Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications
Abstract
:1. Introduction
2. Polyethylene Glycol-Based Nanohybrids
3. Carbohydrate Polymer-BasedNHs
3.1. Carboxymethyl Cellulose-Based Nanohybrids
3.2. Chitosan-Based Nanohybrids (Carbohydrate-Based)
3.3. Pullulan-Based NHs
3.4. Β-Glucan-Based NHs
4. Poly(lactic-co-glycolic Acid)-Based Nanohybrids
5. Polypyrrole-Based Nanohybrids
6. Peptide-BasedNHs
6.1. Casein-Based Nanohybrids
6.2. Pectin-Based NHs
6.3. Albumin-Based NHs
6.4. Gelatin-Based NHs
7. Poly(ethyleneimine)-Based Nanohybrids
8. Pluronic F127-Based Nanohybrids
9. Other Polymer-Based Nanohybrids
10. Limitations and Challenges
11. Successes
12. Conclusions
13. Prospect and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 2012. CA A Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galmarini, D.; Galmarini, C.M.; Galmarini, F.C. Cancer Chemotherapy: A Critical Analysis of Its 60 Years of History. Crit. Rev. Oncol./Hematol. 2012, 84, 181–199. [Google Scholar] [CrossRef]
- Wyld, L.; Audisio, R.A.; Poston, G.J. The Evolution of Cancer Surgery and Future Perspectives. Nat. Rev. Clin. Oncol. 2015, 12, 115–124. [Google Scholar] [CrossRef]
- Schaue, D.; Mcbride, W.H. Opportunities and Challenges of Radiotherapy for Treating Cancer. Nat. Rev. Clin. Oncol. 2015, 12, 527–540. [Google Scholar] [CrossRef]
- Raguz, S.; Yagüe, E. Resistance to Chemotherapy: New Treatments and Novel Insights into an Old Problem. Br. J. Cancer 2008, 99, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Padma, V.V. An Overview of Targeted Cancer Therapy. BioMedicine 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Xu, G.; Mcleod, H.L. Strategies for Enzyme/Prodrug Cancer Therapy 1. Clin. Cancer Res. 2001, 7, 3314–3324. [Google Scholar]
- Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y. Peptide-Based Cancer Therapy: Opportunity and Challenge. Cancer Lett. 2014, 351, 13–22. [Google Scholar] [CrossRef]
- El-Aneed, A. Current Strategies in Cancer Gene Therapy. Eur. J. Pharmacol. 2004, 498, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, F.; Ji, Y.; Yin, L. Recent Advances in Anti-Cancer Protein/Peptide Delivery. Bioconjugate Chem. 2019, 30, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Mali, S. Delivery Systems for Gene Therapy. Indian J. Hum. Genet. 2013, 19, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulla, J.E.; Sahu, S.C.; Hayes, A.W. Nanotechnology: History and Future. Hum. Exp. Toxicol. 2015, 34, 1318–1321. [Google Scholar] [CrossRef]
- Thrall, J.H. Nanotechnology and Medicine. Radiology 2004, 230, 315–318. [Google Scholar] [CrossRef]
- Aslan, B.; Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Nanotechnology in Cancer Therapy. J. Drug Target. 2013, 21, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, R. Nanoparticles: Building Blocks for Nanotechnology. In Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization; Nagarajan, R., Alan Hatton, T., Eds.; ACS Publications: Washington, DC, USA, 2008; Volume 996, pp. 2–14. [Google Scholar]
- UlHaq, I.; Ijaz, S. Use of Metallic Nanoparticles and Nanoformulations as Nanofungicides for Sustainable Disease Management in Plants. In Nanobiotechnology in Bioformulations; Prasad, R., Kumar, V., Kumar, M., Choudhary, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 289–316. [Google Scholar]
- Oshiro, J.A.; Abuçafy, M.P.; Manaia, E.B.; da Silva, B.L.; Chiari-Andréo, B.G.; Chiavacci, L.A. Drug Delivery Systems Obtained from Silica Based Organic-Inorganic Hybrids. Polymers 2016, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Attri, A.; Thakur, D.; Kaur, T.; Sensale, S.; Peng, Z.; Kumar, D.; Singh, R.P. Nanoparticles Incorporating a Fluorescence Turn-on Reporter forReal-Time Drug Release Monitoring, a Chemoenhancer and aStealth Agent: Poseidon’s Trident against Cancer? Mol. Pharmaceutics 2021, 18, 124–147. [Google Scholar] [CrossRef]
