate of bond strength became slower with the increase in concrete compressive stress.
- There were two failure modes observed during the pull-out test mainly depending on the ratio of cover depth to bar diameter—CFRP bar pull-out failure and concrete splitting failure. When the ratio of cover depth to bar diameter was no less than 4, the CFRP bar pull-out failure was observed, and otherwise, the concrete splitting failure occurred, because cracks initiated due to pull-out-load-induced radical stress, and the concrete confinement was not sufficient to prevent the crack propagation.
- The bond-slip curves for different failure mode were different. Generally, the bond stress dropped significantly after the maximum value for the concrete splitting failure and it decreased gradually (regular bars) or fluctuated slowly (ribbed bars) after the maximum value for the CFRP bar pull-out failure.
- The proposed simple formula based on the parametric study can approximately predict the bond strength, which is more accurate than those in ACI, and the analytical expressions can depict the bond-slip curves for different failure modes and different shapes of CFRP bar.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Hu, X.; Shi, C.; Zhang, Z.; Zhu, D. A review on seawater sea-sand concrete: Mixture proportion, hydration, microstructure and properties. Constr. Build. Mater. 2021, 295, 123602. [Google Scholar] [CrossRef]
- Xiao, J.; Qiang, C.; Nanni, A.; Zhang, K. Use of sea-sand and seawater in concrete construction: Current status and future opportunities. Constr. Build. Mater. 2017, 155, 1101–1111. [Google Scholar] [CrossRef]
- Li, Y.T.; Zhou, L.; Zhang, Y.; Cui, J.W.; Shao, J. Study on Long-Term Performance of Concrete Based on Seawater, Sea Sand and Coral Sand. Adv. Mater. Res. 2013, 706–708, 512–515. [Google Scholar] [CrossRef]
- Saleh, S.; Zhao, X.-L.; Hamed, E. Development of a Sustainable Industrial Byproduct Based Seawater and Sea Sand Ultra-High Performance Concrete. Environ. Sci. Proc. 2021, 12, 20. [Google Scholar] [CrossRef]
- Qiao, S.; Xiong, Z.; Li, Y.; Ye, Z.; He, S.; Li, L.; Zeng, Y. Mechanical Properties of Seawater Sea-Sand Concrete Exposed to Daily Temperature Variations. Buildings 2022, 12, 517. [Google Scholar] [CrossRef]
- Dhondy, T.; Remennikov, A.; Sheikh, M.N. Properties and Application of Sea Sand in Sea Sand–Seawater Concrete. J. Mater. Civ. Eng. 2020, 32, 04020392. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, S.; Fu, C.; Dong, Z.; Zhang, X.; Jin, N.; Xia, T. Macrocell Corrosion of Steel in Concrete under Carbonation, Internal Chloride Admixing and Accelerated Chloride Penetration Conditions. Materials 2021, 14, 7691. [Google Scholar] [CrossRef]
- Kiesse, T.S.; Bonnet, S.; Amiri, O.; Ventura, A. Analysis of corrosion risk due to chloride diffusion for concrete structures in marine environment. Mar. Struct. 2020, 73, 102804. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahmad, S.; Al-Gahtani, H.J. Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time. Int. J. Corros. 2017, 2017, 5819202. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xiao, J.; Zhang, K.; Zhang, Q. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand. J. Build. Eng. 2022, 51, 104294. [Google Scholar] [CrossRef]
- Bazli, M.; Zhao, X.-L.; Raman, R.S.; Bai, Y.; Al-Saadi, S. Bond performance between FRP tubes and seawater sea sand concrete after exposure to seawater condition. Constr. Build. Mater. 2020, 265, 120342. [Google Scholar] [CrossRef]
