Performance of Graphene-Based and Polyether-Ether-Ketone Polymers as Removable Partial Denture Esthetic Clasp Materials after Cyclic Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Manufacturing of the Samples
2.2. Testing the Retention Force
2.3. Measuring the Clasp Arms’ Deformation
2.4. Exploring Areas of High Stress and Strain Using Finite Element Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Results of the Retention Force
3.2. Results of the Clasp Arms’ Deformation Measurements
3.3. Location of High Stress and Strain Areas
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mousa, M.A.; Abdullah, J.Y.; Jamayet, N.B.; El-Anwar, M.I.; Ganji, K.K.; Alam, M.K.; Husein, A. Biomechanics in Removable Partial Dentures: A Literature Review of FEA-Based Studies. BioMed Res. Int. 2021, 2021, 5699962. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Kern, M. Clinical evaluation of removable partial dentures 10 years after insertion: Success rates, hygienic problems, and technical failures. Clin. Oral Investig. 2000, 4, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Ning, J.; Li, M.; Niu, L.; Yang, J.; Sun, Y.; Zhou, Y.; Ye, H.; Ning, J.; Li, M. Preliminary Clinical Application of Removable Partial Denture Frameworks Fabricated Using Computer-Aided Design and Rapid Prototyping Techniques. Int. J. Prosthodont. 2017, 30, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Mutschler, M.; Schweitzer, F.; Spintzyk, S.; Geis-Gerstorfer, J.; Huettig, F. Retention Forces of Prosthetic Clasps over a Simulated Wearing Period of Six Years In-Vitro: Direct Metal Laser Melting Versus Dental Casting. Materials 2020, 13, 5339. [Google Scholar] [CrossRef]
- Bathala, L.; Majeti, V.; Rachuri, N.; Singh, N.; Gedela, S. The role of polyether ether ketone (PEEK) in dentistry—A review. J. Med. Life 2019, 12, 5–9. [Google Scholar] [CrossRef]
- Fitton, J.S.; Davies, E.H.; Howlett, J.A.; Pearson, G.J. The physical properties of a polyacetal denture resin. Clin. Mater. 1994, 17, 125–129. [Google Scholar] [CrossRef]
- Mahmoud, A.; Wakabayashi, N.; Takahashi, H.; Ohyama, T. Deflection fatigue of Ti-6Al-7Nb, Co-Cr, and gold alloy cast clasps. J. Prosthet. Dent. 2005, 93, 183–188. [Google Scholar] [CrossRef]
- Prechtel, A.; Reymus, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Comparison of various 3D printed and milled PAEK materials: Effect of printing direction and artificial aging on Martens parameters. Dent. Mater. 2020, 36, 197–209. [Google Scholar] [CrossRef]
- Nizami, M.Z.I.; Takashiba, S.; Nishina, Y. Graphene oxide: A new direction in dentistry. Appl. Mater. Today 2020, 19, 100576. [Google Scholar] [CrossRef]
- Pacurar, M.; Bechir, E.S.; Suciu, M.; Bechir, A.; Biris, C.I.; Mola, F.C.; Gioga, C.; Dascalu, I.T.; Ormenisan, A. The benefits of polyether-ether-ketone polymers in partial edentulous patients. Mater. Plast. 2016, 53, 657–660. [Google Scholar]
- Marie, A.; Keeling, A.; Hyde, T.P.; Nattress, B.R.; Pavitt, S.; Murphy, R.J.; Shary, T.J.; Dillon, S.; Osnes, C.; Wood, D.J. Deformation and retentive force following in vitro cyclic fatigue of cobalt-chrome and aryl ketone polymer (AKP) clasps. Dent. Mater. 2019, 35, e113–e121. [Google Scholar] [CrossRef] [PubMed]
- Jialin, H.A.O.; Natsuko, M.; Toshiki, Y.; Naohiko, I.; Masaru, Y.; Hidekazu, T.; Noriyuki, W. Flexural and fatigue properties of polyester disk material for milled resin clasps. Dent. Mater. J. 2021, 40, 1359–1364. [Google Scholar] [CrossRef]
- Peng, T.-Y.; Ogawa, Y.; Akebono, H.; Iwaguro, S.; Sugeta, A.; Shimoe, S. Finite-element analysis and optimization of the mechanical properties of polyetheretherketone (PEEK) clasps for removable partial dentures. J. Prosthodont. Res. 2020, 64, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.W.; Radford, D.R.; Sherriff, M. Flexural properties and surface finishing of acetal resin denture clasps. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 1999, 8, 188–195. [Google Scholar] [CrossRef]
- Urano, S.; Baba, K.; Hotta, Y.; Miyazaki, T. Bending properties of Ce-TZP/A nanocomposite clasps for removable partial dentures. Int. J. Prosthodont. 2015, 28, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Negm, E.E.; Aboutaleb, F.A.; Alam-Eldein, A.M. Virtual Evaluation of the Accuracy of Fit and Trueness in Maxillary Poly(etheretherketone) Removable Partial Denture Frameworks Fabricated by Direct and Indirect CAD/CAM Techniques. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2019, 28, 804–810. [Google Scholar] [CrossRef]
- Lisiak-Myszke, M.; Marciniak, D.; Bieliński, M.; Sobczak, H.; Garbacewicz, Ł.; Drogoszewska, B. Application of Finite Element Analysis in Oral and Maxillofacial Surgery-A Literature Review. Materials 2020, 13, 3063. [Google Scholar] [CrossRef]
