A “Square Box”-Structured Triboelectric Nanogenerator for Road Transportation Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of S-TENG
2.2. Performance Evaluation of S-TENG
2.3. The Process of Simulation Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, X.; Tao, J.; Pei, L.; Shao, J.; Zhong, L.W. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. Acs Nano 2018, 12, 1849–1898. [Google Scholar]
- Qin, K.; Chen, C.; Pu, X.; Tang, Q.; Hu, C. Magnetic Array Assisted Triboelectric Nanogenerator Sensor for Real-Time Gesture Interaction. Nano-Micro Lett. 2021, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, W.; Pan, L.; Wu, C.; Yu, H. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator. ACS Nano 2018, 13, 3954–3963. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-J.; Jing, X.; Mi, H.-Y.; Chen, Z.; Zou, J.; Liu, Z.-H.; Feng, P.-Y.; Liu, Y.; Zhang, Z.; Shang, Y. Development and Applications of Hydrogel-Based Triboelectric Nanogenerators: A Mini-Review. Polymers 2022, 14, 1452. [Google Scholar] [CrossRef]
- Wang, X.; Mei, Y.; Kong, Y.; Lin, Y.; Wang, H. Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system. Energy 2017, 134, 813–839. [Google Scholar] [CrossRef]
- Wang, X.; Virguez, E.; Kern, J.; Chen, L.; Wang, H. Integrating wind, photovoltaic, and large hydropower during the reservoir refilling period. Energy Convers. Manag. 2019, 198, 111778. [Google Scholar] [CrossRef]
- Cheedarala, R.K.; Parvez, A.N.; Ahn, K.K. Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy 2018, 53, 362–372. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Zhu, G.; Wen, X.; Bai, P.; Su, Y.; Lin, Y.; Wang, Z. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Chen, P.; Hu, Y.; Sun, Z. On the controlled adhesive contact and electrical performance of vertical contact-separation mode triboelectric nanogenerators with micro-grooved surfaces. Nano Energy 2021, 85, 106037. [Google Scholar] [CrossRef]
- Zhu, G.; Pan, C.; Guo, W.; Chen, C.-Y.; Zhou, Y.; Yu, R.; Wang, Z.L. Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Lett. 2012, 12, 4960–4965. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Li, H.; Li, H.; Li, Z. Effect of humidity on tribological properties and electrification performance of sliding-mode triboelectric nanogenerator. Nano Energy 2020, 71, 104640. [Google Scholar] [CrossRef]
- Zhang, W.; Diao, D.; Sun, K.; Fan, X.; Wang, P. Study on friction-electrification coupling in sliding-mode triboelectric nanogenerator. Nano Energy 2018, 48, 456–463. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Y.; Xu, L.; Zhao, M.; Lu, X. Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode. Nano Energy 2019, 66, 104169. [Google Scholar] [CrossRef]
- Zu, G.; Wei, Y.; Sun, C.; Yang, X. Humidity-resistant, durable, wearable single-electrode triboelectric nanogenerator for mechanical energy harvesting. J. Mater. Sci. 2022, 57, 2813–2824. [Google Scholar] [CrossRef]
- Park, J.; Choi, A.Y.; Lee, C.J.; Kim, D.; Kim, Y.T. Highly stretchable fiber-based single-electrode triboelectric nanogenerator for wearable devices. RSC Adv. 2017, 7, 54829–54834. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lau, T.H.; Guan, D.; Zi, Y. A universal method for quantitative analysis of triboelectric nanogenerators. J. Mater. Chem. A 2019, 7, 19485–19494. [Google Scholar] [CrossRef]
- Niu, S.; Ying, L.; Chen, X.; Wang, S.; Zhong, L.W. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, X.; Li, H.; Wang, F.; Hu, Y. First-principles investigations on the contact electrification mechanism between metal and amorphous polymers for triboelectric nanogenerators. Nano Energy 2019, 63, 103864. [Google Scholar] [CrossRef]
- Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W.; Zhang, R.; Wang, Z.L. Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Lett. 2012, 12, 3109–3114. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y.S.; Jing, Q.; Pan, C.; Wang, Z.L. Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Lett. 2013, 13, 2282–2289. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Wang, Z.L. Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-Contact Modes. Adv. Mater. 2014, 26, 2818–2824. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Guo, Y.; Chen, Z.; Yang, W.; Li, K.; He, X.; Li, J. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy 2022, 92, 106689. [Google Scholar] [CrossRef]