- Manatunga, D.C.; Godakanda, V.U.; de Silva, R.M.; de Silva, K.M.N. Recent Developments in the Use of Organic–Inorganic Nanohybrids for Drug Delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1605. [Google Scholar] [CrossRef]
- Li, J.; Shen, M.; Shi, X. Poly(Amidoamine) Dendrimer-Gold Nanohybrids in Cancer Gene Therapy: A Concise Overview. ACS Appl. Bio Mater. 2020, 3, 5590–5605. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Shen, Y.; He, Q.; Guo, S. Tumor-Specific Disintegratable Nanohybrids Containing Ultrasmall Inorganic Nanoparticles: From Design and Improved Properties to Cancer Applications. Mater. Horiz. 2018, 5, 184–205. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Wang, Z.; Wang, W.; Yang, M.; Dong, X. Organic/Inorganic Nanohybrids Rejuvenate Photodynamic Cancer Therapy. J. Mater. Chem. B 2020, 8, 4748–4763. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, G.; Peitzsch, C.; Vittorio, O.; Curcio, M.; Farfalla, A.; Voli, F.; Dubrovska, A.; Iemma, F.; Kavallaris, M.; Hampel, S. When Polymers Meet Carbon Nanostructures: Expanding Horizons in Cancer Therapy. Future Med. Chem. 2019, 11, 2205–2231. [Google Scholar] [CrossRef] [PubMed]
- Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for Drug Delivery Systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149–173. [Google Scholar] [CrossRef] [Green Version]
- Vimal, S.K.; Cao, H.; Dubey, A.; Agrawal, L.; Pathak, P.; Zuo, H.; Kumar, D.; Bhattacharyya, S. In vivo and in silico investigations of the pegylated gold nanoparticle treatment of amyotrophic lateral sclerosis in mice. New J. Chem. 2022, 46, 12252–12264. [Google Scholar] [CrossRef]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Zheng, D.W.; Li, B.; Li, C.X.; Fan, J.X.; Lei, Q.; Li, C.; Xu, Z.; Zhang, X.Z. Carbon-Dot-Decorated Carbon Nitride Nanoparticles for Enhanced Photodynamic Therapy against Hypoxic Tumor via Water Splitting. ACS Nano 2016, 10, 8715–8722. [Google Scholar] [CrossRef]
- Pandey, N.K.; Chudal, L.; Phan, J.; Lin, L.; Johnson, O.; Xing, M.; Liu, J.P.; Li, H.; Huang, X.; Shu, Y.; et al. A Facile Method for the Synthesis of Copper-Cysteamine Nanoparticles and Study of ROS Production for Cancer Treatment. J. Mater. Chem. B 2019, 7, 6630–6642. [Google Scholar] [CrossRef]
- Leitão, M.M.; Alves, C.G.; de Melo-Diogo, D.; Lima-Sousa, R.; Moreira, A.F.; Correia, I.J. Sulfobetaine Methacrylate-Functionalized Graphene Oxide-IR780 Nanohybrids Aimed at Improving Breast Cancer Phototherapy. RSC Advances 2020, 10, 38621–38630. [Google Scholar] [CrossRef]
- Ardekani, S.M.; Dehghani, A.; Hassan, M.; Kianinia, M.; Aharonovich, I.; Gomes, V.G. Two-Photon Excitation Triggers Combined Chemo-Photothermal Therapy via Doped Carbon Nanohybrid Dots for Effective Breast Cancer Treatment. Chem. Eng. J. 2017, 330, 651–662. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Jia, H.R.; Chen, Z.; Wu, F.G. Photosensitizer (PS)/Polyhedral Oligomeric Silsesquioxane (POSS)-Crosslinked Nanohybrids for Enhanced Imaging-Guided Photodynamic Cancer Therapy. Nanoscale 2017, 9, 12874–12884. [Google Scholar] [CrossRef]
- Sawant, V.J.; Bamane, S.R.; Shejwal, R.V.; Patil, S.B. Comparison of Drug Delivery Potentials of Surface Functionalized Cobalt and Zinc Ferrite Nanohybrids for Curcumin in to MCF-7 Breast Cancer Cells. J. Magn. Magn. Mater. 2016, 417, 222–229. [Google Scholar] [CrossRef]