- Chen, X.; Mao, B.; Zhu, Z.; Yu, J.; Lu, Y.; Zhang, Q.; Yue, L.; Yu, H. A three-dimensional finite element analysis of mechanical function for 4 removable partial denture designs with 3 framework materials: CoCr, Ti-6Al-4V alloy and PEEK. Sci. Rep. 2019, 9, 13975. [Google Scholar] [CrossRef] [Green Version]
- Mayinger, F.; Micovic, D.; Schleich, A.; Roos, M.; Eichberger, M.; Stawarczyk, B. Retention force of polyetheretherketone and cobalt-chrome-molybdenum removable dental prosthesis clasps after artificial aging. Clin. Oral Investig. 2021, 25, 3141–3149. [Google Scholar] [CrossRef]
- Micovic, D.; Mayinger, F.; Bauer, S.; Roos, M.; Eichberger, M.; Stawarczyk, B. Is the high-performance thermoplastic polyetheretherketone indicated as a clasp material for removable dental prostheses? Clin. Oral Investig. 2021, 25, 2859–2866. [Google Scholar] [CrossRef]
- Amiryaghoubi, N.; Pesyan, N.N.; Fathi, M.; Omidi, Y. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2020, 162, 1338–1357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, Z.; Zhao, L.; Liu, W.; Si, P.; Lan, J. Synthesis and characterization of multilayer graphene oxide on yttria-zirconia ceramics for dental implant. J. Mater. Res. 2020, 35, 2466–2477. [Google Scholar] [CrossRef]
- Rosa, V.; Xie, H.; Dubey, N.; Madanagopal, T.T.; Rajan, S.S.; Morin, J.L.P.; Islam, I.; Neto, A.H.C. Graphene oxide-based substrate: Physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dent. Mater. 2016, 32, 1019–1025. [Google Scholar] [CrossRef]
- Agarwalla, S.V.; Malhotra, R.; Rosa, V. Translucency, hardness and strength parameters of PMMA resin containing graphene-like material for CAD/CAM restorations. J. Mech. Behav. Biomed. Mater. 2019, 100, 103388–103404. [Google Scholar] [CrossRef]
- Alnatheer, M.; Alqerban, A.; Alhazmi, H. Graphene oxide-modified dental adhesive for bonding orthodontic brackets. Int. J. Adhes. Adhes. 2021, 110, 102928–102936. [Google Scholar] [CrossRef]
- Di Carlo, S.; De Angelis, F.; Brauner, E.; Pranno, N.; Tassi, G.; Senatore, M.; Bossù, M. Flexural strength and elastic modulus evaluation of structures made by conventional PMMA and PMMA reinforced with graphene. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5201–5208. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhu, X.; Qi, Z.; Wang, C.; Mao, X.; Zhu, C.; He, Z.; Li, M.; Tang, Z. Killing dental pathogens using antibacterial graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 5605–5611. [Google Scholar] [CrossRef]
- Scarano, A.; Orsini, T.; Di Carlo, F.; Valbonetti, L.; Lorusso, F. Graphene-doped poly (methyl-methacrylate)(PMMA) implants: A micro-CT and histomorphometrical study in rabbits. Int. J. Mol. Sci. 2021, 22, 1441. [Google Scholar] [CrossRef]
- Guleryuz, A.; Korkmaz, C.; Sener, A.; Tas, M.O. The effect of thermo-mechanical fatigue on the retentive force and dimensional changes in polyetheretherketone clasps with different thickness and undercut. J. Adv. Prosthodont. 2021, 13, 304–315. [Google Scholar] [CrossRef]
- Helal, M.A.; Al-Khiary, Y.; Baraka, O.A.; Sanad, M.E.; Ludwig, K.; Kern, M. Effect of clasp design on retention at different intervals using different abutment materials and in a simulated oral condition. J. Prosthodont. 2014, 23, 140–145. [Google Scholar] [CrossRef]
- Helal, M.A.; Baraka, O.A.; Sanad, M.E.; Ludwig, K.; Kern, M. Effects of Long-Term Simulated RPD Clasp Attachment/Detachment on Retention Loss and Wear for Two Clasp Types and Three Abutment Material Surfaces. J. Prosthodont. 2012, 21, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Tannous, F.; Steiner, M.; Shahin, R.; Kern, M. Retentive forces and fatigue resistance of thermoplastic resin clasps. Dent. Mater. 2012, 28, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandu, L.; Faur, N.; Bortun, C. Finite element stress analysis and fatigue behavior of cast circumferential clasps. J. Prosthet. Dent. 2007, 97, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.P.M.; Dal Piva, A.M.d.O.; Borges, A.L.S.; Araújo, R.M.; da Silva, J.M.F.; Bottino, M.A.; Kleverlaan, C.J.; de Jager, N. Effect of different materials and undercut on the removal force and stress distribution in circumferential clasps during direct retainer action in removable partial dentures. Dent. Mater. 2020, 36, 179–186. [Google Scholar] [CrossRef]
- Yamazaki, T.; Murakami, N.; Suzuki, S.; Handa, K.; Yatabe, M.; Takahashi, H.; Wakabayashi, N. Influence of block-out on retentive force of thermoplastic resin clasps: An in vitro experimental and finite element analysis. J. Prosthodont. Res. 2019, 63, 303–308. [Google Scholar] [CrossRef]
- Alruthea, M.S. Biomechanical Analysis of the Zirconia and Graphene-based CAD-CAM Dental Bridges at Different Pontic Length: A Finite Element Analysis. J. Clin. Diagn. Res. 2020, 14, ZF01–ZF05. [Google Scholar] [CrossRef]
- R&D Medical Products, Pressing Dental. Available online: https://www.pressing-dental.com/wp-content/uploads/2021/10/098068-GB-Email-Catalogo-CAD-CAM-Rev.-02-04-2021.pdf (accessed on 15 June 2022).
