Study on the Impact and Water Absorption Performance of Prosopis juliflora & Glass Fibre Reinforced Epoxy Composite Laminates
Abstract
:1. Introduction
2. Material Selection and Characteristics
2.1. Powdered Prosopis juliflora
2.2. Glass Fibre
2.3. Epoxy Resin
3. Preparation of Composites
4. Experimentation and Results
4.1. Impact Test Results
- ASTM D256: Length: 65.5 mm and Breadth: 12.9 mm.
- Machine: Charpy Impact Testing Machine.
4.2. Scanning Electron Microscope Results
4.3. Testing for Absorption of Water
4.4. Fabrication of Side Visor
5. Conclusions
- ⮚
- The impact resistance of sample 1 (12 wt % Prosopis juliflora fibres and 28 wt % glass fibres) was approximately 2.6 J. Since this value is larger than that of the other samples, sample 1 was chosen as the material with the highest resistance to impact strength.
- ⮚
- Sample 2 (6 wt % Prosopis juliflora fibres and 24 wt % glass fibres) is much more suitable for use in the external parts of automobiles since it has a reduced water absorption capacity.
- ⮚
- When compared to the other samples, sample 1 has a good bonding nature as revealed in the SEM micrograph.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bongarde, U.S.; Shinde, V.D. Review on natural fiber reinforcement polymer composites. Int. J. Eng. Sci. Innov. Technol. (IJESIT) 2014, 3, 431–436. [Google Scholar]
- Avinash, S.; Hanumantharaju, H.G.; Vignesh, M.; Akash, S. Investigation of Mechanical Properties on Vinylester Based Bio-Composite with Gelatin As Randomly Distributed Filler Material. Int. J. Res. Eng. Technol. 2014, 3, 252–258. [Google Scholar]
- Chandramohan, D.; Marimuthu, K. A Review on Natural Fibers. IJRRAS 2011, 8, 194–206. [Google Scholar]
- Arpitha, G.R.; Sanjay, M.R.; Laxmana, N.L.; Yogesha, B. Mechanical Properties of Epoxy Based Hybrid Composites Reinforced with Sisal/SIC/Glass Fibers. Int. J. Eng. Res. Gen. Sci. 2014, 2, 398–405. [Google Scholar]
- Basiji, F.; Safdari, V.; Nourbakhsh, A.; Pilla, S. The effects of fiber length and fiber loading on the mechanical properties of wood plastic (polypropylene) composites. Res. Artic. 2009, 34, 191–196. [Google Scholar] [CrossRef]
- Bansal, S.; Ramachandran, M.; Raichurkar, P. Comparative analysis of bamboo using jute and coir fiber reinforced polymeric composites. Mater. Today Proc. 2017, 4, 3182–3187. [Google Scholar] [CrossRef]
- Bunsell, A.R.; Joannès, S.; Thionnet, A. Fundamentals of Fibre Reinforced Composite Materials; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Ahmad, F.; Choi, H.S.; Park, M.K. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol. Mater. Eng. 2015, 300, 10–24. [Google Scholar] [CrossRef]
- Boland, C.S.; De Kleine, R.; Keoleian, G.A.; Lee, E.C.; Kim, H.C.; Wallington, T.J. Life cycle impacts of natural fiber composites for automotive applications: Effects of renewable energy content and lightweighting. J. Ind. Ecol. 2016, 20, 179–189. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T.; Hassan, A. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J. Reinf. Plast. Compos. 2016, 35, 447–470. [Google Scholar] [CrossRef]
- Mohana Krishnudu, D.; Sreeramulu, D.; Reddy, P.V. Alkali treatment effect: Mechanical, thermal, morphological, and spectroscopy studies on abutilon indicum fiber-reinforced composites. J. Nat. Fibers 2020, 17, 1775–1784. [Google Scholar] [CrossRef]
- Krishnudu, D.M.; Sreeramulu, D.; Reddy, P.V.; Rao, H.R. Effect of alkali treatment on mechanical properties of Prosopis Juliflora hybrid composites. Int. J. Appl. Eng. Res. 2018, 13, 2933–2935. [Google Scholar]
- Orue, A.; Jauregi, A.; Peña-Rodriguez, C.; Labidi, J.; Eceiza, A.; Arbelaiz, A. The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos. Part B Eng. 2015, 73, 132–138. [Google Scholar] [CrossRef]
- Palanivendhan, M.; Chandradass, J.; Rajendran, A.; Govindarajan, N.M.; Krishnaa, M.A. Experimental investigation of alumina reinforced copper metal matrix composite by stir casting method. Int. J. Veh. Struct. Syst. 2019, 11, 79–82. [Google Scholar] [CrossRef]
- Saravanakumar, S.S.; Kumaravel, A.; Nagarajan, T.; Sudhakar, P.; Baskaran, R. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 2013, 92, 1928–1933. [Google Scholar] [CrossRef]