- Morales, C.N.; Claure, G.; Emparanza, A.R.; Nanni, A. Durability of GFRP reinforcing bars in seawater concrete. Constr. Build. Mater. 2021, 270, 121492. [Google Scholar] [CrossRef]
- Lu, Z.; Su, L.; Xian, G.; Lu, B.; Xie, J. Durability study of concrete-covered basalt fiber-reinforced polymer (BFRP) bars in marine environment. Compos. Struct. 2020, 234, 111650. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Al Hawat, W.; Keshawarz, M. Durability and Mechanical Properties of Concrete Reinforced with Basalt Fiber-Reinforced Polymer (BFRP) Bars: Towards Sustainable Infrastructure. Polymers 2021, 13, 1402. [Google Scholar] [CrossRef]
- Yu, Y.; Pan, Y.; Zhou, R.; Miao, X. Effects of Water and Alkaline Solution on Durability of Carbon-Glass Hybrid Fiber Reinforced Polymer Bars. Polymers 2021, 13, 3844. [Google Scholar] [CrossRef]
- Dong, S.; Li, C.; Xian, G. Environmental Impacts of Glass- and Carbon-Fiber-Reinforced Polymer Bar-Reinforced Seawater and Sea Sand Concrete Beams Used in Marine Environments: An LCA Case Study. Polymers 2021, 13, 154. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, J.; Yu, J.; Wang, Z. Performance Improvement of a Fiber-Reinforced Polymer Bar for a Reinforced Sea Sand and Seawater Concrete Beam in the Serviceability Limit State. Sensors 2019, 19, 654. [Google Scholar] [CrossRef] [Green Version]
- Karayannis, C.G.; Kosmidou, P.-M.K.; Chalioris, C.E. Reinforced Concrete Beams with Carbon-Fiber-Reinforced Polymer Bars—Experimental Study. Fibers 2018, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Ogrodowska, K.; Łuszcz, K.; Garbacz, A. Nanomodification, Hybridization and Temperature Impact on Shear Strength of Basalt Fiber-Reinforced Polymer Bars. Polymers 2021, 13, 2585. [Google Scholar] [CrossRef]
- Pang, M.; Shi, S.; Hu, H.; Lou, T. Flexural Behavior of Two-Span Continuous CFRP RC Beams. Materials 2021, 14, 6746. [Google Scholar] [CrossRef]
- Roudsari, S.S.; Ungureanu, L.M.; Soroushnia, S.; Abu-Lebdeh, T.; Petrescu, F.I.T. Optimization of Fiber-Reinforced Polymer Bars for Reinforced Concrete Column Using Nonlinear Finite Element Algorithms. Algorithms 2022, 15, 12. [Google Scholar] [CrossRef]
- Gu, W.; Liu, H.; Dong, Y. Experimental Study on the Flexural Properties of Concrete Beams Reinforced with Hybrid Steel/Fiber-Belt-Bars. Materials 2022, 15, 3505. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-Y.; Wang, Y.-L.; Huang, P.-Y.; Zheng, X.-H.; Yang, Y. Fatigue Life Prediction of Reinforced Concrete Beams Strengthened with CFRP: Study Based on an Accumulative Damage Model. Polymers 2019, 11, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.-K.; Park, J.-S.; Kim, S.-H.; Jung, W.-T. Structural Behavior Evaluation of Reinforced Concrete Using the Fiber-Reinforced Polymer Strengthening Method. Polymers 2021, 13, 780. [Google Scholar] [CrossRef]
- Bakar, M.B.C.; Muhammad Rashid, R.S.; Amran, M.; Saleh Jaafar, M.; Vatin, N.I.; Fediuk, R. Flexural Strength of Concrete Beam Reinforced with CFRP Bars: A Review. Materials 2022, 15, 1144. [Google Scholar] [CrossRef]
- Stark, A.; Classen, M.; Hegger, J. Bond behaviour of CFRP tendons in UHPFRC. Eng. Struct. 2019, 178, 148–161. [Google Scholar] [CrossRef]
- Akbas, T.T.; Celik, O.C.; Yalcin, C.; Ilki, A. Monotonic and Cyclic Bond Behavior of Deformed CFRP Bars in High Strength Concrete. Polymers 2016, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Kalupahana, W.; Ibell, T.; Darby, A. Bond characteristics of near surface mounted CFRP bars. Constr. Build. Mater. 2013, 43, 58–68. [Google Scholar] [CrossRef]