- Huang, C.; Wu, J.; Jiang, W.; Liu, R.; Li, Z.; Luan, Y. Amphiphilic Prodrug-Decorated Graphene Oxide as a Multi-Functional Drug Delivery System for Efficient Cancer Therapy. Mater. Sci. Eng. C 2018, 89, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Gao, J.; Jiang, L.; Luo, J.; Jing, L.; Li, X.; Jin, Y.; Dai, Z. Nanohybrid Liposomal Cerasomes with Good Physiological Stability and Rapid Temperature Responsiveness for High Intensity Focused Ultrasound Triggered Local Chemotherapy of Cancer. ACS Nano 2015, 9, 1280–1293. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, A.; Boudon, J.; Oudot, A.; Moreau, M.; Boidot, R.; Chassagnon, R.; Saïd, N.M.; Roux, S.; Mirjolet, C.; Millot, N. Titanate Nanotubes Engineered with Gold Nanoparticles and Docetaxel to Enhance Radiotherapy on Xenografted Prostate Tumors. Cancers 2019, 11, 1962. [Google Scholar] [CrossRef] [Green Version]
- Gautam, M.; Thapa, R.K.; Gupta, B.; Soe, Z.C.; Ou, W.; Poudel, K.; Jin, S.G.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Phytosterol-Loaded CD44 Receptor-Targeted PEGylated Nano-Hybrid Phyto-Liposomes for Synergistic Chemotherapy. Expert Opin. Drug Deliv. 2020, 17, 423–434. [Google Scholar] [CrossRef]
- Loiseau, A.; Boudon, J.; Mirjolet, C.; Créhange, G.; Millot, N. Taxane-Grafted Metal-Oxide Nanoparticles as a New Theranostic Tool against Cancer: The Promising Example of Docetaxel-Functionalized Titanate Nanotubes on Prostate Tumors. Adv. Healthc. Mater. 2017, 6, 1700245. [Google Scholar] [CrossRef]
- Du, W.; Chen, C.; Sun, P.; Zhang, S.; Zhang, J.; Zhang, X.; Liu, Y.; Zhang, R.; Yan, C.; Fan, C.; et al. Eliciting an Immune Hot Tumor Niche with Biomimetic Drug-Based Multi-Functional Nanohybrids Augments Immune Checkpoint Blockade-Based Breast Cancer Therapy. Nanoscale 2020, 12, 3317–3329. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, W.; Tham, H.P.; Chen, H.; Xing, P.; Xiang, H.; Yao, X.; Qiu, X.; Dai, Y.; Zhu, L.; et al. Fast-Clearable Nanocarriers Conducting Chemo/Photothermal Combination Therapy to Inhibit Recurrence of Malignant Tumors. Small 2017, 13, 1700963. [Google Scholar] [CrossRef]
- Yuan, X.; Peng, S.; Lin, W.; Wang, J.; Zhang, L. Multistage PH-Responsive Mesoporous Silica Nanohybrids with Charge Reversal and Intracellular Release for Efficient Anticancer Drug Delivery. J. Colloid Interface Sci. 2019, 555, 82–93. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Q.; Sun, H.; Guo, N.; Zhang, J. Improved Therapeutic Efficiency of Photothermal Treatment and Nursing Care in Prostate Cancer by DOX Loaded PEG Coated Cu@Se Nano-Hybrid Vesicle. Process Biochem. 2020, 92, 78–84. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, A.; Li, D.; Wang, L.; Yang, H.; Zeng, H.; Liu, Y. Photosensitizer-Assembled PEGylated Graphene-Copper Sulfide Nanohybrids as a Synergistic near-Infrared Phototherapeutic Agent. Expert Opin. Drug Deliv. 2016, 13, 155–165. [Google Scholar] [CrossRef]
- Ma, W.; Hu, Y.; Yang, H.; Zhang, Y.; Ding, J.; Chen, L. Au-Aided Reduced Graphene Oxide-Based Nanohybrids for Photo-Chemotherapy. Mater. Sci. Eng. C 2019, 95, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, K.; Li, C.; Wang, L.; Liu, J.; He, J.; Lei, J.; Liu, X. Self-Assembled Nanoparticles Based on a Carboxymethylcellulose–Ursolic Acid Conjugate for Anticancer Combination Therapy. RSC Adv. 2017, 7, 36256–36268. [Google Scholar] [CrossRef] [Green Version]
- Kharkwal, H.; Janaswamy, S. Natural Polymers for Drug Delivery; CABI: Wallingford, UK, 2016. [Google Scholar]