- Oladele, I.O.; Omotoyinbo, J.A.; Adewuyi, B.O.; Kavishe, F.P.L. The Effects of Production Processes on the Mechanical Properties of Sisal Fibre Reinforced Polypropylene Composites. Philipp. J. Sci. 2013, 142, 189–198. [Google Scholar]
- Seethalakshmi, A.N.; Subramanian, S.; Muthuchelian, K. Thermal, Structural, Mechanical and Electrical properties of biomaterial Prosopis Juliflora. Int. J. Curr. Res. 2013, 5, 3116–3120, ISSN 0975-833X. [Google Scholar]
- Chow, W.S. Water absorption of epoxy/glass fiber/organo-montmorillonite nanocomposites. Express Polym. Lett. 2007, 1, 104–108. [Google Scholar] [CrossRef]
- Keerthi, I.; Devender, D.; Mahesh, V. Mechanical Characterization of Biodegradable Linen Fiber Composites. Int. J. Mod. Eng. Res. (IJMER) 2014, 4, 39–46. [Google Scholar]
- Kumar, G.M.; Uthranarayan, C.; Jebaraj, D.J.J.; Keerthana, S.; Ganesh, N. Exploration of tensile, flexural and hardness test properties of prosopis juliflora/glass/epoxy hybrid composite laminates. J. Phys. Conf. Ser. 2019, 1362, 012015. [Google Scholar] [CrossRef]
- Hynes, N.R.J.; Vignesh, N.; Jappes, J.W.; Velu, P.S.; Barile, C.; Ali, M.A.; Farooq, M.U.; Pruncu, C.I. Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation. Compos. Sci. Technol. 2022, 221, 109303, ISSN 0266-3538. [Google Scholar] [CrossRef]
- Hynes, N.R.J.; Vignesh, N.J.; Barile, C.; Velu, P.S.; Ali, M.A.; Raza, M.H.; Pruncu, C.I. Mechanical and microstructural characterization of hybrid fiber metal laminates obtained through sustainable manufacturing. Arch. Civ. Mech. Eng. 2022, 22, 35. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Hynes, N.R.J.; Li, D.; Chrysanthou, A. Electromagnetic Riveting Technique of Joining Metals to Polymer Composites in Hybrid Multi-material Aerospace Structures. Trans. Indian Inst. Met. 2021, 74, 2909–2924. [Google Scholar] [CrossRef]
- Jerome, J.; Hynes, N.R.J.; Sankaranarayanan, R. Mechanical behavioural testing of fibre metal laminate composites. AIP Conf. Proc. 2020, 2220, 140035. [Google Scholar] [CrossRef]
- Hynes, N.R.J.; Vignesh, N.J.; Barile, C.; Velu, P.S.; Baskaran, T.; Jappes, J.T.W.; Al-Khashman, O.A.; Brykov, M.; Ene, A. Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract. Polymers 2022, 14, 1700. [Google Scholar] [CrossRef] [PubMed]
- Xian, G.; Guo, R.; Li, C.; Hong, B. Mechanical properties of carbon/glass fiber reinforced polymer plates with sandwich structure exposed to freezing-thawing environment: Effects of water immersion, bending loading and fiber hybrid mode. Mech. Adv. Mater. Struct. 2022, 1–21. [Google Scholar] [CrossRef]
Prosopis juliflora | Glass Fibre | Epoxy Resin | |
---|---|---|---|
Young’s modulus (Ef) N/m2 | 30.00 × 109 | 72.00 × 109 | 4.00 × 109 |
) Kg/m3 | 0.580 × 103 | 2.56 × 103 | 1.20 × 103 |
Poisson’s ratio | 0.21 | 0.21 | 0.40 |
Sample 1 | Sample 2 | Sample 3 | Sample 4 | |
---|---|---|---|---|
Matrix | 60% | 70% | 70% | 60% |
Glass | 28% | 24% | 21% | 32% |
Prosopis juliflora | 12% | 6% | 9% | 8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurunathan, M.K.; Hynes, N.R.J.; Al-Khashman, O.A.; Brykov, M.; Ganesh, N.; Ene, A. Study on the Impact and Water Absorption Performance of Prosopis juliflora & Glass Fibre Reinforced Epoxy Composite Laminates. Polymers 2022, 14, 2973. https://doi.org/10.3390/polym14152973
Gurunathan MK, Hynes NRJ, Al-Khashman OA, Brykov M, Ganesh N, Ene A. Study on the Impact and Water Absorption Performance of Prosopis juliflora & Glass Fibre Reinforced Epoxy Composite Laminates. Polymers. 2022; 14(15):2973. https://doi.org/10.3390/polym14152973
Chicago/Turabian StyleGurunathan, Manoj Kumar, Navasingh Rajesh Jesudoss Hynes, Omar Ali. Al-Khashman, Michael Brykov, Nagasubramoniam Ganesh, and Antoaneta Ene. 2022. "Study on the Impact and Water Absorption Performance of Prosopis juliflora & Glass Fibre Reinforced Epoxy Composite Laminates" Polymers 14, no. 15: 2973. https://doi.org/10.3390/polym14152973
APA StyleGurunathan, M. K., Hynes, N. R. J., Al-Khashman, O. A., Brykov, M., Ganesh, N., & Ene, A. (2022). Study on the Impact and Water Absorption Performance of Prosopis juliflora & Glass Fibre Reinforced Epoxy Composite Laminates. Polymers, 14(15), 2973. https://doi.org/10.3390/polym14152973