Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Criteria
2.2. Exposure and Outcome
- P—Provisional Crowns and Fixed Dental Prosthesis;
- I—3D-Printed Technique;
- C—CAD/CAM or Conventional Technique;
- O—Physical/Mechanical Properties.
2.3. Information Sources and Search Strategy
2.4. Study Selection and Data Extraction
2.5. Quality Assessment of Included Studies
2.6. Quantitative Assessment
Author and Year | Study Type | Studied Characteristics | Studied Property | Sample Size (n) | Trade Name and Manufacturer of the Evaluated Materials | Main Chemical Composition | Specimen Fabrication Technique | Shape and Dimension of Tested Resins Samples | Layer Thickness and Orientation of Printing |
---|---|---|---|---|---|---|---|---|---|
Digholkar et al., 2016 [36] | In vitro | Flexural strength Microhardness | MP | n = 60 (20 per group) | (A) Heat-activated PMMA (N/M) (B) Ceramill TEMP (AmannGirrbach) (C) E-Dent 100 (Envisiontec GmbH) | (A) Heat cure PMMA (B) PMMA (C) Tetrahydrofurfuryl methacrylate | (A) Conventional (B) CAD/CAM Milled (C) 3D-Printed | Bars (25 mm × 2 mm × 2 mm) | layer thickness: N/M Orientation: N/M |
Tahayeri et al., 2018 [37] | In Vitro | Elastic modulus Peak stress | MP | N/M | (A) Jet (Lang Dental In(C) (B) Integrity (Dentsply) (C) NextDent C&B resin (NextDent) | (A) PMMA (B) Bisacrylic (C) Methacrylic oligomers | (A) and (B) Conventional self-cure (C) 3D-printed | Bars (25 × 2 × 2 mm) | layer thickness: 100 μm Orientation: 90° |
Park et al., 2018 [26] | In vitro | Wear resistance | MP | n = 60 (20 per group) | (A) Jet (Lang Dental Mfg. Co.) (B) Vipiblock PMMA Monocolor (VIPI) (C) C&B NextDent (NextDent) (PMM(A) | (A) PMMA (B) PMMA (C) PMMA | (A) conventional self-care (B) CAD/CAM milled (C) 3D printing | Rectangular parallelepipeds (15 × 10 × 10 mm) | layer thickness: 100 μm Orientation: 0° |
Kessler et al., 2019 [27] | In Vitro | Three-body wear | MP | n = 40 (8 per group) | (A) TetricEvoCeram (Vivadent) (B) Telio CAD (Ivoclar) (C) 3Delta temp (Deltame(D) (D) Nextdent C&B (NextDent) (E) Freeprint temp (Detax) | (A) Bis-GMA (B) PMMA (C) Methacrylate (D) Methacrylic oligomers (E) Methacrylate-based resins | (A) Conventional (B) CAD/CAM Milling (C), (D), and (E) 3D-printing | Wheel-shaped | layer thickness: N/M Orientation: N/M |
Reeponmaha et al., 2020 [16] | In vitro | Fracture Strength | MP | n = 40 (10 per group) | (A) Unifast Trad (GC chemicals) (B) Protemp 4 (3 M ESP(E) (C) Brylic Solid (Sagemax bioceramics) (D) Freeprint Temp (Detax GmbH) | (A) Methylmethacrylate resin (B) Bis-acryl resin (C) Highly polymerized PMMA resin (D) Photopolymerized Methacrylate-based resins | ((A) and ((B): Conventional (C) CAD/CAM Milling (D) 3D-printing | Provisional crowns cemented on prepared epoxy die replicated from prepared tooth | layer thickness: N/M Orientation: N/M |
Ibrahim et al., 2020 [38] | In vitro | Fracture Resistance | MP | n = 16 (8 per group) | (A) Telio CAD disc ( Ivoclar Vivadent) (B) NextDent C&B resin (NextDent B.V) | (A) PMMA (B) MMA | (A) CAD/CAM Milling (B) 3D-printing | Provisional crowns cemented on prepared epoxy die replicated from prepared tooth | layer thickness: 50 μm Orientation: N/M |
Shin et al., 2020 [28] | In vitro | Color stability Water sorption and solubility | PP | n = 200 (40 per group) | (A) Polycarbonate block (Line dental la(B) (B) Vipi block monocolor (Dental VIPI Ltd.) (C) MAZIC Duro (Vericom) (D) Nextdent C&B (Nextdent) (E) denture teeth A2 resins (Formlabs In(C) | (A) Polycarbonate (B) PMMA (C) dispersed-filler composite (DF(C) (D) Methacrylic oligomers (E) UDMA | (A), (B), (C): CAD/CAM Milling (D), (E) 3D-printing | disk-shaped (10 mm diameter, 3 mm thickness) | layer thickness: 100 μm Orientation: N/M |
Suralik et al., 2020 [39] | In vitro | Fracture Strength | MP | n = 45 (15 per group) | (A) Jet (Lang Dental Inc.) (B) Zirlux Temp (Henry Schein) (C) Freeprint Temp (DETAX GmbH) | (A) PMMA (B) PMMA (C) Methacrylate-based resins | (A) Conventional (Self-cur(E) (B) CAD/CAM Milling (C) 3D-Printing | Provisional 3-unit fixed dental prosthesis (FDP) attached to implant abutments of the master metal typodont, with no luting agent. | layer thickness: 50 μm Orientation: 0° |
Reymus et al., 2020 [40] | In vitro | Fracture load | MP | n = 195 (15 per group) | (A) Luxatemp (DMG) (B) Telio CAD (Ivoclar-Vivadent) (C) Experimental (GC Europ(E) (D) NextDent C&B (NextDent) (E) Freeprint temp (Detax) F) 3Delta temp (Deltame(D) | (A) Bis-acryl Methacrylate (B) PMMA Polymer (C) Methylmethacrylates (D) Methylmethacrylates (E) Methylmethacrylates F) Methylmethacrylates | (A) Conventional (B) CAD/CAM milling (C), (D), (E), and (F): 3 D printing | A full-anatomic three-unit FDP attached to a steel abutment model with no luting agent. | layer thickness: N/M Orientation: N/M Long-axis positioned either occlusal, buccal, or distal to the printer’s platform. |
Revilla-León et al., 2020 [41] | In vitro | Color dimensions | PP | n = 420 (60 per group) | (A) Protemp 4 (3M ESP(E) (B) Anaxdent (Anaxdent) (C) FreePrint Temp (Detax) (D) E-Dent 400 (EnvisionTE(C) (E) C&B (NextDent) (F) C&B MFH ((NextDent) (G) VeroGlaze MED620 (Stratasys) | (A) Bis-acryl composite (B) PMMA (C) Monomer-based acrylic esters (D) Monomer based on acrylic esters (E) Methylmethacrylates F) Microfilled hybrid G) Monomer based on acrylic esters | (A) and (B) Conventional (C), (D), (E), and (F): 3D-printed | Discs (10 mm diameter, 2 mm thickness) | layer thickness: N/M Orientation: N/M |
Atria et al., 2020 [42] | In vitro | Color stability Surface roughness | PP MP | n = 40 (10 per group) | (A) Marche (March(E) (B) Protemp (3M ESP(E) (C) Telio CAD (Ivoclar Vivadent) (D) Raydent C&B (3D-Materials) | (A) acrylic resin (B) bis-acryl resin (C) PMMA (D) Hybrid composite Resin | (A) and (B): Conventional (C) CAD/CAM Milled (D) 3D-Printed | Rectangular blocks (1 mm × 1.7 mm × 0.6 and 1.3-mm thickness) | layer thickness: 100 μm Orientation: 90° |
Park et al., 2020 [43] | In vitro | Flexural strength | MP | n = 75 (15 per group) | (A) Jet Tooth ShadeTM Powder (Lang Dental Co.) (B) ViPi (VIPI Co.) (C) NextDent C&B (NextDent Co.) (D) Standard (GPGR04) (Formlabs Co.) (E) PLA (ColorFabb Co.) | (A) PMMA (B) PMMA (C) PMMA (D) PPMA (E) Polylactic acid | (A) Conventional (B) CAD/CAM Milled (C) 3D-Print: DLP (D) 3D-print: SLA (E) 3D-print: FDP | 3-unit FDP fitted on the abutment of the metal jig without cementation | layer thickness: (C) & (D) 25–100 um (E) 100–500 um Orientation: 30° |
Song et al., 2020 [44] | In vitro | color stability Water sorption & Solubility | PP | For water sorption and solubility: n = 60 (10 per group) For Color stability: n = 120 (20 per group, 10 for coffee and 10 for te(A) | (A) Alike (GC Co.) (B) Luxatemp Automix plus (DMG) (C) PMMA Disk (Yamahachi Dental Co) (D) Telio CAD (Ivoclar Vivadent) (E) VeroGlaze (Stratasys) (F) E-dent 100 (EnvisionTEC GmbH) | (A) Polymethyl methacrylate (B) Bis-acryl methacrylate (C) Polymethyl methacrylate (D) Polymethyl methacrylate (E) Bio-compatible photopolymer (F) Multifunctional Acrylic resin | (A) and (B) Conventional (C) and (D): CAD/CAM Milled (E) and (F): 3D-printed | disk-shaped (15 mm diameter, 1 mm thickness) | layer thickness: N/M Orientation: N/M |
Yao et al., 2021 [45] | In vitro | color stability | PP | n = 80 (40 per group) | (A) Temp Esthetic 98 (Harvest Dental Products) (B) NextDent Crown and Bridge resin (NextDent) | (A) PMMA (B) Methylmethacrylates | (A) CAD/CAM milling (B) 3D-Printing | Provisional crowns cemented to the 3D-printed abutment teeth with interim luting agent | layer thickness: N/M Orientation: N/M |
Abad-Coronel et al., 2021 [46] | In vitro | Fracture Resistance | MP | n = 40 (20 per group) | (A) Vipiblock Trilux: (VIPI) (B) PriZma 3D Bio Prov: (MarkertechLabs) | (A) PMMA (B) Light-Curing Micro Hybrid Resin | (A) CAD/CAM milling (B) 3D-Printing | A 3-unit FDP fitted on a 3D-printed resin master typodont without any fixing agent. | layer thickness: N/M Orientation: N/M |
Myagmar et al., 2021 [47] | In vitro | Wear resistance Surface roughness | MP | n = 48 (16 per group, later divided into 8 per subgroup based on cycles of chewing simulation) | (A) JetTM (Lang Dental Manufacturing) (B) Yamahachi PMMA Disk (Yamahachi Dental Manufacturing) (C) NextDent C&B (NextDent) | (A) PMMA (B) PMMA (C) Methacrylic oligomers | (A) Conventional (B) CAD/CAM Milled (C) 3D-Printed | rectangular parallelepipeds (15 × 10 × 10 mm) | layer thickness: 100 μm Orientation: 0° |