- Sorokin, A.V.; Kuznetsov, V.A.; Lavlinskaya, M.S. Synthesis of Graft Copolymers of Carboxymethyl Cellulose and N,N-Dimethylaminoethyl Methacrylate and Their Study as Paclitaxel Carriers. Polym. Bull. 2021, 78, 2975–2992. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hasan, M.S.; Nitai, A.S.; Nam, S.; Karmakar, A.K.; Ahsan, M.S.; Shiddiky, M.J.A.; Ahmed, M.B. Recent Developments of Carboxymethyl Cellulose. Polymers 2021, 13, 1345. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.A.P.; Caires, A.J.; Carvalho, S.M.; Capanema, N.S.V.; Carvalho, I.C.; Mansur, H.S. Dual-Functional Supramolecular Nanohybrids of Quantum Dot/Biopolymer/Chemotherapeutic Drug for Bioimaging and Killing Brain Cancer Cells in Vitro. Colloids Surf. B Biointerfaces 2019, 184, 110507. [Google Scholar] [CrossRef]
- Leonel, A.G.; Mansur, H.S.; Mansur, A.A.P.; Caires, A.; Carvalho, S.M.; Krambrock, K.; Outon, L.E.F.; Ardisson, J.D. Synthesis and Characterization of Iron Oxide Nanoparticles/Carboxymethyl Cellulose Core-Shell Nanohybrids for Killing Cancer Cells in Vitro. Int. J. Biol. Macromol. 2019, 132, 677–691. [Google Scholar] [CrossRef]
- Javanbakht, S.; Hemmati, A.; Namazi, H.; Heydari, A. Carboxymethylcellulose-Coated 5-Fluorouracil@MOF-5 Nano-Hybrid as a Bio-Nanocomposite Carrier for the Anticancer Oral Delivery. Int. J. Biol. Macromol. 2020, 155, 876–882. [Google Scholar] [CrossRef]
- Carvalho, I.C.; Mansur, A.A.P.; Carvalho, S.M.; Florentino, R.M.; Mansur, H.S. L-Cysteine and Poly-L-Arginine Grafted Carboxymethyl Cellulose/Ag-In-S Quantum Dot Fluorescent Nanohybrids for in Vitro Bioimaging of Brain Cancer Cells. Int. J. Biol. Macromol. 2019, 133, 739–753. [Google Scholar] [CrossRef]
- Carvalho, I.C.; Mansur, A.A.P.; Carvalho, S.M.; Mansur, H.S. Nanotheranostics through Mitochondria-Targeted Delivery with Fluorescent Peptidomimetic Nanohybrids for Apoptosis Induction of Brain Cancer Cells. Nanotheranostics 2021, 5, 213–239. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.A.P.; Amaral-Júnior, J.C.; Carvalho, S.M.; Carvalho, I.C.; Mansur, H.S. Cu-In-S/ZnS@carboxymethylcellulose Supramolecular Structures: Fluorescent Nanoarchitectures for Targeted-Theranostics of Cancer Cells. Carbohydr. Polym. 2020, 247, 116703. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.M.; Leonel, A.G.; Mansur, A.A.P.; Carvalho, I.C.; Krambrock, K.; Mansur, H.S. Bifunctional Magnetopolymersomes of Iron Oxide Nanoparticles and Carboxymethylcellulose Conjugated with Doxorubicin for Hyperthermo-Chemotherapy of Brain Cancer Cells. Biomater. Sci. 2019, 7, 2102–2122. [Google Scholar] [CrossRef] [PubMed]
- Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-Based Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2012, 81, 463–469. [Google Scholar] [CrossRef]
- Gooday, G.W. Biochemistry of Cell Walls and Membranes in Fungi; Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., Copping, L.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; ISBN 978-3-642-74217-0. [Google Scholar]
- Vincent, J.F.V. Biology of Fibrous Composites: Development Beyond the Cell Membrane. Science (1979) 1994, 265, 126–128. [Google Scholar]
- Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Dahri, M.; Akbarialiabad, H.; Jahromi, A.M.; Maleki, R. Loading and Release of Cancer Chemotherapy Drugs Utilizing Simultaneous Temperature and PH-Responsive Nanohybrid. BMC Pharmacol. Toxicol. 2021, 22, 1–10. [Google Scholar] [CrossRef]
- Jia, L.; Li, Z.; Zheng, D.; Li, Z.; Zhao, Z. A Targeted and Redox/PH-Responsive Chitosan Oligosaccharide Derivatives Based Nanohybrids for Overcoming Multidrug Resistance of Breast Cancer Cells. Carbohydr. Polym. 2021, 251, 117008. [Google Scholar] [CrossRef]
- Pooresmaeil, M.; Asl, E.A.; Namazi, H. A New PH-Sensitive CS/Zn-MOF@GO Ternary Hybrid Compound as a Biofriendly and Implantable Platform for Prolonged 5-Fluorouracil Delivery to Human Breast Cancer Cells. J. Alloy. Compd. 2021, 885, 160992. [Google Scholar] [CrossRef]
