Synthesis, Characterization, and Physical Properties of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/Cellulose Nanocrystal Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of g-PBAT/CNC Nanocomposites
2.3. Analytical Procedures
3. Results and Discussion
3.1. Preparation and Characterization of CNCs
3.2. Crystalline Structure and Molecular Weight of g-PBAT
3.3. Structure, Morphology, and Physical Properties of g-PBAT/CNC Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tserki, V.; Matzinos, P.; Pavlidou, E.; Vachliotis, D.; Panayiotou, C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym. Degrad. Stab. 2006, 91, 367–376. [Google Scholar] [CrossRef]
- Müller, R.-J.; Kleeberg, I.; Deckwer, W.-D. Biodegradation of polyesters containing aromatic constituents. J. Biotechnol. 2001, 86, 87–95. [Google Scholar] [CrossRef]
- Gan, Z.; Kuwabara, K.; Yamamoto, M.; Abe, H.; Doi, Y. Solid-state structures and thermal properties of aliphatic–aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters. Polym. Degrad. Stab. 2004, 83, 289–300. [Google Scholar] [CrossRef]
- Zhao, L.; Gan, Z. Effect of copolymerized butylene terephthalate chains on polymorphism and enzymatic degradation of poly(butylene adipate). Polym. Degrad. Stab. 2006, 91, 2429–2436. [Google Scholar] [CrossRef]
- Shi, X.; Ito, H.; Kikutani, T. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 2005, 46, 11442–11450. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Alvarado, E.; Montero, J.R.C.; Rosales, J.M. Atmospheric and soil degradation of aliphaticearomatic polyester films. Polym. Degrad. Stab. 2010, 95, 99–107. [Google Scholar] [CrossRef]
- Nikolic, M.S.; Djonlagic, J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym. Degrad. Stab. 2001, 74, 263–270. [Google Scholar] [CrossRef]
- Ojijo, V.; Cele, H.; Ray, S.S. Morphology and Properties of Polymer Composites Based on Biodegradable Polylactide/Poly[(butylene succinate)-co-adipate] Blend and Nanoclay. Macromol. Mater. Eng. 2011, 296, 865–877. [Google Scholar] [CrossRef]
- Wang, H.T.; Chen, E.C.; Wu, T.M. Crystallization and enzymatic degradation of maleic acid-grafted poly(butylene adipate-co-terephthalate)/organically modified layered zinc phenylphosphonate nanocomposites. J. Polym. Environ. 2020, 28, 834–843. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Wu, T. Synthesis and characterization of biodegradable aliphatic–aromatic nanocomposites fabricated using maleic acid-grafted poly[(butylene adipate)-co-terephthalate] and organically modified layered zinc phenylphosphonate. Polym. Int. 2019, 68, 1531–1537. [Google Scholar] [CrossRef]
- Chen, Y.J.; Hung, Y.J.; Chiang, M.Y.; Wang, E.T.; Wu, T.M. Physical properties and polymorphism of acrylic acid-grafted poly(1,4-butylene adipate-co-terephthalate)/organically-modified layered double hydroxide nanocomposites. Polymers 2022, 14, 492. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; D’Hooge, D.; Daelemans, L.; Xia, H.; Clerck, K.; Cardon, L. The Transferability and Design of Commercial Printer Settings in PLA/PBAT Fused Filament Fabrication. Polymers 2020, 12, 2573. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Daelemans, L.; Fiorio, R.; Gou, M.; D’Hooge, D.R.; De Clerck, K.; Cardon, L. Improving Mechanical Properties for Extrusion-Based Additive Manufacturing of Poly(Lactic Acid) by Annealing and Blending with Poly(3-Hydroxybutyrate). Polymers 2019, 11, 1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moustafa, H.; Guizani, C.; Dupont, C.; Martin, V.; Jeguirim, M.; Dufresne, A. Utilization of Torrefied Coffee Grounds as Reinforcing Agent to Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustain. Chem. Eng. 2017, 5, 1906–1916. [Google Scholar] [CrossRef]
- Turbak, A.F.; Snyder, F.W.; Sandberg, K.R. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J. Appl. Polym. Sci. Appl. Polym. Symp. 1983, 37, 815–827. [Google Scholar]
- Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar] [CrossRef]
- Ng, H.-M.; Sin, L.T.; Tee, T.-T.; Bee, S.-T.; Hui, D.; Low, C.-Y.; Rahmat, A. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. Part B Eng. 2015, 75, 176–200. [Google Scholar] [CrossRef]
- Clift, M.J.D.; Foster, E.J.; Vanhecke, D.; Studer, D.; Wick, P.; Gehr, P.; Rothen-Rutishauser, B.; Weder, C. Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture. Biomacromolecules 2011, 12, 3666–3673. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, T.; Naish, V.; O’Connor, B.; Blaise, C.; Gagné, F.; Hall, L.; Trudeau, V.; Martel, P. An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 2010, 4, 255–270. [Google Scholar] [CrossRef]
- VartiainenTiina, J.; Pöhler, T.; Sirola, K.; Pylkkänen, L.; Alenius, H.; Hokkinen, J.; Tapper, U.; Lahtinen, P.; Kapanen, A.; Putkisto, K.; et al. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 2011, 18, 775–786. [Google Scholar] [CrossRef]
- Alexandrescu, L.; Syverud, K.; Gatti, A.; Chinga-Carrasco, G. Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 2013, 20, 1765–1775. [Google Scholar] [CrossRef]
- Qian, S.; Zhang, H.; Yao, W.; Sheng, K. Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Compos. Part B Eng. 2018, 133, 203–209. [Google Scholar] [CrossRef]
- Shojaeiarani, J.; Bajwa, D.S.; Stark, N.M.; Bajwa, S.G. Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Compos. Part B Eng. 2019, 161, 483–489. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Z. Effect of low loadings of cellulose nanocrystals on the significantly enhanced crystallization of biodegradable poly(butylene succinate-co-butylene adipate). Carbohydr. Polym. 2019, 205, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y. Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride. Carbohydr. Polym. 2015, 134, 52–59. [Google Scholar] [CrossRef]
- Mukherjee, T.; Czaka, M.; Kao, N.; Gupta, R.K.; Choi, H.J.; Bhattacharya, S. Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites. Carbohydr. Polym. 2014, 102, 537–542. [Google Scholar] [CrossRef]
- Rahimi, S.K.; Aeinehvand, R.; Kim, K.; Otaigbe, J.U. Structure and Biocompatibility of Bioabsorbable Nanocomposites of Aliphatic-Aromatic Copolyester and Cellulose Nanocrystals. Biomacromolecules 2017, 18, 2179–2194. [Google Scholar] [CrossRef]
- Fukuzumi, H.; Saito, T.; Okita, Y.; Isogai, A. Thermal stabilization of TEMPO-oxidized cellulose. Polym. Degrad. Stab. 2010, 95, 1502–1508. [Google Scholar] [CrossRef]