- Yin, S.; Hu, C.; Liang, X. Bonding Properties of Different Kinds of FRP Bars and Steel Bars with All-Coral Aggregate Seawater Concrete. J. Mater. Civ. Eng. 2020, 32, 04020282. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, B.; Wang, L.; Ding, J.; Chen, X. Utilizing alkali-activated materials as ordinary Portland cement replacement to study the bond performance of fiber-reinforced polymer bars in seawater sea-sand concrete. Adv. Struct. Eng. 2022, 25, 1103–1113. [Google Scholar] [CrossRef]
- Zeng, J.-J.; Liao, J.; Zhuge, Y.; Guo, Y.-C.; Zhou, J.-K.; Huang, Z.-H.; Zhang, L. Bond behavior between GFRP bars and seawater sea-sand fiber-reinforced ultra-high strength concrete. Eng. Struct. 2022, 254, 113787. [Google Scholar] [CrossRef]
- Su, X.; Yin, S.-P.; Zhao, Y.-D.; Hua, Y.-T. Experimental study on bond behavior between BFRP bars and seawater sea-sand concrete. J. Central South Univ. 2021, 28, 2193–2205. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Yu, P.; Xu, J. Bond behavior of BFRP bars in concrete under lateral pressure. Polym. Compos. 2021, 42, 6080–6093. [Google Scholar] [CrossRef]
- Nepomuceno, E.; Sena-Cruz, J.; Correia, L.; D’Antino, T. Review on the bond behavior and durability of FRP bars to concrete. Constr. Build. Mater. 2021, 287, 123042. [Google Scholar] [CrossRef]
- Rolland, A.; Argoul, P.; Benzarti, K.; Quiertant, M.; Chataigner, S.; Khadour, A. Analytical and numerical modeling of the bond behavior between FRP reinforcing bars and concrete. Constr. Build. Mater. 2020, 231, 117160. [Google Scholar] [CrossRef]
- Caro, M.; Jemaa, Y.; Dirar, S.; Quinn, A. Bond performance of deep embedment FRP bars epoxy-bonded into concrete. Eng. Struct. 2017, 147, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Veljkovic, A.; Carvelli, V.; Haffke, M.M.; Pahn, M. Effect of Small Concrete Cover on the Fatigue Behavior of GFRP Bars and Concrete Bond. J. Compos. Constr. 2019, 23. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, W.; Gribniak, V.; Hui, D. Fatigue Behavior of Concrete Beams Prestressed with Partially Bonded CFRP Bars Subjected to Cyclic Loads. Materials 2019, 12, 3352. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Luo, X.; Wang, Z.; Feng, S.; Gong, X.; Shumuye, E. Experimental Study on Bond Performance of Carbon- and Glass-Fiber Reinforced Polymer (CFRP/GFRP) Bars and Steel Strands to Concrete. Materials 2021, 14, 1268. [Google Scholar] [CrossRef]
- Gong, Y.; Shan, Y.; Wu, Y.; Wang, L.; Liu, X.; Ding, F. Bond Properties of Carbon Fiber Reinforced Polymer and Corrosion-Cracked Reinforced Concrete Interface: Experimental Test and Nonlinear Degenerate Interface Law. Materials 2021, 14, 5333. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, G.; Li, L.; Guan, Z.; Guo, M.; Yang, L.; Li, Z. Experimental Investigations on Bond Behavior between FRP Bars and Advanced Sustainable Concrete. Polymers 2022, 14, 1132. [Google Scholar] [CrossRef]
- ACI Committee 440.3R-12; Guide Test Methods for Fiber Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures. American Concrete Institute: Farmington Hills, MI, USA, 2021.
- GB/T50152-2012; Standard for test method of concrete structures. China Academy of Building Science: Bejing, China, 2012.
- ACI440.1R-06; Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. American Concrete Institute: Indianapolis, IN, USA, 2006.
- Malvar, L.J. Tensile and bond properties of GFRP reinforcing bars. ACI Mater. J. 1995, 92, 276–285. [Google Scholar]
- Cosenza, E.; Manfredi, G.; Realfonzo, R. Behavior and Modeling of Bond of FRP Rebars to Concrete. J. Compos. Constr. 1997, 1, 40–51. [Google Scholar] [CrossRef]