- George, D.; Maheswari, P.U.; Begum, K.M.M.S. Cysteine Conjugated Chitosan Based Green Nanohybrid Hydrogel Embedded with Zinc Oxide Nanoparticles towards Enhanced Therapeutic Potential of Naringenin. React. Funct. Polym. 2020, 148, 104480. [Google Scholar] [CrossRef]
- Rasoulzadehzali, M.; Namazi, H. Facile Preparation of Antibacterial Chitosan/Graphene Oxide-Ag Bio-Nanocomposite Hydrogel Beads for Controlled Release of Doxorubicin. Int. J. Biol. Macromol. 2018, 116, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-L.; Zhang, X.-Y.; Fu, J.-Y.; Xu, F.; Chen, Y.-S. Novel Temperature and PH Dual Sensitive PNIPAM/CMCS/MWCNTs Semi-IPN Nanohybrid Hydrogels: Synthesis, Characterization and DOX Drug Release. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 398–409. [Google Scholar] [CrossRef]
- Seyfoori, A.; Sarfarazijami, S.; Seyyed Ebrahimi, S.A. PH-Responsive Carbon Nanotube-Based Hybrid Nanogels as the Smart Anticancer Drug Carrier. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1437–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, S.; Dhamecha, D.; Kaliyamoorthi, K.; Pillai, A.S.; Alexander, A.; Dhanaraj, P.; Menon, J.U.; Enoch, I.V.M.V. Magnetic Hydroxyapatite Nanomaterial–Cyclodextrin Tethered Polymer Hybrids as Anticancer Drug Carriers. Mater. Adv. 2021, 2, 3315–3327. [Google Scholar] [CrossRef]
- Laksee, S.; Supachettapun, C.; Muangsin, N.; Lertsarawut, P.; Rattanawongwiboon, T.; Sricharoen, P.; Limchoowong, N.; Chutimasakul, T.; Kwamman, T.; Hemvichian, K. Targeted Gold Nanohybrids Functionalized with Folate-Hydrophobic-Quaternized Pullulan Delivering Camptothecin for Enhancing Hydrophobic Anticancer Drug Efficacy. Polymers 2021, 13, 2670. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Liu, C.; Xiong, Q.; Duan, H.; Cheung, P.C.K. Stable and Biocompatible Mushroom β-Glucan Modified Gold Nanorods for Cancer Photothermal Therapy. J. Agric. Food Chem. 2017, 65, 9529–9536. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Dong, X.; Cheng, W.Y.; Duan, H.; Cheung, P.C.K. In Vitro and in Vivo Photothermal Cancer Therapeutic Effects of Gold Nanorods Modified with Mushroom β-Glucan. J. Agric. Food Chem. 2018, 66, 4091–4098. [Google Scholar] [CrossRef]
- Xu, Y.; Kim, C.-S.; Saylor, D.M.; Koo, D. Polymer Degradation and Drug Delivery in PLGA-Based Drug-Polymer Applications: A Review of Experiments and Theories. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 1692–1716. [Google Scholar] [CrossRef]
- Topete, A.; Alatorre-Meda, M.; Villar-Alvarez, E.M.; Carregal-Romero, S.; Barbosa, S.; Parak, W.J.; Taboada, P.; Mosquera, V. Polymeric-Gold Nanohybrids for Combined Imaging and Cancer Therapy. Adv. Healthc. Mater. 2014, 3, 1309–1325. [Google Scholar] [CrossRef]
- Ray, S.; Mishra, A.; Mandal, T.K.; Sa, B.; Chakraborty, J. Optimization of the Process Parameters for the Fabrication of a Polymer Coated Layered Double Hydroxide-Methotrexate Nanohybrid for the Possible Treatment of Osteosarcoma. RSC Adv. 2015, 5, 102574–102592. [Google Scholar] [CrossRef]
- Jain, N.K.; Prabhuraj, R.S.; Bavya, M.C.; Prasad, R.; Bandyopadhyaya, R.; Naidu, V.G.M.; Srivastava, R. Niclosamide Encapsulated Polymeric Nanocarriers for Targeted Cancer Therapy. RSC Adv. 2019, 9, 26572–26581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geetha, S.; Rao, C.R.K.; Vijayan, M.; Trivedi, D.C. Biosensing and Drug Delivery by Polypyrrole. Anal. Chim. Acta 2006, 568, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Deng, X.; Xie, Z.; Shi, Y.; Pang, M.; Lin, J. Controllable Synthesis of Highly Monodispersed Nanoscale Fe-Soc-MOF and the Construction of Fe-Soc-MOF@polypyrrole Core-Shell Nanohybrids for Cancer Therapy. Chem. Eng. J. 2019, 358, 369–378. [Google Scholar] [CrossRef]