- Sang, X.; Qin, C.; Tong, Z.; Kong, S.; Jia, Z.; Wan, G.; Liu, X. Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system. Cellulose 2017, 24, 2415–2425. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 1941, 9, 177–184. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, C.; Wei, X.; Yan, T.; Li, H.; He, J.; Huang, Y. Preparation and Characterization of 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-Oxidized Cellulose Nanocrystal/Alginate Biodegradable Composite Dressing for Hemostasis Applications. ACS Sustain. Chem. Eng. 2017, 5, 3819–3828. [Google Scholar] [CrossRef]
- Lichtenstein, K.; Lavoine, N. Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polym. Degrad. Stab. 2017, 146, 53–60. [Google Scholar] [CrossRef]
- Wulandari, W.T.; Rochliadi, A.; Arcana, I.M. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 10th Joint Conference on Chemistry, Solo, Indonesia, 8–9 September 2015; IOP Publisher: Bristol, UK, 2016; Volume 107, p. 012045. [Google Scholar] [CrossRef]
- Wu, C.S. Aliphatic aromatic polyester-polyaniline composites: Preparation, characterization, antibacterial activity and conductivities. Polym. Int. 2012, 61, 1556–1563. [Google Scholar] [CrossRef]
- Jiang, W.; Ge, X.; Zhang, B.; Xing, R.; Chang, M. Different Influences of Two Peroxide Initiators on Structure and Properties of Poly(Lactic Acid). J. Vinyl Addit. Technol. 2020, 26, 452–460. [Google Scholar] [CrossRef]
- Alamo, R.G.; Mandelkern, L. Crystallization kinetics of random ethylene copolymers. Macromolecules 1991, 24, 6480–6493. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Wu, T.-M. Crystallization Kinetics of Poly(1,4-butylene adipate) with Stereocomplexed Poly(lactic acid) Serving as a Nucleation Agent. Ind. Eng. Chem. Res. 2014, 53, 16689–16695. [Google Scholar] [CrossRef]
- Chiang, M.F.; Wu, T.M. Preparation and characterization of melt processed poly(L-lactide)/layered double hydroxide nonocomposites. Compos. Part B Eng. 2012, 43, 2789–2794. [Google Scholar] [CrossRef]
- Tseng, L.-Y.; Chen, E.-C.; Wang, J.-M.; Wu, T.-M. Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate. Polymers 2020, 12, 2149. [Google Scholar] [CrossRef]
Polymer | Feed Ratio [AA]/[DMT] (mol %) | Polymer Ratio a [AA]/[DMT] (mol %) | Mw (g/mol) ×104 | Mn (g/mol) ×104 | PDI | Tc (°C) | Tm (°C) |
---|---|---|---|---|---|---|---|
PBAT-40 | 40/60 | 39.5:60.5 | 3.91 | 2.31 | 1.69 | 118.1 | 154.5 |
PBAT-60 | 60/40 | 59.1:40.9 | 8.59 | 4.56 | 1.88 | 43.5 | 101.4 |
PBAT-80 | 80/20 | 80.5:19.5 | 10.47 | 5.60 | 1.87 | 3.70 | 42.1 |
Polymer | Mw (g/mol) × 104 | Mn (g/mol) × 104 | PDI | Tc (°C) | Tm (°C) |
---|---|---|---|---|---|
g-PBAT-40 | 1.99 | 1.14 | 1.75 | 127.0 | 156.7 |
g-PBAT-60 | 2.36 | 1.21 | 1.94 | 64.3 | 106.4 |
g-PBAT-80 | 6.73 | 3.44 | 1.96 | 7.61 | 42.7 |
Sample | Tc (°C) | n | k (min−n) | t1/2 (min) |
---|---|---|---|---|
g-PBAT-40 | 136 | 1.60 | 0.76 | 0.95 |
138 | 2.00 | 0.43 | 1.27 | |
140 | 1.93 | 0.30 | 1.55 | |
142 | 1.96 | 0.21 | 1.86 | |
1 wt% g-PBAT-40/CNC | 136 | 1.49 | 3.71 | 0.32 |
138 | 1.49 | 2.28 | 0.45 | |
140 | 1.56 | 1.78 | 0.55 | |
142 | 1.54 | 1.16 | 0.71 | |
2 wt% g-PBAT-40/CNC | 136 | 1.67 | 8.12 | 0.23 |
138 | 1.61 | 5.44 | 0.28 | |
140 | 1.46 | 3.46 | 0.33 | |
142 | 1.42 | 2.14 | 0.45 | |
3 wt% g-PBAT-40/CNC | 136 | 1.69 | 8.80 | 0.22 |