- Rasel, M.S.; Maharjan, P.; Salauddin, M.; Rahman, M.T.; Cho, H.O.; Kim, J.W.; Park, J.Y. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 2018, 49, 603–613. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Huang, X.; Guo, W.; Li, Y.; Wu, H. A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 2019, 62, 164–170. [Google Scholar] [CrossRef]
- Fang, L.; Zheng, Q.; Hou, W.; Zheng, L.; Li, H. A self-powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator. Nano Energy 2022, 97, 107164. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, H.; Zi, Y.; Liang, X. A multifunctional robotic system toward moveable sensing and energy harvesting. Nano Energy 2021, 89, 106368. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Fu, X.; Lin, Y.; Qi, Y.; Zhou, H.; Zhang, C. Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators. Nano Energy 2022, 98, 107209. [Google Scholar] [CrossRef]
- Bai, Z.; He, T.; Zhang, Z.; Xu, Y.; Zhang, Z.; Shi, Q.; Yang, Y.; Zhou, B.; Zhu, M.; Guo, J.; et al. Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing. Nano Energy 2022, 94, 106956. [Google Scholar] [CrossRef]
- He, M.; Du, W.; Feng, Y.; Li, S.; Wang, W.; Zhang, X.; Yu, A.; Wan, L.; Zhai, J. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy 2021, 86, 106058. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Chen, S.; Xu, Q.; Wang, S.; Hu, T.; Pan, P.; Wang, Y.; Zhang, Y.; Li, N.; et al. Seesaw structured triboelectric nanogenerator with enhanced output performance and its applications in self-powered motion sensing. Nano Energy 2019, 65, 103944. [Google Scholar] [CrossRef]
- Jin, L.; Tao, J.; Bao, R.; Sun, L.; Pan, C. Self-powered Real-Time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology. Sci. Rep. 2017, 7, 10521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Wu, Z.; Zhang, B.; Wang, Y.C.; Guo, H.; Liu, G.; Chen, C.; Chen, Y.; Yang, J.; Wang, Z.L. A Triboelectric Nanogenerator-Based Smart Insole for Multifunctional Gait Monitoring. Adv. Mater. Technol. 2019, 4, 1800360. [Google Scholar] [CrossRef]
- Xia, Z.; Pei, F.; Xin, J.; Heng, L.; Hao, M.; Yue, L. Design and Optimization Principles of Cylindrical Sliding Triboelectric Nanogenerators. Micromachines 2021, 12, 567. [Google Scholar] [CrossRef]
- Jo, S.; Kim, I.; Jayababu, N.; Kim, D. Performance-Enhanced Triboelectric Nanogenerator Based on the Double-Layered Electrode Effect. Polymers 2020, 12, 2854. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Z.; Wang, G.; Liu, G.; Chen, J.; Pu, X.; Xi, Y.; Wang, X.; Guo, H.; Hu, C.; et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Lin, L.; Xie, Y.; Jing, Q.; Niu, S.; Wang, Z.L. Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. Nano Lett. 2013, 13, 2226–2233. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wu, H.; Xia, Z.; Zou, J.; Wang, S.; Feng, P.; Liu, Y.; Zhang, Z.; Shang, Y.; Jing, X. A “Square Box”-Structured Triboelectric Nanogenerator for Road Transportation Monitoring. Polymers 2022, 14, 2695. https://doi.org/10.3390/polym14132695
Chen Z, Wu H, Xia Z, Zou J, Wang S, Feng P, Liu Y, Zhang Z, Shang Y, Jing X. A “Square Box”-Structured Triboelectric Nanogenerator for Road Transportation Monitoring. Polymers. 2022; 14(13):2695. https://doi.org/10.3390/polym14132695
Chicago/Turabian StyleChen, Zhuo, Hanyi Wu, Zhike Xia, Jian Zou, Shengji Wang, Peiyong Feng, Yuejun Liu, Zhi Zhang, Yinghui Shang, and Xin Jing. 2022. "A “Square Box”-Structured Triboelectric Nanogenerator for Road Transportation Monitoring" Polymers 14, no. 13: 2695. https://doi.org/10.3390/polym14132695
APA StyleChen, Z., Wu, H., Xia, Z., Zou, J., Wang, S., Feng, P., Liu, Y., Zhang, Z., Shang, Y., & Jing, X. (2022). A “Square Box”-Structured Triboelectric Nanogenerator for Road Transportation Monitoring. Polymers, 14(13), 2695. https://doi.org/10.3390/polym14132695