- Wu, M.X.; Yan, H.J.; Gao, J.; Cheng, Y.; Yang, J.; Wu, J.R.; Gong, B.J.; Zhang, H.Y.; Yang, Y.W. Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapy. ACS Appl. Mater. Interfaces 2018, 10, 34655–34663. [Google Scholar] [CrossRef]
- Purushothaman, B.K.; Maheswari, P.U.; Sheriffa Begum, K.M. PH and Magnetic Field Responsive Protein-Inorganic Nanohybrid Conjugated with Biotin: A Biocompatible Carrier System Targeting Lung Cancer Cells. J. Appl. Polym. Sci. 2021, 138, 49949. [Google Scholar] [CrossRef]
- Purushothaman, B.K.; Maheswari, P.U.; Begum, K.M.M.S. Magnetic Casein-CaFe2O4 Nanohybrid Carrier Conjugated with Progesterone for Enhanced Cytotoxicity of Citrus Peel Derived Hesperidin Drug towards Breast and Ovarian Cancer. Int. J. Biol. Macromol. 2020, 151, 293–304. [Google Scholar] [CrossRef]
- Hussien, N.A.; Işıklan, N.; Türk, M. Pectin-Conjugated Magnetic Graphene Oxide Nanohybrid as a Novel Drug Carrier for Paclitaxel Delivery. Artif. Cells Nanomed. Biotechnol. 2018, 46, 264–273. [Google Scholar] [CrossRef]
- Ma, N.; Liu, J.; He, W.; Li, Z.; Luan, Y.; Song, Y.; Garg, S. Folic Acid-Grafted Bovine Serum Albumin Decorated Graphene Oxide: An Efficient Drug Carrier for Targeted Cancer Therapy. J. Colloid Interface Sci. 2017, 490, 598–607. [Google Scholar] [CrossRef]
- Nezhad-Mokhtari, P.; Arsalani, N.; Javanbakht, S.; Shaabani, A. Development of Gelatin Microsphere Encapsulated Cu-Based Metal-Organic Framework Nanohybrid for the Methotrexate Delivery. J. Drug Deliv. Sci. Technol. 2019, 50, 174–180. [Google Scholar] [CrossRef]
- Aliabadi, M.; Yunessnialehi, A.; Shagholani, H.; Gerayeli, A. Planar Polymer-Graphene Oxide Nanohybrid as a 5-Fluorouacil Carrier in PH-Responsive Controlled Release. J. Drug Deliv. Sci. Technol. 2018, 43, 103–106. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Behera, B.; Sahu, S.K.; Ananthakrishnan, R.; Maiti, T.K.; Pramanik, P. Design of Dual Stimuli Responsive Polymer Modified Magnetic Nanoparticles for Targeted Anti-Cancer Drug Delivery and Enhanced MR Imaging. New J. Chem. 2016, 40, 545–557. [Google Scholar] [CrossRef]
- Huang, R.Y.; Lin, Y.H.; Lin, S.Y.; Li, Y.N.; Chiang, C.S.; Chang, C.W. Magnetic Ternary Nanohybrids for Nonviral Gene Delivery of Stem Cells and Applications on Cancer Therapy. Theranostics 2019, 9, 2411–2423. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, M.; Lin, X.; Zhang, X.; Liu, X.; Liu, J. Magnetite Nanocluster and Paclitaxel-Loaded Charge-Switchable Nanohybrids for MR Imaging and Chemotherapy. J. Mater. Chem. B 2017, 5, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Ryplida, B.; Phuong, P.T.M.; Won, H.J.; Lee, G.; Bhang, S.H.; Park, S.Y. Reduction-Triggered Paclitaxel Release Nano-Hybrid System Based on Core-Crosslinked Polymer Dots with a Ph-Responsive Shell-Cleavable Colorimetric Biosensor. Int. J. Mol. Sci. 2019, 20, 5368. [Google Scholar] [CrossRef] [Green Version]
- Senapati, S.; Shukla, R.; Tripathi, Y.B.; Mahanta, A.K.; Rana, D.; Maiti, P. Engineered Cellular Uptake and Controlled Drug Delivery Using Two Dimensional Nanoparticle and Polymer for Cancer Treatment. Mol. Pharm. 2018, 15, 679–694. [Google Scholar] [CrossRef]
- He, W.; Wang, S.; Yan, J.; Qu, Y.; Jin, L.; Sui, F.; Li, Y.; You, W.; Yang, G.; Yang, Q.; et al. Self-Assembly of Therapeutic Peptide into Stimuli-Responsive Clustered Nanohybrids for Cancer-Targeted Therapy. Adv. Funct. Mater. 2019, 29, 1807736. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, B.; Wang, J.; Qian, Q.; Wang, J.; Xu, H.; Yang, S.; Feng, P.; Chen, W.; Li, Y.; et al. Drug-Mediation Formation of Nanohybrids for Sequential Therapeutic Delivery in Cancer Cells. Colloids Surf. B Biointerfaces 2018, 163, 284–290. [Google Scholar] [CrossRef]