Tas¸ın et al., 2021 [48] | In vitro | color stability Surface roughness | PP MP | n = 320 (80 per group) Divided into 2 subgroups n = 40 (i) conventional polishing (ii) surface sealant covering each group (n = 10) immersed in 4 different solutions | (A) Temdent Classic (Schütz-Dental) (B) Protemp 4 (3M ESP(E) (C) Duo Cad (FSM DENTAL) (D) Temporis (DWS) | (A) PMMA (B) Bis-acryl composite resin (C) PMMA (D) Hybrid composite Resin | (A) and (B) Conventional (C) CAD/CAM Milled (D) 3D-printed | disk-shaped (10 mm diameter, 2 mm thickness) | layer thickness: 100 μm Orientation: N/M |
Revilla-León et al., 2021 [49] | In vitro | Knoop hardness | MP | n = 360 (60 per group) n = 20 per group used for testing each property | (A) Protemp 4 (3M ESP(E) (B) Anaxdent new outline dentin (Anaxdent) (C) FreePrint temp (Detax) (D) E-Dent 400 C&B MFH (Envisionte(C) (E) NextDent C&B MFH (3D Systems) (F) Med620 VEROGlaze (Stratasys) | (A) bis-acryl resin (B) acrylic resin (C)Methylmethacrylates (D) Monomer based on acrylic esters (E) Micro-Filled Hybrid Methacrylic oligomers (F) N/M | (A) and (B): Conventional (C), (D), (E), and (F): 3D-Printed | Disks (10 mm diameter, 2 mm thickness) | layer thickness: 50 μm Orientation: 90° |
Mayer et al., 2020 [50] | In vitro | Fracture load & Two-body wear | MP | n = 152 (48 per group for 3D-printed and 8 for CAD/CAM Mille(D) | ((A) Telio CAD disc (Ivoclar Vivadent) (B) Freeprint temp (Detax) ((C) GC Temp PRINT (GC Europe) ((D) Next dent C&B MFH (NextDent) After printing, excessive resin removed from the specimen’s surface in 3 ways: (i) Centrifugation (CEN); (ii) Chemical cleaning by Isopropanol (ISO); (iii) Chemical cleaning by Yellow Magic (YEL) | (A) PMMA (B) Methylmethacrylates (C) UDMA (D) Methylmethacrylates | (A) CAD/CAM milling (B), (C), and (D): 3D-Printing | A full anatomic, three-unit FDP fixed on steel abutment model with a dual-cure self-adhesive resin composite cement | layer thickness: N/M Orientation: N/M |
Henderson et al., 2022 [51] | In vitro | Failure Load | MP | n = 180 (60 per group) Storage time: 1 day and 30 days & Loading rate: 1, 10 and Combined 1 and 10 mm/min | (A) 3M-Paradigm (3M Oral Car(E) (B) Solid Shade PMMA Disc (TD Dental Supply) (C) Dentca Crown and Bridge resin (Dentc(A) | (A) Bis-acryl resin (B) PMMA (C) bis-acryl resin | (A) Conventional (B) CAD/CAM milling (C) 3D-Printing | 3-unit interim FDP cemented onto 3D-printed resin dies. | layer thickness: N/M Orientation: N/M |
Martín-Ortega et al., 2022 [52] | In vitro | Fracture Resistance | MP | n = 40 (10 per group) (10 each anterior and posterior, CAD/CAM milled and 3D-printe(D) | (A) and (C): Vivodent CAD Multi: (Ivoclar Vivadent AG) (B) and (D): SHERAprint-cb (Sher(A) | (A) PMMA (B) Photopolymer interim dental resin | (A) CAD/CAM milling (B) 3D-Printing | Full anatomic crowns (20 anterior and 20 posterior) cemented on implant abutment with autopolymerizing composite resin cement | layer thickness: 50 μm Orientation: 45° |
Simoneti et al., 2022 [53] | In vitro study | flexural strength Vickers microhardness Elastic Modulus surface roughness before and after polishing | MP | Interim single crowns n = 40 (10 per group) Rectangular blocks n = 40 (10 per group) disks n = 40 (10 per group) | (A) Dencor (Artigos Odontológicos Clássico Ltd.(A) (B) Yprov Bisacryl (Yller Biomaterials) (C) PA2201 (Stratasys Direct Manufacturing) (D) Gray Resin (Formlabs In(C) | (A) PMMA (B) Bis-acryl resin (C) PMMA (D) Oligomers methacrylates | (A) and (B): Conventional (C) and (D) 3D-Printed SLS & SLA | Interim single crowns rectangular blocks 4 × 2 × 10 mm disks 10 mm diameter, 2 mm thickness | layer thickness: N/M Orientation: N/M |
Crenn et al., 2022 [29] | In vitro | 3-point bending test (elastic modulus) Flexural strength Hardness | MP | n = 40 (10 per group) | (A) Integrity (Dentsply Caulk) (B) Unifast (GC, Tokyo) (C) PLA Bio source (Nanovi(A) (D) Temporary CB (Formlabs) | (A) Bisacrylic (B) Methylmethacrylate resin (C) Polylactic acid (D) Esterification products of 4,4′-isopropylidenediphenol | (A) and (B): Conventional (C) 3D-printed (FDM) (D) 3D-Printed (SL(A) | Bars (25 mm × 2 mm × 2 mm) | layer thickness: FDM: 100 μm SLA: 50 μm Orientation: FDM: 0° SLA: 0° |
Tas¸ın et al., 2022 [30] | In vitro | Flexural strength Resilience Toughness Modulus of elasticity | MP | n =120 (30 per group, 10 each for flexural strength, resilience, and toughness) Sub group (n = 10) based on different thermocycling | (A) Temdent Classic (Schütz-Dental) (B) Protemp 4 (3M ESP(E) (C) Duo Cad (FSMDENTAL) (D) Temporis (DWS) | (A) MMA (B) Bis-acryl (C) PMMA (D) Composite resin | (A) and (B): conventional (C) CAD/CAM Milled (D) 3D-printed | Rectangular plate (25 × 2 × 2 mm) | layer thickness: 60 μm Orientation: 90° |
Pantea et al., 2022 [31] | In vitro | Flexural strength Elastic Modulus | MP | n = 40 (10 per group, 5 each for flexural strength and compression strength) | (A) Duracyl (SpofaDental a.s) (B) Superpont C + B (SpofaDental a.s.) (C) NextDent C&B MFH (NextDent) (D) HARZ Labs Dental Sand (HARZ Labs) | (A) Auto-polymerized (PMM(A) (B) Pressure/heat-cured (PMM(A) (C) Microfilled hybrid PMMA (D) PMMA | (A) Conventional self-cure (B) Conventional heat cured (C) and (D): 3D-Printed | For Flexural strength: Bar shaped (80 × 20 × 5 mm) For Compressive strength: Cylindrical shaped (25 × 25 mm) | layer thickness: 50 μm Orientation: N/M |
Item | 1 | 2a | 2b | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Studies | |||||||||||||||
Digholkar et al., 2016 [36] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | N | Y | N |
Tahayeri et al., 2018 [37] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | N | Y | Y |
Park et al., 2018 [26] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | N | Y | N |
Kessler et al., 2019 [27] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | Y | N |
Reeponmaha et al., 2020 [16] | Y | Y | Y | Y | Y | Y | Y | N | N | N | Y | Y | N | Y | N |
Ibrahim et al., 2020 [38] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | N | N | N |
Shin et al., 2020 [28] | Y | Y | Y | Y | Y | N | Y | Y | N | N | Y | Y | Y | Y | Y |
Suralik et al., 2020 [39] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | Y | Y |
Reymus et al., 2020 [40] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | Y | N |
Revilla-León et al., 2020 [41] | Y | Y | Y | Y | Y | Y | N | N | N | N | Y | Y | Y | N | N |
Atria et al., 2020 [42] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | N | N | N |
Park et al., 2020 [43] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | Y | N |
Song et al., 2020 [44] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | N | N | N |
Yao et al., 2021 [45] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | N | N |
Abad-Coronel et al., 2021 [46] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | Y | Y |
Myagmar et al., 2021 [47] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | Y | N |
Taşın et al., 2021 [48] | Y | Y | Y | Y | Y | Y | N | N | N | N | Y | Y | Y | N | N |
Revilla-León et al., 2021 [49] | Y | Y | Y | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | N |
Mayer et al., 2021 [50] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | N | N | N |
Henderson et al., 2021 [51] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | N | N | N |
Martín-Ortega et al., 2022 [52] | Y | Y | Y | Y | Y | N | Y | N | N | N | Y | Y | Y | N | N |
Simoneti et al., 2022 [53] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | Y | N |
Crenn et al., 2022 [29] | Y | Y | Y | Y | Y | Y | N | N | N | N | Y | Y | N | Y | N |
Taşın et al., 2022 [30] | Y | Y | Y | Y | Y | Y | N | N | N | N | Y | Y | Y | N | N |
Pantea M. et al., 2022 [31] | Y | Y | Y | Y | Y | N | N | N | N | N | Y | Y | Y | Y | Y |
Author and Year | Immersion Media/Surface Treatment | Immersion/Exposure Duration/Aging | Mean Change in Color of Conventional Polymerized Resin | Mean Change in Color of CAD/CAM Milled Provisional Resin | Mean Change in Color of 3D-Printed Provisional Resin | Instrument Used | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|---|
Yao et al., 2021 [45] | (i) Control (no surface treatment) (ii) Polishing (iii) Polishing + Optiglaze coating (iv) Polishing + Skinglaze coating | Aging: Thermocycling: 5000 cycles at 5–50 °C (simulating 6 months of physiological aging) | N/A | ΔE (i) 2.38 ± 0.44 (ii) 1.83 ± 0.51 (iii) 1.01 ± 0.38 (iv) 1.85 ± 0.78 | ΔE (i) 3.83 ± 0.71 (ii) 2.66 ± 0.89 (iii) 1.37 ± 0.67 (iv) 1.40 ± 0.73 | Digital spectrophotometer (Vita Easyshade V) |
|
Shin et al., 2020 [28] | Immersion media: (i) Grape juice (ii) Coffee (iii) Curry (iv) Distilled water | Upto 30 days inside a 37 °C (simulating 2.5 years) | N/A | ΔE00 Between 0.64 and 4.12 | ΔE00 Between 4.47 and 22.85 | colorimeter (Minolta Cr321 Chromameter) |
|