Grade | W/C Ratio | Seawater (Kg/m3) | Coal Ash (Kg/m3) | Cement (Kg/m3) | Sand Ratio | Sea Sand (Kg/m3) | Gravel Aggregate (Kg/m3) | Water Reducer (Kg/m3) | Total Mass (Kg/m3) | Compressive Strength /MPa |
---|---|---|---|---|---|---|---|---|---|---|
C30 | 0.521 | 184 | 70.7 | 282.79 | 0.396 | 756.26 | 1152.7 | 3.535 | 2450 | 37.5 |
C40 | 0.422 | 184 | 87.27 | 349.06 | 0.366 | 669 | 1156.3 | 4.363 | 2450 | 49.0 |
C50 | 0.345 | 184 | 106.56 | 426.24 | 0.344 | 593.7 | 1134.2 | 5.328 | 2450 | 58.9 |
Surface Type | Elastic Modulus (GPa) | Tensile Strength (MPa) |
---|---|---|
Smooth regular bars | 180.0 | 1862.3 |
Double-wrapped bars | 166.4 | 1670.5 |
Ribbed bars | 172.1 | 1634.0 |
Group | Grade of Concrete | Surface Type | c/d |
---|---|---|---|
1 | C30 | S | 2 |
2 | C40 | D | 2 |
3 | C50 | R | 2 |
4 | C50 | D | 4 |
5 | C40 | S | 4 |
6 | C30 | R | 4 |
7 | C30 | D | 7 |
8 | C40 | R | 7 |
9 | C50 | S | 7 |
Specimen ID | Measured Bond Strength MPa | ACI Bond Strength MPa | Peak Slip (mm) | Failure Mode |
---|---|---|---|---|
S-50-7-1 | 9.82 | 14.78 | 4.52 | P |
S-50-7-2 | 9.02 | 14.78 | 3.13 | P |
S-50-7-3 | 11.21 | 14.78 | 3.95 | P |
D-50-4-1 | 15.27 | 14.27 | 8.24 | P |
D-50-4-2 | 18.31 | 14.27 | 10.91 | P |
D-50-4-3 | 16.15 | 14.27 | 6.2 | S |
R-50-2-1 | 12.51 | 13.93 | 2.28 | P |
R-50-2-2 | 11 | 13.93 | 1.6 | P |
R-50-2-3 | 13.76 | 13.93 | 3.87 | P |
S-40-4-1 | 10.4 | 13.01 | 11.67 | P |
S-40-4-2 | 14.82 | 13.01 | 18.1 | P |
S-40-4-3 | 13.37 | 13.01 | 13.27 | P |
D-40-2-1 | 14.03 | 12.70 | 6.18 | S |
D-40-2-2 | 13 | 12.70 | 5.79 | S |
D-40-2-3 | 13.71 | 12.70 | 7.7 | S |
R-40-7-1 | 16.88 | 13.48 | 6.65 | P |
R-40-7-2 | 12.72 | 13.48 | 2.82 | P |
R-40-7-3 | 16.71 | 13.48 | 7.63 | P |
S-30-2-1 | 8.26 | 11.11 | 3.26 | S |
S-30-2-2 | 9.02 | 11.11 | 4.7 | S |
S-30-2-3 | 9.67 | 11.11 | 7.92 | P |
D-30-7-1 | 10.85 | 11.79 | 12.83 | P |
D-30-7-2 | 9.21 | 11.79 | 14.5 | P |
D-30-7-3 | 13.43 | 11.79 | 11.59 | P |
R-30-4-1 | 8.82 | 11.38 | 1.98 | P |
R-30-4-2 | 6.95 | 11.38 | 1.12 | P |
R-30-4-3 | 9.42 | 11.38 | 1.96 | P |
Density (g/cm3) | Young’s Modulus (GPa) | Compressive Strength (MPa) | Tensile Strength (MPa) | Poison Ratio | Dilation Angle | Eccentricity | fb0/fc0 | K | Viscosity Parameter | |
---|---|---|---|---|---|---|---|---|---|---|
SSSC (C50) | 2.42 | 308 | 58.9 | 3.72 | 0.2 | 30 | 0.1 | 1.16 | 0.667 | 0.001 |
CFRP bar | 1.78 | 170 | / | 1700 | 0.3 | / | / | / | / | / |
Parameter | D-30-7-4 | S-30-2-4 | Parameter | D-40-7-2 |
---|---|---|---|---|
4.788 | 4.363 | 0.72 | ||
−3.083 | −2.682 | 0.93 | ||
−0.168 | −1.176 | 0.07 | ||
1.33 | ||||
−1.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Xu, P.; Fan, L.; Terrasi, G.P. Study on Bond-Slip Behavior between Seawater Sea-Sand Concrete and Carbon Fiber-Reinforced Polymer (CFRP) Bars with Different Surface Shapes. Polymers 2022, 14, 2689. https://doi.org/10.3390/polym14132689
Gao J, Xu P, Fan L, Terrasi GP. Study on Bond-Slip Behavior between Seawater Sea-Sand Concrete and Carbon Fiber-Reinforced Polymer (CFRP) Bars with Different Surface Shapes. Polymers. 2022; 14(13):2689. https://doi.org/10.3390/polym14132689
Chicago/Turabian StyleGao, Jing, Penghai Xu, Lingyun Fan, and Giovanni Pietro Terrasi. 2022. "Study on Bond-Slip Behavior between Seawater Sea-Sand Concrete and Carbon Fiber-Reinforced Polymer (CFRP) Bars with Different Surface Shapes" Polymers 14, no. 13: 2689. https://doi.org/10.3390/polym14132689
APA StyleGao, J., Xu, P., Fan, L., & Terrasi, G. P. (2022). Study on Bond-Slip Behavior between Seawater Sea-Sand Concrete and Carbon Fiber-Reinforced Polymer (CFRP) Bars with Different Surface Shapes. Polymers, 14(13), 2689. https://doi.org/10.3390/polym14132689