- Deng, X.; Li, K.; Cai, X.; Liu, B.; Wei, Y.; Deng, K.; Xie, Z.; Wu, Z.; Ma, P.; Hou, Z.; et al. A Hollow-Structured CuS@Cu2S@Au Nanohybrid: Synergistically Enhanced Photothermal Efficiency and Photoswitchable Targeting Effect for Cancer Theranostics. Adv. Mater. 2017, 29, 1701266. [Google Scholar] [CrossRef]
- Lin, W.; Yao, N.; Qian, L.; Zhang, X.; Chen, Q.; Wang, J.; Zhang, L. PH-Responsive Unimolecular Micelle-Gold Nanoparticles-Drug Nanohybrid System for Cancer Theranostics. Acta Biomater. 2017, 58, 455–465. [Google Scholar] [CrossRef]
- Wang, G.; Dong, J.; Yuan, T.; Zhang, J.; Wang, L.; Wang, H. Visible Light and PH Responsive Polymer-Coated Mesoporous Silica Nanohybrids for Controlled Release. Macromol. Biosci. 2016, 16, 990–994. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid Magnetic Liposome Functionalized with Hyaluronic Acid for Enhanced Cellular Uptake and Near-Infrared-Triggered Drug Release. Colloids Surf. B Biointerfaces 2017, 154, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, V.; Villar-Alvarez, E.; Cambón, A.; Pardo, A.; Mosquera, V.X.; Bouzas-Mosquera, A.; Topete, A.; Barbosa, S.; Taboada, P. Gold Nanorod-Based Nanohybrids for Combinatorial Therapeutics. ACS Omega 2018, 3, 12633–12647. [Google Scholar] [CrossRef]
- Ashjaran, M.; Babazadeh, M.; Akbarzadeh, A.; Davaran, S.; Salehi, R. Stimuli-Responsive Polyvinylpyrrolidone-NIPPAm-Lysine Graphene Oxide Nano-Hybrid as an Anticancer Drug Delivery on MCF7 Cell Line. Artif. Cells Nanomed. Biotechnol. 2019, 47, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Fan, Y.; Shen, M.; Bányai, I.; Shi, X. Design of Dual Drug-Loaded Dendrimer/Carbon Dot Nanohybrids for Fluorescence Imaging and Enhanced Chemotherapy of Cancer Cells. J. Mater. Chem. B 2019, 7, 277–285. [Google Scholar] [CrossRef]
- Yan, J.; Ji, F.; Yan, S.; You, W.; Ma, F.; Li, F.; Huang, Y.; Liu, W.; He, W. A General-Purpose Nanohybrid Fabricated by Polymeric Au(i)-Peptide Precursor to Wake the Function of Peptide Therapeutics. Theranostics 2020, 10, 8513–8527. [Google Scholar] [CrossRef]
- Patel, D.K.; Gupta, V.; Dwivedi, A.; Pandey, S.K.; Aswal, V.K.; Rana, D.; Maiti, P. Superior Biomaterials Using Diamine Modified Graphene Grafted Polyurethane. Polymer (Guildf) 2016, 106, 109–119. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, N.; Xu, F.J. PH-Responsive Degradable Dextran-Quantum Dot Nanohybrids for Enhanced Gene Delivery. ACS Appl. Mater. Interfaces 2019, 11, 34707–34716. [Google Scholar] [CrossRef]
- Ran, J.; Wang, C.; Zhang, J.; Wang, W.; Xiao, L.; Jia, S.; Wang, Z.; Wu, W.; Xiao, J.; Wu, X. New Insight into Polydopamine@ZIF-8 Nanohybrids: A Zinc-Releasing Container for Potential Anticancer Activity. Polymers 2018, 10, 476. [Google Scholar] [CrossRef] [Green Version]
- Mehnath, S.; Mukherjee, A.; Mariappan, R.; Vijayaanand, M.A.; Jeyaraj, M. Polyorganophosphazene Stabilized Gold Nanoparticles for Intracellular Drug Delivery in Breast Carcinoma Cells. Process Biochem. 2018, 72, 152–161. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Chen, F.; Qiao, S.; Li, Y.; Pan, W. Synthesis, Formulation, and Characterization of Doxorubicin-Loaded Laponite/Oligomeric Hyaluronic Acid-Aminophenylboronic Acid Nanohybrids and Cytological Evaluation against MCF-7 Breast Cancer Cells. AAPS PharmSciTech 2020, 21. [Google Scholar] [CrossRef]