Song et al., 2020 [44] | Immersion media: (i) Coffee (ii) Black tea | Week: 1,2,4,8,12 | ΔE after week 12 (A) Alike: 9.89 ± 1.95 (coffee) 14.69 ± 3.05 (Black Tea) (B) Luxatemp Automix plus: 4.20 ± 1.57 (coffee) 6.52 ± 2.50 (Black Tea) | ΔE after week 12 (C) PMMA Disk: 10.35 ± 1.14 (coffe(E) 16.66 ± 3.05 (Black Tea) (D) Telio CAD: 21.07 ± 2.86 (coffee) 24.60 ± 4.30 (Black Tea) | ΔE after week 12 (E) VeroGlaze: 19.80 ± 2.85 (coffe(E) 16.90 ± 2.20 (Black Tea) (F) E-dent 100: 20.01 ± 3.00 (coffee) 22.13 ± 3.51 (Black Tea) | spectrocolorimeter (Xrite Benchtop Spectrophotometer) |
|
Taşın et al., 2021 [48] | Surface treatment: (i) conventional polishing (ii) surface sealant—biscover LV Immersion Media: (A) distilled water (B) Cola (C) Coffee (D) Red Wine | Days: 1, 7 & 30 | ΔE00 after 30 days PT & CAT Threshold values ## (A) Temdent Classic (i) Polished: Distilled water (1.87): > PT Cola (3.29), Coffee, Wine > CAT (ii) Surface sealant: Distilled water < PT Cola < CAT Coffee, Wine > CAT (B) Protemp 4 (i) Polished: Distilled water: > PT Cola, Coffee, Wine > CAT (ii) Surface sealant: Distilled water (1.34): < PT Cola (2.54) < CAT Coffee, Wine > CAT | ΔE00 after 30 days (C) Duo Cad: (i) Polished: Distilled water: < PT Cola < CAT Coffee, Wine > CAT (ii) Surface sealant: Distilled water: < PT Coffee (2.15) and Cola < CAT Wine > CAT | ΔE00 after 30 days (D) Temporis: (i) Polished: Distilled water: < PT Cola < CAT Coffee, Wine > CAT (ii) Surface sealant: Distilled water: < PT Cola < CAT Coffee, Wine > CAT | Digital spectrophotometer (VITA Easyshade; Vita Zahnfabrik) |
|
Atria et al., 2020 [42] | N/A | Aging: Thermocycling: 6000 cycles at 5–50 °C | PT and CAT Threshold values ## (A) Marche: 0.6 mm thickness: ΔE00 > PT 1.3 mm thickness: ΔE00 < PT (B) Protemp: 0.6 mm thickness: ΔE00 > PT 1.3 mm thickness: ΔE00 < PT | (C) Telio CAD: 0.6 mm thickness: ΔE00 < PT 1.3 mm thickness: ΔE00 < PT | (D) Raydent C&B: 0.6 mm thickness: ΔE00 > CAT 1.3 mm thickness: ΔE00 > CAT | Spectrophotometer (VITA Easyshade; Vita Zahnfabrik) | ΔE00: 3D-Printed hybrid composite > Conventional acryic and bisacrylic > CAD/CAM Milled PMMA |
Author and Year | Water Sorption of Conventional Cured Resin | Water Sorption of CAD/CAM Milled Resin | Water Sorption of 3D-Printed Resin | Solubility of Conventional Cured Resin | Solubility of CAD/CAM Milled Resin | Solubility of 3D-Printed Resin | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|---|
Shin et al., 2020 [28] | N/A | (A) Polycarbonate block: 0.43% (B) Vipi block (PMMA): 1.45% (C) MAZIC Duro (DFC): ≅0.88% | (D) Nextdent C&B: 1.04% (E) Denture teeth A2 Resin: 1.21% | N/A | (A) Polycarbonate block: 0.12% (B) Vipi block (PMM(A) ≅0.34% (C) MAZIC Duro (DFC): = 0.07% | (D) Nextdent C&B: 0.53% (E) Denture teeth A2 Resin: 0.47% | Water sorption: Conventional PMMA > 3D-Printed Denture teeth A2 Resin > 3D-Printed PMMA > Conventional Polycarbonate > Conventional DFC Water Solubility: 3D-Printed PMMA > 3D-Printed Denture teeth A2 Resin > Conventional Vipi block PMMA > Conventional DFC > conventional Polycarbonate |
Song et al., 2020 [4] | (A) Alike: 32.23 ± 5.93 (B) Luxatemp Automix plus: 14.15 ± 1.30 | (C) PMMA Disk: 23.16 ±1.25 (D) Telio CAD: 19.13 ± 1.41 | (E) VeroGlaze: 35.02 ± 1.43 (F) E-dent 100: 20.08 ± 2.27 | In μgm/mm3 (A) Alike: 3.54 ± 1.81 (B) Luxatemp Automix plus: 0.38 ± 0.56 | In μgm/mm3 (C) PMMA Disk: 0.84 ± 0.61 (D) Telio CAD: 0.97 ± 0.47 | In μgm/mm3 (E) VeroGlaze: 0.52 ± 0.80 (F) E-dent 100: 2.78 ± 1.49 | Water sorption: Conventional PMMA > 3D-printed photopolymer > CAD/CAM Milled (PMMA Disk) > 3D-Printed acrylic > CAD/CAM milled PMMA > Conventional bis-acrylic. Water Solubility: Conventional PMMA & 3D-printed acrylic > 1 μg/mm3. For other four groups <1 μg/mm3. |
Author and Year | Exposure Agent/Aging Technique | Testing Machine Used | Mean Maximum Force at Fracture for Conventional Resin (N) | Mean Maximum Force at Fracture for CAD/CAM Milled Resin (N) | Mean Maximum Force at Fracture for 3D-Printed Resin (N) | Conclusions and/or Suggestions |
---|---|---|---|---|---|---|
Reeponmaha et al., 2020 [16] | (A) Thermal Cycling: 5000 cycles at 5–55 °C (B) Cyclic occlusal load: 100 N at 4 Hz for 100,000 cycles | Universal testing machine | (A) Unifast Trad: 657.87 ± 82.84 (B) Protemp 4: 1125.94 ± 168.07 | (C) Brylic Solid: 953.60 ± 58.88 | (D) Freeprint Temp: 1004.19 ± 122.18 |
|
Ibrahim et al., 2020 [38] | (A) Thermocycling: 1250 cycles at 5–55 °C (B) Mechanical aging: 50 N, 37,500 cycles | Universal testing machine | N/A | (A) TelioCAD: 933.46 ± 104.49 | (B) Next dent C&B resin: 1226.48 ± 48.33 |
|
Suralik et al., 2020 [39] | N/M | Universal Instron machine | (A) Jet:300.61 ± 98.94 | (B) Zirlux Temp: 294.64 ± 60.34 | (C) Freeprint Temp: 408.49 ± 132.16 |
|
Reymus et al., 2020 [40] | Artificial aging: stored in distilled water for 21 days at 37 °C in an incubator. | Universal testing machine | (A) Luxatemp: 551.7 ± 130 | (B) Telio CAD: 881.4 ± 239.2 | Depending on type of post-curing unit used: [Otoflash (OF), Printbox (PB), Labolight (LL)] (C) Experimental: LL: 585.4 ± 66.8, OF: 746.4 ± 62.1, PB: 874.3 ± 104.0 (D) NextDent C&B LL: 775.9 ± 57.6, OF: 1050.4 ± 133.3, PB: 871.5 ± 398.1 (E) Freeprint temp LL: 777.6 ± 95.9, OF: 638.0 ± 175.5, PB: 598.6 ± 170.1 (F) 3Delta temp LL: 609.6 ± 118.8, OF: 868.2 ± 139.8, PB: 678.4 ± 193.7 |
|
Mayer et al., 2020 [50] | Three different cleaning methods for 3D printed specimens and chewing simulation (vertical load of 50 N and a lateral movement of 0.7 mm for 480,000 masticatory cycles) | Universal testing machine | N/A | (A) Telio CAD: 1427 ± 77 | (B) Freeprint temp: 623 ± 156, 539 ± 152 & 615 ± 124 ((C) GC Temp PRINT: 878 ± 139, 796 ± 121, 831 ± 260 ((D) Next dent C&B MFH: 750 ± 156, 660 ± 198, 813 ± 157 |
|
Abad-Coronel et al., 2021 [46] | Thermocycling: 5000 cycles, at 5 °C and 55 °C in distilled water | Universal testing machine | N/A | (A) Vipiblock Trilux: 1663.57 ± 130.25 | PriZma 3D Bio Prov: 1437.74 ± 73.41 | FS: CAD/CAM Milled PMMA > 3D-Printed micro-hybrid resins |
Martín-Ortega et al., 2022 [52] | Thermocycling: 525,000 cycles, at 5 °C to 55 °C | Universal testing machine | N/A | (A) and (C): Vivodent CAD Multi: Anterior group: 988.4 ± 54.8 Posterior group: 423.8 ± 68.0 | (B) and (D): SHERAprint-cb: Anterior group: 636.5 ± 277.1 Posterior group: 321.3 ± 128.6 N | FR: CAD/CAM Milled PMMA > 3D-Printed photopolymer resinFR: Anterior group > Posterior group |
Henderson et al., 2022 [51] | Storage time in incubator (1 day or 30 days). | Universal testing machine | 3M-Paradigm: Loading Rate -Combined 1 and 10 mm/min Storage time: 1 day: 537 ± 117 N 30 Days: 572 ± 139 N | Solid Shade PMMA Disc: Loading Rate -Combined 1 and 10 mm/Min Storage time: 1 day: 683 ± 115 N 30 Days: 547 ± 92 N | Dentca Crown and Bridge resin: Loading Rate—Combined 1 and 10 mm/Min Storage time: 1 day: 522 ± 98 N 30 Days: 416 ± 109 N | FaL: CAD/CAM Milled > Conventional > 3D-Printed |
Author and Year | Mean Microhardness for Conventional Resin (Kgf/mm2/KHN) | Mean Microhardness for CAD/CAM Milled Resin (Kgf/mm2/KHN) | Mean Microhardness for 3D-Printed Resin (Kgf/mm2/KHN) | Surface Treatment/Exposure Agent/Ageing Technique | Testing Machine Used | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|
Simoneti et al., 2022 [53] | Vickers microhardness (A) Acrylic resin: 14.2 ± 2.6 Kgf/mm2 (B) Bis-acryl resin: 10.7 ± 2.2 Kgf/mm2 | NA | Vickers microhardness (C) SLA resin 8.4 ± 0.2 Kgf/mm2 (D) SLS resin 10.3 ± 1.0 Kgf/mm2 | Polished specimens | Microdurometer (FM-700; Future-Tech Corp.). | Microhardness: Conventional Acrylics > Conventional Bisacrylic > 3D-printed PMMA > 3D-printed methacrylates |
Revilla-León et al., 2021 [49] | Knoop hardness (A) Protemp 4: 4.92 ± 0.36 KHN (B) Anaxdent new outline dentin: 13.35 ± 5.84 | N/A | Knoop hardness (C) FreePrint temp: 12.55 ± 2.93 KHN(D) E-Dent 400 C&B MFH: 13.03 ± 3.29 KHN (E) NextDent C&B MFH: 9.91 ± 3.71 (F) Med620 VEROGlaze: 13.45 ± 2.93 | N/M | Microhardness tester (MMT-X7, Matsuzawa) |
|
Digholkar et al., 2016 [33] | Knoop hardness (A) heat activated PMMA: 27.36 ± 0.535 KHN | Knoop hardness (B) Ceramill TEMP: 25.33 ± 0.900 KHN | Knoop hardness (C) E-Dent 100: 32.77 ± 1.361 KHN | N/M | Microhardness tester (Reichert Austria) | 3D-printed Microhybrid filled composite >Conventional heat activated PMMA >CAD/CAM milled PMMA |
Crenn et al., 2022 [29] | Vickers Microhardness (A) Integrity: 27.3 ± 1.8 HV (B) Unifast: 18.4 ± 1.2 HV | N/A | Vickers Microhardness (C) PLA Bio source: 17.5 ± 0.7 HV (D) Temporary CB: 28.9 ± 2.9 HV | Polished specimens | Vickers Microhardness tester (MH3, Mekton, Turkey) | 3D-printed SLA > Conventional Bisacrylic > conventional Methylmethacrylate > 3D-Printed FDM |