- G-CAM Graphene Nanoreinfornced Biopolymer Disc for CAD/CAM Drilling. Available online: https://www.graphenanodental.com/descargas-documentos/catalogo-gcam_en.pdf (accessed on 15 June 2022).
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Dogru, S.C.; Cansiz, E.; Arslan, Y.Z. A review of finite element applications in oral and maxillofacial biomechanics. J. Mech. Med. Biol. 2018, 18, 1830002–1830028. [Google Scholar] [CrossRef]
- Koike, M.; Okabe, T.; Chan, K.S.; Hummel, S.K.; Mason, R.L. Fatigue life of cast titanium alloys under simulated denture framework displacements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2013, 44, 1034–1044. [Google Scholar] [CrossRef]
Material | Young’s Modulus (MPa) | Poisson Ratio | Bending Strength (MPa) | Surface Hardness (Shore) | Water Sorption (µg/mm3) | Glass Transition Temp. (Tg) °C |
---|---|---|---|---|---|---|
GBP | 3200 | 0.3 | 140 | 88 | 4 | 120 |
PEEK | 4100 | 0.4 | 183 | 87.2 | 1.7 | 143 * |
Max | Med | Min | SD | IQ | Mean Rank | Sum of Ranks | Mann–Whitney | Sig. (2-Tailed) | |
---|---|---|---|---|---|---|---|---|---|
PEEK | 3.70 | 2.248 | 1.68 | 0.315 | 0.443 | 113.65 | 10,342.5 | 2124.5 | p < 0.001 * |
GBP | 2.90 | 2.018 | 1.43 | 0.298 | 0.425 | 69.35 | 6310.5 |
Mean | SD | t-Value | Sig. (2-Tailed) | |
---|---|---|---|---|
PEEK (RT) | 0.158 | 0.047 | −2.95 | 0.007 * |
GBP (RT) | 0.220 | 0.069 | ||
PEEK (RC) | 0.133 | 0.034 | −4.23 | <0.001 * |
GBP (RC) | 0.187 | 0.0376 |
Maximum | Average | Minimum | |
---|---|---|---|
PEEK (MPS) | 9.749 | 0.1134 | −6.395 |
GBP (MPS) | 12.66 | 0.1612 | −6.001 |
PEEK (MPE) | 1.85 × 10−3 | 3.809 × 10−5 | 4.805 × 10−15 |
GBP (MPE) | 3.331 × 10−3 | 6.458 × 10−5 | 8.215 × 10−15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, M.O. Performance of Graphene-Based and Polyether-Ether-Ketone Polymers as Removable Partial Denture Esthetic Clasp Materials after Cyclic Fatigue. Polymers 2022, 14, 2987. https://doi.org/10.3390/polym14152987
Hussein MO. Performance of Graphene-Based and Polyether-Ether-Ketone Polymers as Removable Partial Denture Esthetic Clasp Materials after Cyclic Fatigue. Polymers. 2022; 14(15):2987. https://doi.org/10.3390/polym14152987
Chicago/Turabian StyleHussein, Mostafa Omran. 2022. "Performance of Graphene-Based and Polyether-Ether-Ketone Polymers as Removable Partial Denture Esthetic Clasp Materials after Cyclic Fatigue" Polymers 14, no. 15: 2987. https://doi.org/10.3390/polym14152987
APA StyleHussein, M. O. (2022). Performance of Graphene-Based and Polyether-Ether-Ketone Polymers as Removable Partial Denture Esthetic Clasp Materials after Cyclic Fatigue. Polymers, 14(15), 2987. https://doi.org/10.3390/polym14152987