138 | 1.56 | 5.22 | 0.27 | |
140 | 1.61 | 4.35 | 0.32 | |
142 | 1.55 | 1.55 | 0.44 | |
g-PBAT-60 | 82 | 2.03 | 2.53 | 0.53 |
84 | 2.00 | 1.80 | 0.62 | |
86 | 1.91 | 1.24 | 0.74 | |
88 | 1.58 | 0.82 | 0.90 | |
1 wt% g-PBAT-60/CNC | 82 | 1.96 | 6.92 | 0.31 |
84 | 1.98 | 5.60 | 0.35 | |
86 | 1.93 | 4.03 | 0.40 | |
88 | 1.90 | 2.76 | 0.48 | |
2 wt% g-PBAT-60/CNC | 82 | 2.06 | 12.7 | 0.24 |
84 | 2.19 | 8.93 | 0.31 | |
86 | 1.92 | 4.07 | 0.40 | |
88 | 1.96 | 3.04 | 0.47 | |
3 wt% g-PBAT-60/CNC | 82 | 1.83 | 13.4 | 0.20 |
84 | 1.85 | 9.67 | 0.24 | |
86 | 1.86 | 5.65 | 0.32 | |
88 | 1.78 | 4.05 | 0.37 | |
g-PBAT-80 | 18 | 2.60 | 0.637 | 1.03 |
20 | 2.72 | 0.178 | 1.65 | |
22 | 2.76 | 0.043 | 2.75 | |
24 | 2.79 | 0.009 | 4.80 | |
1 wt% g-PBAT-80/CNC | 18 | 2.66 | 0.701 | 1.00 |
20 | 2.64 | 0.260 | 1.45 | |
22 | 2.79 | 0.074 | 2.23 | |
24 | 3.09 | 0.011 | 3.80 | |
2 wt% g-PBAT-80/CNC | 18 | 2.39 | 1.372 | 0.75 |
20 | 2.60 | 0.393 | 1.24 | |
22 | 2.47 | 0.149 | 1.86 | |
24 | 2.68 | 0.024 | 3.51 | |
3 wt% g-PBAT-80/CNC | 18 | 2.86 | 2.311 | 0.66 |
20 | 2.82 | 0.799 | 0.95 | |
22 | 2.99 | 0.250 | 1.41 | |
24 | 3.05 | 0.040 | 2.55 |
Sample | aT5% (°C) | bTdmax (°C) | E’ at −80 °C (GPa) | E’ at 25 °C (MPa) | Tg (oC) | WVP (ng/m2·kPa·s) |
---|---|---|---|---|---|---|
g-PBAT-40 | 365.3 | 405.8 | 1.30 | 116.36 | −11.36 | 124.1 |
1 wt% g-PBAT-40/CNC | 332.6 | 404.4 | 1.87 | 158.01 | −9.17 | 82.7 |
2 wt% g-PBAT-40/CNC | 332.0 | 403.9 | 2.24 | 208.64 | −9.01 | 65.4 |
3 wt% g-PBAT-40/CNC | 323.3 | 403.6 | 2.41 | 230.43 | −7.63 | 48.9 |
g-PBAT-60 | 355.8 | 409.5 | 0.94 | 39.02 | −28.97 | 157.9 |
1 wt% g-PBAT-60/CNC | 322.2 | 409.7 | 1.57 | 65.38 | −27.47 | 136.8 |
2 wt% g-PBAT-60/CNC | 307.3 | 409.0 | 1.75 | 71.16 | −25.91 | 91.7 |
3 wt% g-PBAT-60/CNC | 291.0 | 405.4 | 2.15 | 74.30 | −25.33 | 77.4 |
g-PBAT-80 | 335.8 | 413.3 | 1.59 | 130.28 | −31.59 | 144.4 |
1 wt% g-PBAT-80/CNC | 318.4 | 412.5 | 2.21 | 174.52 | −27.75 | 91.7 |
2 wt% g-PBAT-80/CNC | 295.1 | 412.1 | 2.48 | 203.14 | −27.33 | 73.7 |
3 wt% g-PBAT-80/CNC | 278.2 | 411.8 | 2.96 | 222.14 | −27.19 | 65.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, Y.-J.; Chiang, M.-Y.; Wang, E.-T.; Wu, T.-M. Synthesis, Characterization, and Physical Properties of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/Cellulose Nanocrystal Composites. Polymers 2022, 14, 2742. https://doi.org/10.3390/polym14132742
Hung Y-J, Chiang M-Y, Wang E-T, Wu T-M. Synthesis, Characterization, and Physical Properties of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/Cellulose Nanocrystal Composites. Polymers. 2022; 14(13):2742. https://doi.org/10.3390/polym14132742
Chicago/Turabian StyleHung, Yu-Jia, Ming-Yen Chiang, En-Tze Wang, and Tzong-Ming Wu. 2022. "Synthesis, Characterization, and Physical Properties of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/Cellulose Nanocrystal Composites" Polymers 14, no. 13: 2742. https://doi.org/10.3390/polym14132742
APA StyleHung, Y.-J., Chiang, M.-Y., Wang, E.-T., & Wu, T.-M. (2022). Synthesis, Characterization, and Physical Properties of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/Cellulose Nanocrystal Composites. Polymers, 14(13), 2742. https://doi.org/10.3390/polym14132742