Author and Year | SR of Conventional Material Before Surface Treatment (Ra in μm) | SR of Conventional Material After Surface Treatment (Ra in μm) | SR of CAD/CAM Milled Materials Before Surface Treatment (Ra in μm) | SR of CAD/CAM Milled Materials after Surface Treatment (Ra in μm) | SR of 3D-Printed Materials before Surface Treatment (Ra in μm) | SR of 3D-Printed Materials after Surface Treatment (Ra in μm) | Parameters of the Clinical Simulation | Exposure Medium Causing Change in SR | Measuring Device | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|---|---|---|---|
Simoneti et al., 2022 [53] | Before polishing (A) Dencor (PMMA): 4.8 ± 0.6 (B) Yprov Bisacryl (Bis-acryl resin) 1.5 ± 0.3 | After polishing (A) Dencor (PMMA): 0.9 ± 0.2 (B) Yprov Bisacryl (Bis-acryl resin) 0.7 ± 0.1 | N/A | N/A | Before polishing (C) PA2201 (SLS resin) 6.2 ± 0.6 (D) Gray Resin (SLA resin) 1.5 ± 0.4 | After polishing (C) PA2201 (SLS resin) 1.2 ± 0.3 (D) Gray Resin (SLA resin) 0.7 ± 0.1 | Polishing | N/A | Contact profiler (SJ-201; MitutoyoInc) | Ra after polishing: 3D-Printed SLS > conventional PMMA > Conventional bisacrylic = 3D printed SLA Significant reduction in SR after polishing. |
Tas¸ın et al., 2021 [48] | Polishing (A) Temdent Classic (PMMA): 0.52 ± 0.09 (B) Protemp 4 (Bis-acrylic): 0.31 ± 0.04 | Polishing + Surface Sealant (A) Temdent Classic (PMMA): 0.43 ± 0.07 (B) Protemp 4 (Bis-acrylic): 0.29 ± 0.05 | Polishing (C) Duo Cad (PMMA): 0.35 ± 0.07 | Polishing + Surface Sealant (C) Duo Cad (PMMA): 0.32 ± 0.06 | Polishing (D) Temporis (Hybrid composite): 0.23 ± 0.04 | Polishing + Surface Sealant (D) Temporis (Hybrid composite): 0.23 ± 0.03 | Polishing and surface sealant | N/A | Contact profilometer (MarSurf PS10; Mahr GmbH) | Ra after polishing only: Conventional PMMA > CAD/CAM Milled PMMA > Conventional Bisacrylic > 3D-Printed hybrid composite Significant reduction in SR after application of surface sealant for all groups except in 3D-printed materials. |
Atria et al., 2020 [42] | Ra before: (A) Marche (1.3 mm): 0.22 ± 0.01 Marche (0.6 mm): 0.26 ± 0.02 (B) Protemp (1.3 mm): 0.18 ± 0.01 Portemp (0.6 mm): 0.20 ± 0.02 Ra after Thermocycling: (A) Marche (1.3 mm): 0.31 ± 0.02 Marche (0.6 mm): 0.31 ± 0.02 (B) Protemp (1.3 mm): 0.23 ± 0.01 Portemp (0.6 mm): 0.25 ± 0.02 Δ Ra (A) Marche (1.3 mm): 0.09 ± 0.02 Marche (0.6 mm): 0.05 ± 0.02 (B) Protemp (1.3 mm): 0.05 ± 0.02 Portemp (0.6 mm): 0.04 ± 0.02 | Ra before: (C) TelioCAD (1.3 mm): 0.20 ± 0.02 TelioCAD (0.6 mm): 0.20 ± 0.02 Ra after Thermocycling: (C) TelioCAD (1.3 mm): 0.19 ± 0.01 TelioCAD (0.6 mm): 0.20 ± 0.01 Δ Ra (C) TelioCAD (1.3 mm): −0.01 ± 0.02 TelioCAD (0.6 mm): 0.00 ± 0.01 | Ra before: (C) Raydent (1.3 mm): 0.26 ± 0.03 Raydent (0.6 mm): 0.21 ± 0.02 Ra after Thermocycling: (C) Raydent (1.3 mm): 0.54 ± 0.03 Raydent (0.6 mm): 0.60 ± 0.03 Δ Ra (C) Raydent (1.3 mm): 0.28 ± 0.02 Raydent (0.6 mm): 0.38 ± 0.03 | Polishing | Thermocycling: 6000 cycles at 5–55 °C | Rugosimeter (SRT 1200; PCE instruments) | Δ Ra: 3D-Printed hybrid composite > Conventional PMMA > Conventional Bis-acryl resin > CAD/CAM PMMA. | |||
Myagmar et al., 2021 [47] | Ra Before Wear test 0.26 ± 0.02 | After wear test (A) 30,000 cycles: 0.92 ± 0.09 (B) 60,000 cycles: 1.63 ± 0.44 | Before Wear test 0.19 ± 0.03 | After wear test (A) 30,000 cycles: 0.88 ± 0.05 (B) 60,000 cycles: 1.27 ± 0.49 | Before Wear test 0.13 ± 0.01 | After wear test (A) 30,000 cycles: 0.48 ± 0.06 (B) 60,000 cycles: 0.58 ± 0.06 | Polishing | Simulated chewing subjected to 30,000 or 60,000 cycles of chewing simulation against the metal abrader | Confocal laser scanning microscope (LSM 800 MAT, Zeiss) | Ra after wearing: Conventional PMMA > CAD/CAM Milled PMMA > 3D-Printed PMMA |
Author and Year | Mean/Medians and Interquartile Ranges (IQRs) of the Volume Loss (mm3) for Conventional | Mean/Medians and Interquartile Ranges (IQRs) of the Volume Loss (mm3) for CAD/CAM Milled | Mean/Medians and Interquartile Ranges (IQRs) of the Volume Loss (mm3) for 3D-Printed | Mean/Medians and IQRs of the Maximal Depth Loss (mm) for Conventional | Mean/Medians and IQRs of the Maximal Depth Loss (mm) for CAD/CAM Milled | Mean/Medians and IQRs of the Maximal Depth Loss (mm) for 3D-Printed | Parameters of the Chewing Simulator | Measuring Device | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|---|---|---|
Park et al., 2018 [26] | Median and IQR Jet (PMMA) Against Zirconia abrader: 1.06 (0.93–1.63) Against metal abrader: 1.06 (0.73–2.30) | Median and IQR Vipiblock (PMMA) Against Zirconia abrader: 1.20 (0.90–1.42) Against metal abrader: 1.11 (0.63–1.81) | Median and IQR C&B (PMMA) Against Zirconia abrader: 1.11 (0.96–1.50) Against metal abrader: 1.22 (0.47–2.20) | Median and IQR Jet (PMMA) Against Zirconia abrader: 0.35 (0.32–0.41) Against metal abrader: 0.38 (0.25–0.57) | Median and IQR Vipiblock (PMMA) Against Zirconia abrader: 0.35 (0.30–0.41) Against metal abrader: 0.38 (0.28–0.51) | Median & IQR C&B (PMMA) Against Zirconia abrader: 0.36 (0.32–0.43) Against metal abrader: 0.42 (0.22–0.56) |
| 3-axis blue LED light scanner (Identica Hybrid) | Wear resistance of the 3D-printed PMMA resin material is comparable to CAD/CAM milled PMMA or the conventionally fabricated PMMA resin materials. 3D-printed resins provide adequate wear resistance for dental use. |
Mayer et al., 2020 [50] | N/A | Mean ± SD Against metal abrader: (A) Telio CAD −0.421 ± 0.216 | Mean ± SD Against metal abrader: (B) Freeprint temp CEN: −0.168 ± 0.078 ISO: −0.137 ± 0.064 YEL: −0.134 ± 0.052 (C) GC Temp PRINT CEN: −0.193 ± 0.075 ISO: −0.283 ± 0.13 YEL: −0.236 ± 0.037 (D) Next dent C&B MFH CEN: −0.246 ± 0.072 ISO: −0.142 ± 0.028 YEL: −0.15 ± 0.065 | N/A | Mean ± SD Against metal abrader: (A) Telio CAD disc −0.181 ± 0.071 | Mean ± SD Against metal abrader: (B) Freeprint temp CEN: −0.115 ± 0.026 ISO: −0.100 ± 0.024 YEL: −0.107 ± 0.023 (C) GC Temp PRINT CEN: −0.145 ± 0.027 ISO: −0.147 ± 0.034 YEL: −0.154 ± 0.032 (D) Next dent C&B MFH CEN: −0.148 ± 0.025 ISO: −0.104 ± 0.027 YEL: −0.131 ± 0.031 |
| laser scanner (LAS-20; SD) | Two body Wear resistance: 3D-Printed PMMA > CAD/CAM Milled PMMA No significant effect of cleaning method on wear resistance of 3D-printed materials. |
Myagmar et al., 2021 [47] | Mean ± SD (A) JetTM After 30,000 cycles: 0.11 ± 0.01 After 60,000 cycles: 0.44 ± 0.01 | Mean ± SD (B) Yamahachi PMMA After 30,000 cycles: 0.06 ± 0.01 After 60,000 cycles: 0.21 ± 0.02 | Mean ± SD (C) NextDent C&B After 30,000 cycles: 0.08 ± 0.09 After 60,000 cycles: 0.10 ± 0.01 | N/A | N/A | N/A |
| multiline blue LED light scanner (D1000, 3Shape) | wear resistance: 3D-Printed PMMA > CAD/CAM milled PMMA > conventional PMMA |
Kessler et al., 2019 [27] | N/A | N/A | N/A | Mean Wear loss in μm (A) TetricEvoCeram: Average Mean Wear loss: 50 ± 15 μm Mean Wear loss (i) 50,000 cycles: 13 ± 5 (ii) 100,000 cycles: 23 ± 2.3 (iii) 150,000 cycles: 35 ± 9 (iv) 200,000 cycles: 50 ± 15 | Mean Wear loss in μm (B) Telio CAD Average Mean Wear loss: <236 ± 31 μm Mean Wear loss (i) 50,000 cycles: 56 ± 5 (ii) 100,000 cycles: 111 ± 210 (iii) 150,000 cycles: 178 ± 10 (iv) 200,000 cycles: 236 ± 31 | Mean Wear loss in μm (C) 3Delta temp Average Mean Wear loss: <62 ± 4 μm Mean Wear loss: (i) 50,000 cycles: 16 ± 2 (ii) 100,000 cycles: 32 ± 1.4 (iii) 150,000 cycles: 48 ± 3 (iv) 200,000 cycles: 62 ± 4 (D) Nextdent C&B Average Mean Wear loss: < 255 ± 13 μm Mean Wear loss: (i) 50,000 cycles: 66 ± 5 (ii) 100,000 cycles: 134 ± 4.6 (iii) 150,000 cycles: 200 ± 7 (iv) 200,000 cycles: 255 ± 13 (E) Freeprint temp Average Mean Wear loss:< 257 ± 24 μm Mean Wear loss (i) 50,000 cycles: 57 ± 5 (ii) 100,000 cycles: 125 ± 2.8 (iii) 150,000 cycles: 191 ± 6 (iv) 200,000 cycles: 257 ± 24 | Antagonist wheel rotated 15% slower than the sample wheel and pressed against it with a spring force of 15 N. | LaserScan3D, Willytec |
|
Author and Year | Mean/Median of Maximum Force at Fracture for Conventional Resin | Mean/Median of Maximum Force at Fracture for CAD/CAM Milled Resin | Mean/Median of Maximum for 3D-Printed Resin | Exposure Agent/Aging Technique | Testing Machine Used | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|
Park et al., 2020 [43] | Medians and IQRs of FS: (A) Jet Tooth ShadeTM Powder: 543 N [IQR: 429–701] | Medians and IQRs of FS: (B) ViPi: 1232 N [IQR: 1193–1258] | Medians and IQRs of FS: (C) NextDent C&B: 1189 N [IQR: 1110–1283] (D) Standard (GPGR04): 1323 N [IQR: 1245–1377] (E) PLA: Data N/A | N/M | Universal testing machine | FS: 3D-printed PPMA ((D) > CAD/CAM milled PMMA > 3D-Printed PMMA ((C) > conventional PMMA The (FDM) group 3D-printed Polylactic-acid-based restoration did not fracture but was dented |
Crenn et al., 2022 [29] | Mean FS: (A) Integrity: 115.4 ± 20.5 MPa (B) Unifast: 85.79 ± 6.00 MPa | N/A | Mean FS: (C) PLA: 115.8 ± 2.11 MPa (D) Temporary CB: 134.9 ± 17.51 MPa | N/M | Universal testing machine | FS: 3D-Printed SLA Polymer > 3D-Printed PLA ≥ Conventional Bis-acrylic > conventional MMA |
Tas¸ın et al., 2022 [30] | Median in MPa (A) Temdent Classic Thermocycling: (i) 0 cycles: 68 (ii) 2500 cycles: 62 (iii) 10,000 cycles: 49 (B) Protemp: Thermocycling: (i) 0 cycles: 113 (ii) 2500 cycles: 108 (iii) 10,000 cycles: 99 | Median in MPa (C) Duo Cad: Thermocycling: (i) 0 cycles: 127 (ii) 2500 cycles: 122 (iii) 10,000 cycles: 117 | Median in MPa (D) Temporis: Thermocycling: (i) 0 cycles: 125 (ii) 2500 cycles: 125 (iii) 10,000 cycles:116 | Thermocycling control (0 cycles), 2500 cycles, and 10,000 cycles | Universal testing machine | FS at all thermocycling periods: CAD/CAM milled PMMA ≈ 3D-Printed composite > conventional bis-acrylic > conventional MMA Thermocycling periods influence the flexural strength of each tested group |
Digholkar et al., 2016 [36] | Mean FS: (A) Heat-activated PMMA: 95.58 ± 12.444 MPa | Mean FS: (B) Ceramill TEMP: 104.20 ±12.777 MPa | Mean FS: (C) E-Dent 100: 79.54 ± 10.130 MPa | N/M | Universal testing machine | FS: CAD/CAM-milled PMMA > Conventional heat activated PMMA > 3D-printed Microhybrid filled composite |
Simoneti et al., 2022 [53] | Mean FS in MPa: (A) Dencor (PMMA): 69.2 ± 8.8 (B) Yprov Bis-acryl (Bis-acryl resin): 75.0 ± 8.2 | N/A | Mean FS in MPa: (C) PA2201 (SLS resin): 77.3 ± 3.1 (D) Gray Resin (SLA resin): 48.9 ± 1.2 | Mechanical fatigue simulation: 120,000 cycles performed to simulate 6 months of clinical use | Universal testing machine | FS: 3D-Printed SLS > conventional Bis-acrylic > conventional PMMA > 3D-Printed SLA resin |
Pantea et al., 2022 [31] | Mean FS in MPa: (A) Duracyl: 88 ±10 (B) Superpont C+B: 76 ± 7 | N/A | Mean FS in MPa: (C) NextDent C&B MFH: 141 ± 17 (D) HARZ Labs Dental Sand: 143 ± 15 | N/M | Universal testing machine | Flexural strength: 3D-Printed PMMA > conventional PMMA |
Author and Year | Mean Elastic Modulus of Conventional Resin (Mpa) | Mean Elastic Modulus for CAD/CAM Milled Resin (MPa) | Mean Elastic Modulus for 3D-Printed Resin (MPa) | Exposure Agent/Aging Technique | Testing Machine Used | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|
Tahayeri et al., 2018 [37] | (A) Jet ~1500 (B) Integrity ~2700 | N/A | (C) NextDent C&B resin ~1700 | N/M | Universal testing machine | Elastic Modulus: Conventionally fabricated bis-acrylic > 3D-printed PMMA > conventionally fabricated PMMA |
Simoneti et al., 2022 [53] | (A) Decor Acrylic resin: 859.4 ± 46.3 (B) Yprov Bisacryl: 997.3 ±108.5 | N/A | (C) PA2201 (SLS resin): 452.4 ± 35.8 (D) Gray Resin (SAL resin): 513.3 ± 29.7 | Mechanical fatigue simulation: 120,000 cycles, Simulating 6 months of clinical use | Universal testing machine | Elastic Modulus: Conventionally fabricated PMMA and bis-acrylic > 3D-printed PMMA |
Crenn et al., 2022 [29] | (A) Integrity: 3977 ± 878.2 (B) Unifast: 2382 ± 225.8 | N/A | (C) PLA Bio source: 3784 ± 98.9 (D) Temporary CB: 4607 ± 213.8 | Storage at ambient temperature for 1 week | Universal testing machine | Elastic Modulus: 3D-printed esters > Conventional bis-acrylic > 3D-Printed poly lactic > Conventional MMA. |
Author and Year | Toughness for Conventional Resin | Toughness for CAD/CAM Milled Resin | Toughness for 3D-Printed Resin | Exposure Agent/Aging Technique | Testing Machine Used | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|
Tas¸ın et al., 2022 [30] | Median in MJ/m3 (A) Temdent Classic (PMMA) Thermocycling: (i) 0 cycles: 1.82 (ii) 2500 cycles: 1.31 (iii) 10,000 cycles: 0.96 (B) Protemp (Bis-Acryl) Thermocycling: (i) 0 cycles: 2.47 (ii) 2500 cycles: 2.47 (iii) 10,000 cycles: 1.54 | Median in MJ/m3 (C) Duo Cad (PMMA): Thermocycling: (i) 0 cycles: 4.93 (ii) 2500 cycles: 4.59 (iii) 10,000 cycles: 3.70 | Median in MJ/m3 (D) Temporis (composite resin): Thermocycling: (i) 0 cycles: 3.63 (ii) 2500 cycles: 3.09 (iii) 10,000 cycles: 2.20 | Thermocycling | Universal testing machine | Toughness after thermocycling 10,000 cycles: CAD/CAM Milled PMMA > 3D-printed composite resin > conventional Bis-acrylic > conventional PMMA |
Author and Year | Mean Peak Stress for Conventional Resin | Mean Peak Stress for CAD/CAM Milled Resin | Mean Peak Stress for 3D-printed Resin | Exposure Agent/Aging Technique | Testing Machine Used | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|
Tahayeri et al., 2018 [37] | (A) Jet: ≅65 MPa (B) Integrity: ≅90 MPa | N/A | (C) NextDent C&B resin: ≅95 MPa | N/M | Universal testing machine | Peak stress: 3D-printed NextDent > Conventionally fabricated Integrity > conventionally fabricated Jet |
Simoneti et al., 2022 [53] | (A) Dencor (PMMA): 114.6 ± 14.6 N (B) Yprov Bisacryl (Bis-acryl resin) 131.1 ± 2.2 N | N/A | (C) PA 2201 (SLS resin): 133.7 ± 4.4 N (D) Gray Resin (SLA resin): 58.7 ± 2.2 N | Mechanical fatigue simulation: 120,000 cycles simulating 6 months of clinical use | Universal testing machine | Peak stress: 3D-Printed SLS > Conventional Bisacrylic > conventional PMMA > 3D-Printed SLA |
Author and Year | Resilience for Conventional Resin | Resilience for CAD/CAM Milled Resin | Resilience for 3D-Printed Resin | Exposure Agent/Aging Technique | Testing Machine Used | Authors Suggestions/Conclusions |
---|---|---|---|---|---|---|
Tas¸ın et al., 2022 [30] | Median in (MJ/m3) (A) Temdent Classic (PMMA): Thermocycling: (i) 0 cycles: 0.77 (ii) 2500 cycles: 0.64 (iii) 10,000 cycles: 0.53 (B) Protemp (Bis-Acryl): Thermocycling: (i) 0 cycles: 0.98 (ii) 2500 cycles: 0.81 (iii) 10,000 cycles: 0.72 | Median in (MJ/m3) (C) Duo Cad (PMMA): Thermocycling: (i) 0 cycles: 1.04 (ii) 2500 cycles: 0.93 (iii) 10,000 cycles: 0.85 | Median in (MJ/m3) (D) Temporis (composite resin): Thermocycling: (i) 0 cycles: 1.12 (ii) 2500 cycles: 1.03 (iii) 10,000 cycles: 0.74 | Thermocycling | Universal testing machine | Resilience results after thermocycling for 10,000 cycles: CAD/CAM milled PMMA > 3D-Printed composite resin > Conventional Bisacrylic > conventional PMMA |
3. Results
3.1. Identification and Screening
3.2. Quality Assessment of Included Studies
3.3. Study Characteristics
3.4. Results of Studies Analyzing the Physical Properties
3.4.1. Color Change
- (i)
- (ii)
- Comparing the change in color values of hybrid composite-based 3D-printed provisional resins: Studies by Atria et al. [42] reported a greater change in color for hybrid composite-based 3D-printed provisional resins when compared to conventional bis-acrylic and PMMA resins. On the contrary, Taşın et al. [48] and Song et al. [44] reported greater change in color for conventional resins. Compared to CAD/CAM milled PMMA resins, a greater change in color was reported in 3D-printed hybrid composite resins [15,19].
3.4.2. Water Sorption and Solubility
3.5. Results of Studies Analyzing the Mechanical Properties
3.5.1. Fracture Strength
- (i)
- Comparing the fracture strength of PMMA-based 3D-printed provisional resins: Three studies reported higher FS when compared to PMMA-based CAD/CAM milled resins [38,39,40]. One study reported contrasting results of lower FS when compared to PMMA-based CAD/CAM milled resins [50], and one study each reported higher FS when compared to conventional MMA [39] and bis-acrylic resins [40]. A study by Reeponmaha et al. [16] reported higher FS MMA-based 3D-printed resins when compared to PMMA-based CAD/CAM milled and conventional resins.
- (ii)
- Comparing the fracture strength of bis-acrylic and other photopolymer hybrid 3D-printed provisional resins: the FSs of 3D-printed bis-acrylic resin [48], micro-hybrid resin [46], photopolymer resin [52], and UDMA-based resins [50] were reported to be lower than PMMA-based CDA/CAM resins. A study by Henderson et al. [51] reported that bis-acrylic-based 3D-printed resins have lower FS when compared to bis-acrylic-based conventional resins.
3.5.2. Microhardness
- (i)
- Comparing the hardness of MMA-based 3D-printed provisional resins: Two studies reported lower hardness values of MMA-based 3D-printed resins when compared to conventional MMA [49,53] and conventional bis-acrylic interim resins [53], respectively. Moreover, a study by Revilla-León et al. [49] reported higher hardness values for 3D-printed MMA-based interim resins when compared to conventional bis-acrylic interim resins.
- (ii)
- Comparing hardness of micro-filled and polylactic-acid-based 3D-printed provisional resins: Digholkar et al. [36] reported higher hardness values for 3D-printed micro-filled resins when compared to conventional PMMA-based interim resins, whereas Crenn et al. [29] reported PMMA-based conventional resins to have higher hardness values when compared to 3D-printed polylactic-acid-based interim resins.
3.5.3. Surface Roughness
- (i)
- Comparing the surface roughness of MMA-based 3D-printed provisional resins: Myagmar et al. [47] reported lower surface roughness values for MMA-based 3D-printed resins compared to PMMA-based conventional resins and CAD/CAM milled interim resins.
- (ii)
- Comparing the surface roughness of hybrid and other 3D-printed provisional resins: One study [42] showed that hybrid 3D-printed resins have a higher surface roughness when compared to conventional PMMA, conventional bis-acrylic, and CAD/CAM milled PMMA-based resins. However, the results of a study by Taşın et al. [48] gave contradictory results, with hybrid 3D-printed resins displaying a lower surface roughness when compared to conventional PMMA, conventional bis-acrylic, and CAD/CAM milled PMMA-based resins. Simoneti et al. [53] reported that the surface roughness of SLS 3D-printed resins was higher, and that of SLA-based 3D-printed resins was lower when compared to conventional PMMA and bis-acrylic-based interim resins.
3.5.4. Wear Resistance
3.5.5. Flexural Strength
- (i)
- (ii)
- Comparing the flexural strength of composite-based 3D-printed provisional resins: Taşın et al. reported higher flexural strength values of composite-based 3D-printed resins compared to conventional MMA and conventional bis-acrylic-based resins [30], whereas a study by Digholkar et al. reported lower flexural strength values compared to CAD/CAM milled PMMA and conventional heat cure PMMA-based resins [37]. Contrasting results were reported when the flexural strengths of SLA 3D-printed resins were compared with conventional PMMA and bis-acrylic resins. Crenn et al. [29] reported higher flexural strength values for 3D-printed resins, while Simoneti et al. [53] reported higher values for conventional resins.
3.5.6. Elastic Modulus
- (i)
- Comparing the elastic modulus of MMA-based 3D-printed provisional resins: Two studies reported higher elastic modulus values of MMA-based 3D-printed resins when compared to conventional MMA [31,37], whereas a study by Simoneti et al. reported lower elastic modulus values when compared to conventional PMMA-based resins [53]. Two studies reported lower elastic modulus values of MMA-based 3D-printed resins compared to conventional bis-acrylic resins [37,53].
- (ii)
- Comparing the elastic modulus of composite-based, ester-based, and polylactic-acid-based 3D-printed provisional resins: Crenn et al. [29] reported higher elastic modulus values for ester-based and polylactic-acid-based 3D-printed resins when compared to conventional PMMA and bis-acrylic-based resins. Taşın et al. [30] reported higher elastic modulus values for composite-based 3D-printed resins compared to conventional PMMA, CAD/CAM PMMA, and conventional bis-acrylic-based resins.
3.5.7. Toughness, Peak Strain, and Resilience
4. Discussion
4.1. Physical Properties
4.2. Mechanical Properties
4.3. Limitations
5. Conclusions
- When compared to conventional and CAD/CAM milled provisional resin materials, 3D-printed provisional crown and FDP resins have: (a) superior mechanical properties in terms of fracture strength, flexural strength, elastic modulus, peak stress, and wear resistance; (b) inferior mechanical properties in terms of toughness, resilience, and microhardness; (c) contrasting results in terms of surface roughness; and (d) inferior physical properties in terms of color stability, water sorption, and solubility.
- In vitro studies should follow blinding protocols to avoid bias.
- Three-dimensionally printed provisional crowns and FDP materials can be used as an alternative to conventional and CAD/CAM milled long-term provisional materials.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alt, V.; Hanning, M.; Wostmann, B.; Balkenhol, M. Fracture strength of temporary fixed partial dentures: CAD/CA versus directly fabricated restorations. Dent. Mater. 2001, 27, 339–347. [Google Scholar] [CrossRef]
- Khng, K.Y.K.; Ettinger, R.L.; Armstrong, S.R.; Lindquist, T.; Gratton, D.G.; Qian, F. In vitro evaluation of the marginal integrity of CAD/CAM interim crowns. J. Prosthet. Dent. 2016, 115, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Li, J.; Wang, Y.; Huang, H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J. Prosthet. Dent. 2014, 112, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Rayyan, M.M.; Aboushelib, M.; Sayed, N.M.; Ibrahim, A.; Jimbo, R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J. Prosthet. Dent. 2015, 114, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Singla, M.; Padmaja, K.; Arora, J.; Shah, A. Provisional restorations in fixed prosthodontics. Int. Dent. Res. 2014, 1, 148–151. [Google Scholar]
- Lodding, D.W. Long-term esthetic provisional restorations in dentistry. Curr. Opin. Cosmet. Dent. 1997, 4, 16–21. [Google Scholar]
- Trushkowsky, R.D. Fabrication of a fixed provisional restoration utilizing a light-curing acrylic resin. Quintessence Int. 1992, 23, 415–419. [Google Scholar]
- Burns, D.R.; Beck, D.A.; Nelson, S.K. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of the committee on research in fixed prosthodontics of the academy of fixed prosthodontics. J. Prosthet. Dent. 2003, 90, 474–497. [Google Scholar] [CrossRef]
- Frazer, R.Q.; Byron, R.T.; Osborne, P.B.; West, K.P. PMMA: An essential material in medicine and dentistry. J. Long-Term Eff. Med. Implant 2005, 15, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Federick, D.R. The provisional fixed partial denture. J. Prosthet. Dent. 1975, 34, 520–526. [Google Scholar] [CrossRef]
- Bidra, A.S.; Taylor, T.D.; Agar, J.R. Computer-aided technology for fabricating complete dentures: Systematic review of his-torical background, current status, and future perspectives. J. Prosthet. Dent. 2013, 109, 361–366. [Google Scholar] [CrossRef]
- Schweiger, J.; Stumbaum, J.; Edelhoff, D.; Güth, J.-F. Systematics and concepts for the digital production of complete den-tures: Risks and opportunities. Int. J. Comput. Dent. 2018, 21, 41–56. [Google Scholar] [PubMed]
- Millet, C.; Virard, F.; Dougnac-Galant, T.; Ducret, M. CAD-CAM immediate to definitive complete denture transition: A digital dental technique. J. Prosthet. Dent. 2020, 124, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Sayed, M.; Ahmed, W.M.; Halawi, A.H.A.; Najmi, N.M.A.; Aggarwal, A.; Bhandi, S.; Patil, S. An in-vitro study to evaluate the effect of denture cleansing agents on color stability of denture bases fabricated using CAD/CAM milling, 3D-printing and conventional techniques. Coatings 2021, 11, 962. [Google Scholar] [CrossRef]
- Abdullah, A.O.; Tsitrou, E.A.; Pollington, S. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J. Appl. Oral Sci. 2016, 24, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Reeponmaha, T.; Angwaravong, O.; Angwarawong, T. Comparison of fracture strength after thermo-mechanical aging between provisional crowns made with CAD/CAM and conventional method. J. Adv. Prosthodont. 2020, 12, 218–224. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD/CAM and conventional fabrication techniques. J. Prosthet. Dent. 2016, 116, 249–256. [Google Scholar] [CrossRef]
- Kattadiyil, M.T.; Jekki, R.; Goodacre, C.J.; Baba, N.Z. Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J. Prosthet. Dent. 2015, 114, 818–825. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture tooth movement between CAD-CAM and conventional fabrication techniques. J. Prosthet. Dent. 2018, 119, 108–115. [Google Scholar] [CrossRef]
- Janeva, N.M.; Kovacevska, G.; Elencevski, S.; Panchevska, S.; Mijoska, A.; Lazarevska, B. Advantages of CAD/CAM versus conventional complete dentures—A review. Open Access Maced. J. Med. Sci. 2018, 6, 1498–1502. [Google Scholar] [CrossRef] [Green Version]
- Batisse, C.; Nicolas, E. Comparison of CAD/CAM and conventional denture base resins: A systematic review. Appl. Sci. 2021, 11, 5990. [Google Scholar] [CrossRef]
- Van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Zaharia, C.; Gabor, A.G.; Gavrilovici, A.; Stan, A.T.; Idorasi, L.; Sinescu, C.; Negruțiu, M.L. Digital dentistry—3D printing applications. J. Interdiscip. Med. 2017, 2, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Goodacre, B.J.; Goodacre, C.J. Additive manufacturing for complete denture fabrication: A narrative review. J. Prosthodont. 2022, 31, 47–51. [Google Scholar] [CrossRef]
- Park, J.M.; Ahn, J.S.; Cha, H.S.; Lee, J.H. Wear resistance of 3D printing resin material opposing zirconia and metal antagonists. Materials 2018, 11, 1043. [Google Scholar] [CrossRef] [Green Version]
- Kessler, A.; Reymus, M.; Hickel, R.; Kunzelmann, K.-H. Three-body wear of 3D printed temporary materials. Dent. Mater. 2019, 35, 1805–1812. [Google Scholar] [CrossRef]
- Shin, J.-W.; Kim, J.-E.; Choi, Y.-J.; Shin, S.-H.; Nam, N.-E.; Shim, J.-S.; Lee, K.-W. Evaluation of the color stability of 3D-printed crown and bridge materials against various sources of discoloration: An in vitro study. Materials 2020, 13, 5359. [Google Scholar] [CrossRef]
- Crenn, M.J.; Rohman, G.; Fromentin, O.; Benoit, A. Polylactic acid as a biocompatible polymer for three-dimensional print-ing of interim prosthesis: Mechanical characterization. Dent. Mater. J. 2022, 41, 110–116. [Google Scholar] [CrossRef]
- Taşın, S.; Ismatullaev, A. Comparative evaluation of the effect of thermocycling on the mechanical properties of conven-tionally polymerized, CAD-CAM milled, and 3D-printed interim materials. J. Prosthet. Dent. 2022, 127, 173.e1–173.e8. [Google Scholar] [CrossRef]
- Pantea, M.; Ciocoiu, R.C.; Greabu, M.; Totan, A.R.; Imre, M.; Țâncu, A.M.C.; Sfeatcu, R.; Spînu, T.C.; Ilinca, R.; Petre, A.E. Compressive and flexural strength of 3D-printed and conventional resins designated for interim fixed dental prostheses: An in vitro comparison. Materials 2022, 15, 3075. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Pre-ferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faggion, C.M. Guidelines for reporting pre-clinical in vitro studies on dental materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Krithikadatta, J.; Datta, M.; Gopikrishna, V. CRIS guidelines (checklist for reporting in-vitro studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J. Conserv. Dent. 2014, 17, 301–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Review Manager (RevMan); version 5.4.1; The Cochrane Collaboration; Cochrane: London, UK, 2020. Available online: https://training-cochrane-org.vgharpa.vghtpe.gov.tw/online-learning/core-softwarecochrane-reviews/revman (accessed on 23 May 2022).
- Madhav, V.N.V.; Digholkar, S.; Palaskar, J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J. Indian Prosthodont. Soc. 2016, 16, 328–334. [Google Scholar] [CrossRef]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef]
- Ibrahim, A.; Shehawy, D.E.; El-Naggar, G. Fracture resistance of interim restoration constructed by 3D printing versus CAD/CAM technique (in vitro study). Ain Shams Dent. J. 2020, 23, 13–20. [Google Scholar]
- Suralik, K.M.; Sun, J.; Chen, C.-Y.; Lee, S.J. Effect of fabrication method on fracture strength of provisional implant-supported fixed dental prostheses. Prosthesis 2020, 2, 325–332. [Google Scholar] [CrossRef]
- Reymus, M.; Fabritius, R.; Keßler, A.; Hickel, R.; Edelhoff, D.; Stawarczyk, B. Fracture load of 3D-printed fixed dental pros-theses compared with milled and conventionally fabricated ones: The impact of resin material, build direction, post-curing, and artificial aging-an in vitro study. Clin. Oral Investig. 2020, 24, 701–710. [Google Scholar] [CrossRef]
- Revilla-León, M.; Umorin, M.; Özcan, M.; Piedra-Cascón, W. Color dimensions of additive manufactured interim restora-tive dental material. J. Prosthet. Dent. 2020, 123, 754–760. [Google Scholar] [CrossRef]
- Atria, P.J.; Lagos, I.; Sampaio, C.S. In vitro evaluation of surface roughness, color stability, and color masking of provisional restoration materials for veneers and crowns. Int. J. Comput. Dent. 2020, 23, 343–350. [Google Scholar] [PubMed]
- Park, S.-M.; Park, J.-M.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y. Flexural strength of 3D-printing resin materials for provisional fixed dental prostheses. Materials 2020, 13, 3970. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-Y.; Shin, Y.-H.; Lee, J.-Y.; Shin, S.-W. Color stability of provisional restorative materials with different fabrication methods. J. Adv. Prosthodont. 2020, 12, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Morton, D.; Eckert, G.J.; Lin, W.-S. The effect of surface treatments on the color stability of CAD-CAM interim fixed dental prostheses. J. Prosthet. Dent. 2020, 126, 248–253. [Google Scholar] [CrossRef]
- Abad-Coronel, C.; Carrera, E.; Mena Córdova, N.; Fajardo, J.I.; Aliaga, P. Comparative analysis of fracture resistance between CAD/CAM materials for interim fixed prosthesis. Materials 2021, 14, 7791. [Google Scholar] [CrossRef]
- Myagmar, G.; Lee, J.H.; Ahn, J.S.; Yeo, I.L.; Yoon, H.I.; Han, J.S. Wear of 3D printed and CAD/CAM milled interim resin ma-terials after chewing simulation. J. Adv. Prosthodont. 2021, 13, 144–151. [Google Scholar] [CrossRef]
- Taşın, S.; Ismatullaev, A.; Usumez, A. Comparison of Surface Roughness and Color Stainability of 3-Dimensionally Printed Interim Prosthodontic Material with Conventionally Fabricated and CAD-CAM Milled Materials. J. Prosthet. Dent. 2021; in press. [Google Scholar] [CrossRef]
- Revilla-León, M.; Morillo, J.A.; Att, W.; Özcan, M. Chemical composition, knoop hardness, surface roughness, and adhesion aspects of additively manufactured dental interim materials. J. Prosthodont. 2021, 30, 698–705. [Google Scholar] [CrossRef]
- Mayer, J.; Stawarczyk, B.; Vogt, K.; Hickel, R.; Edelhoff, D.; Reymus, M. Influence of cleaning methods after 3D printing on two-body wear and fracture load of resin-based temporary crown and bridge material. Clin. Oral Investig. 2021, 25, 5987–5996. [Google Scholar] [CrossRef]
- Henderson, J.Y.; Korioth, T.V.; Tantbirojn, D.; Versluis, A. Failure load of milled, 3D-printed, and conventional chairside-dispensed interim 3-unit fixed dental prostheses. J. Prosthet. Dent. 2022, 127, 275.e1–275.e7. [Google Scholar] [CrossRef]
- Martín-Ortega, N.; Sallorenzo, A.; Casajús, J.; Cervera, A.; Revilla-León, M.; Gómez-Polo, M. Fracture resistance of additive manufactured and milled implant-supported interim crowns. J. Prosthet. Dent. 2022, 127, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Simoneti, D.M.; Pereira-Cenci, T.; Dos Santos, M. Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J. Prosthet. Dent. 2022, 127, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Comba, A.; Tempesta, R.M.; Carossa, M.; Pereira, G.K.R.; Valandro, L.F.; Paolone, G.; Vichi, A.; Goracci, C.; Scotti, N. External marginal gap variation and residual fracture resistance of composite and lithium-silicate CAD/CAM overlays after cyclic fatigue over endodontically-treated molars. Polymers 2021, 13, 3002. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Sartori, N.; Phark, J.-H. Ceramic-reinforced polymers: CAD/CAM hybrid restorative materials. Curr. Oral Health Rep. 2016, 3, 198–202. [Google Scholar] [CrossRef]
- Engler, M.L.P.D.; Güth, J.F.; Keul, C.; Erdelt, K.; Edelhoff, D.; Liebermann, A. Residual monomer elution from different con-ventional and CAD/CAM dental polymers during artificial aging. Clin. Oral Investig. 2020, 24, 277–284. [Google Scholar] [CrossRef]
- Balkenhol, M.; Knapp, M.; Ferger, P.; Heun, U.; Wöstmann, B. Correlation between polymerization shrinkage and marginal fit of temporary crowns. Dent. Mater. 2008, 24, 1575–1584. [Google Scholar] [CrossRef]
- Köroğlu, A.; Sahin, O.; Dede, D.; Yilmaz, B. Effect of different surface treatment methods on the surface roughness and color stability of interim prosthodontic materials. J. Prosthet. Dent. 2016, 115, 447–455. [Google Scholar] [CrossRef]
- Sahin, O.; Dede, D.Ö.; Köroğlu, A.; Yılmaz, B. Influence of surface sealant agents on the surface roughness and color stability of artificial teeth. J. Prosthet. Dent. 2015, 114, 130–137. [Google Scholar] [CrossRef]
- Doray, P.G.; Eldiwany, M.S.; Powers, J.M. Effect of resin surface sealers on improvement of stain resistance for a composite provisional material. J. Esthet. Restor. Dent. 2003, 15, 244–250. [Google Scholar] [CrossRef]
- Sarac, D.; Sarac, Y.S.; Kulunk, S.; Ural, C.; Kulunk, T. The effect of polishing techniques on the surface roughness and color change of composite resins. J. Prosthet. Dent. 2006, 96, 33–40. [Google Scholar] [CrossRef]
- Iazzetti, G.; Burgess, J.O.; Gardiner, D.; Ripps, A. Color stability of fluoride-containing restorative materials. Oper. Dent. 2000, 25, 520–525. [Google Scholar] [PubMed]
- Hersek, N.; Canay, S.; Uzun, G.; Yildiz, F. Color stability of denture base acrylic resins in three food colorants. J. Prosthet. Dent. 1999, 81, 375–379. [Google Scholar] [CrossRef]
- Arima, T.; Murata, H.; Hamada, T. Properties of highly cross-linked autopolymerizing reline acrylic resins. J. Prosthet. Dent. 1995, 73, 55–59. [Google Scholar] [CrossRef]
- Arima, T.; Murata, H.; Hamada, T. Analysis of composition and structure of hard autopolymerizing reline resins. J. Oral Rehabil. 1996, 23, 346–352. [Google Scholar] [CrossRef]
- Ren, J.; Lin, H.; Huang, Q.; Zheng, G. Determining color difference thresholds in denture base acrylic resin. J. Prosthet. Dent. 2015, 114, 702–708. [Google Scholar] [CrossRef]
- Figuerôa, R.M.S.; Conterno, B.; Arrais, C.A.G.; Sugio, C.Y.C.; Urban, V.M.; Neppelenbroek, K. Porosity, water sorption and solubility of denture base acrylic resins polymerized conventionally or in microwave. J. Appl. Oral Sci. 2018, 26, e20170383. [Google Scholar] [CrossRef]
- Berli, C.; Thieringer, F.M.; Sharma, N.; Müller, J.A.; Dedem, P.; Fischer, J.; Rohr, N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J. Prosthet. Dent. 2020, 124, 780–786. [Google Scholar] [CrossRef]
- Gad, M.M.; Alshehri, S.Z.; Alhamid, S.A.; Albarrak, A.; Khan, S.Q.; Alshahrani, F.A.; Alqarawi, F.K. Water sorption, solubility, and translucency of 3D-printed denture base resins. Dent. J. 2022, 10, 42. [Google Scholar] [CrossRef]
- Machado, C.; Rizzatti-Barbosa, C.M.; Gabriotti, M.N.; Joia, F.A.; Ribeiro, M.C.; Sousa, R.L. Influence of mechanical and chemical polishing in the solubility of acrylic resins polymerized by microwave irradiation and conventional water bath. Dent. Mater. 2004, 20, 565–569. [Google Scholar] [CrossRef]
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L.V. 3D-printed vs. heat-polymerizing and autopolymerizing denture base acrylic resins. Materials 2021, 14, 5781. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A.; et al. Strength and surface properties of a 3D-printed denture base polymer. J. Prosthodont. 2021, 31, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.; Osman, R.B.; Wismeijer, D. Effects of build direction on the mechanical properties of 3D-printed complete cov-erage interim dental restorations. J. Prosthet. Dent. 2016, 115, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Curran, P.; Cattani-Lorente, M.; Wiskott, H.A.; Durual, S.; Scherrer, S.S. Grinding damage assessment for CAD-CAM restorative materials. Dent. Mater. 2017, 33, 294–308. [Google Scholar] [CrossRef]
- Hazeveld, A.; Slater, J.J.H.; Ren, Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 108–115. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Literature in English language | Literature in a language other than English |
Human clinical studies | Animal studies |
In vitro studies | Letters to the editor, case reports, technical reports, cadaver studies, dissertations, incomplete trials, unpublished abstracts, reports, commentaries, and review papers. |
Studies comparing the physical properties of the 3D-printed provisional crowns and fixed dental prosthesis (FDP) materials with other materials and methods used for the fabrication of provisional crowns and FDP. | Studies comparing properties other than physical and mechanical properties. |
Studies comparing mechanical properties of 3D-printed provisional crowns and FPD materials with other materials and methods used for the fabrication of provisional crowns and FPD. | Studies discussing properties of only 3D-printed provisional materials but do not compare them with other types of provisional materials |
Studies comparing accuracy, marginal, and internal adaptation of 3D-printed provisional materials with other types of provisional materials. | |
Studies discussing effects of various 3D-printing parameters (printing orientation, resin color setting, layer thickness, degree of conversion, etc.) on mechanical properties and accuracy of 3D-printed crown and bridge provisional restorative material. | |
Studies discussing materials under trial |
Database | Combination of Search Terms and Strategy | Number of Titles |
---|---|---|
MEDLINE-PubMed | ((“dental restoration, temporary”[MeSH Terms] OR “Tooth Crown”[MeSH Terms] OR “Dental Prosthesis”[MeSH Terms] OR “crowns”[MeSH Terms] OR “denture, partial, fixed”[MeSH Terms] OR “denture, partial, temporary”[MeSH Terms] OR “dental prosthesis, implant supported”[MeSH Terms] OR “Crown and Bridge materials”[Title/Abstract] OR “provisional dental restoration”[Title/Abstract] OR “provisional crown”[Title/Abstract] OR “provisional fixed partial denture”[Title/Abstract] OR “provisional resin”[Title/Abstract] OR “Provisional dental materials”[Title/Abstract] OR “provisional restorations”[Title/Abstract] OR “interim restoration”[Title/Abstract] OR “interim crown”[Title/Abstract] OR “interim resin”[Title/Abstract] OR “interim fixed partial denture”[Title/Abstract] OR “Temporary Crown and Bridge”[Title/Abstract] OR “temporary crown”[Title/Abstract] OR “Temporary dental restoration”[Title/Abstract]) AND “english”[Language] AND ((“printing, three dimensional”[MeSH Terms] OR “Stereolithography”[MeSH Terms] OR “3d print *”[Title/Abstract] OR “3d print*”[Title/Abstract] OR “Rapid prototyping”[Title/Abstract] OR “additive manufactur *”[Title/Abstract]) AND “english”[Language]) AND ((“Computer-Aided Design”[MeSH Terms] OR “polymethyl methacrylate”[MeSH Terms] OR “bisphenol a-glycidyl methacrylate”[MeSH Terms] OR “computer-aided manufacturing”[Title/Abstract] OR “Computer-Assisted Designing”[Title/Abstract] OR “Computer-Assisted manufacturing”[Title/Abstract] OR “Computer-Assisted Milling”[Title/Abstract] OR “cad cam”[Title/Abstract] OR “cad cam”[Title/Abstract] OR “Subtractive manufacturing”[Title/Abstract] OR “PEMA”[Title/Abstract] OR “bis-acryl”[Title/Abstract] OR “interim resin”[Title/Abstract] OR “provisional resin”[Title/Abstract] OR “Bis-GMA”[Title/Abstract] OR “methacrylate polymethyl”[Title/Abstract] OR “poly methyl methacrylate”[Title/Abstract] OR “PMMA”[Title/Abstract] OR “Polymethylmethacrylate”[Title/Abstract]) AND “english”[Language]) AND ((“Physical Phenomena”[MeSH Terms] OR “mechanical phenomena”[MeSH Terms] OR “stress, mechanical”[MeSH Terms] OR “Mechanical Tests”[MeSH Terms] OR “Flexural Strength”[MeSH Terms] OR “elasticity”[MeSH Terms] OR “elastic modulus”[MeSH Terms] OR “compressive strength”[MeSH Terms] OR “Tensile Strength”[MeSH Terms] OR “Shear strength”[MeSH Terms] OR “hardness”[MeSH Terms] OR “Hardness Tests”[MeSH Terms] OR “Dental Restoration Wear”[MeSH Terms] OR “solubility”[MeSH Terms] OR “color”[MeSH Terms] OR “Optical Phenomena”[MeSH Terms] OR “viscosity”[MeSH Terms] OR “Physical properties”[Title/Abstract] OR “Physical processes”[Title/Abstract] OR “Mechanical properties”[Title/Abstract] OR “Mechanical processes”[Title/Abstract] OR “fracture strength”[Title/Abstract] OR “Fracture resistance”[Title/Abstract] OR “fracture toughness”[Title/Abstract] OR “fracture load”[Title/Abstract] OR “Flexural Strength”[Title/Abstract] OR “Biaxial flexural strength”[Title/Abstract] OR “Yield strength”[Title/Abstract] OR “Fatigue strength”[Title/Abstract] OR “fatigue test”[Title/Abstract] OR “peak stress”[Title/Abstract] OR “Ultimate Tensile Strength Test”[Title/Abstract] OR “Shear Bond Strength”[Title/Abstract] OR “Elastic strength”[Title/Abstract] OR “Microhardness”[Title/Abstract] OR “wear resistance”[Title/Abstract] OR “surface wear”[Title/Abstract] OR “surface roughness”[Title/Abstract] OR “Texture analysis”[Title/Abstract] OR “water sorption”[Title/Abstract] OR “color tone”[Title/Abstract] OR “color masking”[Title/Abstract] OR “Translucency”[Title/Abstract] OR “Optical properties”[Title/Abstract] OR “Color Stability”[Title/Abstract] OR “Translucency”[Title/Abstract] OR “Color Change”[Title/Abstract] OR (“tarnish”[All Fields] OR “tarnishes”[All Fields] OR “tarnishing”[All Fields]) OR “corrosion”[Title/Abstract] OR “Creep”[Title/Abstract] OR “flow”[Title/Abstract] OR “Abrasion”[Title/Abstract] OR “Abrasion resistance”[Title/Abstract] OR “Brittleness”[Title/Abstract] OR “Toughness”[Title/Abstract] OR “Flexibility”[Title/Abstract]) AND “english”[Language])) AND (english[Filter]) | 132 |
Scopus | (“dental restoration, temporary” OR “Tooth Crown” OR “Dental Prosthesis” OR “crowns” OR “denture, partial, fixed” OR “denture, partial, temporary” OR “dental prosthesis, implant supported” OR “Crown and Bridge materials” OR “provisional dental restoration” OR “provisional crown” OR “provisional fixed partial denture” OR “provisional resin” OR “Provisional dental materials” OR “provisional restorations” OR “interim restoration” OR “interim crown” OR “interim resin” OR “interim fixed partial denture” OR “Temporary Crown and Bridge” OR “temporary crown” OR “Temporary dental restoration”) AND (“printing, three dimensional” OR “Stereolithography” OR “3d print *” OR “3d print *” OR “Rapid prototyping” OR “additive manufactur *”) AND (“Computer-Aided Design” OR “polymethyl methacrylate” OR “bisphenol a-glycidyl methacrylate” OR “computer-aided manufacturing” OR “Computer-Assisted Designing” OR “Computer-Assisted manufacturing” OR “Computer-Assisted Milling” OR “cad cam” OR “cad cam” OR “Subtractive manufacturing” OR “PEMA” OR “bis-acryl” OR “interim resin” OR “provisional resin” OR “Bis-GMA” OR “methacrylate polymethyl” OR “poly methyl methacrylate” OR “PMMA” OR “Polymethylmethacrylate”) AND (“Physical Phenomena” OR “mechanical phenomena” OR “stress, mechanical” OR “Mechanical Tests” OR “Flexural Strength” OR “elasticity” OR “elastic modulus” OR “compressive strength” OR “Tensile Strength” OR “Shear strength” OR “hardness” OR “Hardness Tests” OR “Dental Restoration Wear” OR “solubility” OR “color” OR “Optical Phenomena” OR “viscosity” OR “Physical properties” OR “Physical processes” OR “Mechanical properties” OR “Mechanical processes” OR “fracture strength” OR “Fracture resistance” OR “fracture toughness” OR “fracture load” OR “Flexural Strength” OR “Biaxial flexural strength” OR “Yield strength” OR “Fatigue strength” OR “fatigue test” OR “peak stress” OR “Ultimate Tensile Strength Test” OR “Shear Bond Strength” OR “Elastic strength” OR “Microhardness” OR “wear resistance” OR “surface wear” OR “surface roughness” OR “Texture analysis” OR “water sorption” OR “color tone” OR “color masking” OR “Translucency” OR “Optical properties” OR “Color Stability” OR “Translucency” OR “Color Change” OR tarnish * OR “corrosion” OR creep OR flow OR abrasion OR “Abrasion resistance” OR brittleness OR toughness OR flexibility) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”)) AND (LIMIT-TO (SUBJAREA, “DENT”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (SRCTYPE, “j”) OR LIMIT-TO (SRCTYPE, “p”)) | 642 |
Web of Sciences (Core collection) | #1 (P) (TS = (“dental restoration, temporary” OR “Tooth Crown” OR “Dental Prosthesis” OR “crowns” OR “denture, partial, fixed” OR “denture, partial, temporary” OR “dental prosthesis, implant supported” OR “Crown and Bridge materials” OR “provisional dental restoration” OR “provisional crown” OR “provisional fixed partial denture” OR “provisional resin” OR “Provisional dental materials” OR “provisional restorations” OR “interim restoration” OR “interim crown” OR “interim resin” OR “interim fixed partial denture” OR “Temporary Crown and Bridge” OR “temporary crown” OR “Temporary dental restoration”)) AND LANGUAGE: (English) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC Timespan = All years #2 (I) (TS = (“printing, three dimensional” OR “Stereolithography” OR “3d print *” OR “3d print *” OR “Rapid prototyping” OR “additive manufactur *”)) AND LANGUAGE: (English) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC Timespan = All years #3 (C) (TS = (“Computer-Aided Design” OR “polymethyl methacrylate” OR “bisphenol a-glycidyl methacrylate” OR “computer-aided manufacturing” OR “Computer-Assisted Designing” OR “Computer-Assisted manufacturing” OR “Computer-Assisted Milling” OR “cad cam” OR “cad cam” OR “Subtractive manufacturing” OR “PEMA”OR “bis-acryl” OR “interim resin” OR “provisional resin”OR “Bis-GMA” OR “methacrylate polymethyl” OR “poly methyl methacrylate” OR “PMMA” OR “Polymethylmethacrylate”)) AND LANGUAGE: (English) Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC Timespan = All years #4 (O) (TS = (“Physical Phenomena” OR “mechanical phenomena” OR “stress, mechanical” OR “Mechanical Tests” OR “Flexural Strength” OR “elasticity” OR “elastic modulus” OR “compressive strength” OR “Tensile Strength” OR “Shear strength” OR “hardness” OR “Hardness Tests” OR “Dental Restoration Wear” OR “solubility” OR “color” OR “Optical Phenomena” OR “viscosity” OR “Physical properties” OR “Physical processes” OR “Mechanical properties” OR “Mechanical processes” OR “fracture strength” OR “Fracture resistance” OR “fracture toughness” OR “fracture load” OR “Flexural Strength” OR “Biaxial flexural strength” OR “Yield strength” OR “Fatigue strength” OR “fatigue test” OR “peak stress” OR “Ultimate Tensile Strength Test” OR “Shear Bond Strength” OR “Elastic strength” OR “Microhardness” OR “wear resistance” OR “surface wear” OR “surface roughness” OR “Texture analysis” OR “water sorption” OR “color tone” OR “color masking” OR “Translucency” OR “Optical properties” OR “Color Stability” OR “Translucency” OR “Color Change” OR tarnish* OR “corrosion” OR Creep OR flow OR Abrasion OR “Abrasion resistance” OR Brittleness OR Toughness OR Flexibility)) AND LANGUAGE: (English) Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC Timespan = All years #4 AND #3 AND #2 AND #1 Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC Timespan = All years and English (Languages) | 33 |
Cochrane Library |
| 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Sayed, M.E.; Shetty, M.; Alqahtani, S.M.; Al Wadei, M.H.D.; Gupta, S.G.; Othman, A.A.A.; Alshehri, A.H.; Alqarni, H.; Mobarki, A.H.; et al. Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers 2022, 14, 2691. https://doi.org/10.3390/polym14132691
Jain S, Sayed ME, Shetty M, Alqahtani SM, Al Wadei MHD, Gupta SG, Othman AAA, Alshehri AH, Alqarni H, Mobarki AH, et al. Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers. 2022; 14(13):2691. https://doi.org/10.3390/polym14132691
Chicago/Turabian StyleJain, Saurabh, Mohammed E. Sayed, Mallika Shetty, Saeed M. Alqahtani, Mohammed Hussain Dafer Al Wadei, Shilpi Gilra Gupta, Ahlam Abdulsalam Ahmed Othman, Abdulkarim Hussain Alshehri, Hatem Alqarni, Abdulaziz Hussain Mobarki, and et al. 2022. "Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis" Polymers 14, no. 13: 2691. https://doi.org/10.3390/polym14132691
APA StyleJain, S., Sayed, M. E., Shetty, M., Alqahtani, S. M., Al Wadei, M. H. D., Gupta, S. G., Othman, A. A. A., Alshehri, A. H., Alqarni, H., Mobarki, A. H., Motlaq, K., Bakmani, H. F., Zain, A. A., Hakami, A. J., & Sheayria, M. F. (2022). Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers, 14(13), 2691. https://doi.org/10.3390/polym14132691