- Dong, F.; Zheng, T.; Zhu, R.; Wang, S.; Tian, Y. An Engineered Thermo-Sensitive Nanohybrid Particle for Accurate Temperature Sensing at the Single-Cell Level and Biologically Controlled Thermal Therapy. J. Mater. Chem. B 2016, 4, 7681–7688. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Ramasamy, T.; Tran, T.H.; Ku, S.K.; Shin, B.S.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Systemic Delivery of Axitinib with Nanohybrid Liposomal Nanoparticles Inhibits Hypoxic Tumor Growth. J. Mater. Chem. B 2015, 3, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Hadilou, N.; Khoshgenab, A.N.; Amoli-Diva, M.; Sadighi-Bonabi, R. Remote Trice Light, Temperature, and PH-Actuation of Switchable Magneto-Plasmonic Nanocarriers for Combinational Photothermal and Controlled/Targeted Chemotherapies. J. Pharm. Sci. 2018, 107, 3123–3133. [Google Scholar] [CrossRef]
- Che, H.; Huo, M.; Peng, L.; Ye, Q.; Guo, J.; Wang, K.; Wei, Y.; Yuan, J. CO2-Switchable Drug Release from Magneto-Polymeric Nanohybrids. Polym. Chem. 2015, 6, 2319–2326. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.-G.; Kim, I. Recent Advances in Poly(α-L-Glutamic Acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022, 12, 636. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kang, D.W.; Yun, H.; Kang, M.; Singh, N.; Kim, J.S.; Hong, C.S. Post-Synthetic Modifications in Porous Organic Polymers for Biomedical and Related Applications. Chem. Soc. Rev. 2022, 51, 43–56. [Google Scholar] [CrossRef]
- Onuma, K.; Sato, Y.; Ogawara, S.; Shirasawa, N.; Kobayashi, M.; Yoshitake, J.; Yoshimura, T.; Iigo, M.; Fujii, J.; Okada, F. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells. Am. J. Pathol. 2009, 175, 2171–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albanese, A.; Tang, P.S.; Chan, W.C.W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- AshaRani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef]
- Berneburg, M.; Kamenisch, Y.; Krutmann, J.; Röcken, M. “To Repair or Not to Repair ? No Longer a Question”: Repair of Mitochondrial DNA Shielding against Age and Cancer. Exp. Dermatol. 2006, 15, 1005–1015. [Google Scholar] [CrossRef]
- Priwitaningrum, D.L.; Blondé, J.-B.G.; Sridhar, A.; van Baarlen, J.; Hennink, W.E.; Storm, G.; le Gac, S.; Prakash, J. Tumor Stroma-Containing 3D Spheroid Arrays: A Tool to Study Nanoparticle Penetration. J. Control. Release 2016, 244, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Sha, H.; Zou, Z.; Xin, K.; Bian, X.; Cai, X.; Lu, W.; Chen, J.; Chen, G.; Huang, L.; Blair, A.M.; et al. Tumor-Penetrating Peptide Fused EGFR Single-Domain Antibody Enhances Cancer Drug Penetration into 3D Multicellular Spheroids and Facilitates Effective Gastric Cancer Therapy. J. Control. Release 2015, 200, 188–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minchinton, A.I.; Tannock, I.F. Drug Penetration in Solid Tumours. Nat. Rev. Cancer 2006, 6, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Haque, F.; Jasinski, D.L.; Binzel, D.W.; Shu, D.; Guo, P. Favorable Biodistribution, Specific Targeting and Conditional Endosomal Escape of RNA Nanoparticles in Cancer Therapy. Cancer Lett. 2018, 414, 57–70. [Google Scholar] [CrossRef] [PubMed]
Nanohybrids | Polymer | Active Agents | Cell Line | Performance | Reference | Role of Polymer | |
---|---|---|---|---|---|---|---|
PCCN | polyethylene glycol (PEG) | - | 4T1 | Photodynamic therapy by water splitting | [29] | acted as binder | |
Cu-Cy nanoparticles | - | KYSE-30 | MW-induced radical therapy by ROS generation | [30] | - | ||
IR780-SPP-GO | - | MCF-7 | Photodynamic therapy | [31] | improved colloidal stability | ||
CND-P@DOX | doxorubicin (DOX) | MCF-7 | Drug delivery and photothermal therapy | [32] | surface passivation | ||
POSS-Ce6-PEG | - | HeLa | Photodynamic cancer therapy | [33] | prolonged circulation time and improved aqueous dispersion | ||
PEG-coated curcumin-loaded cobalt ferrite | curcumin | MCF-7 | Drug delivery | [34] | coating agent | ||
GO/PP-SS-DOX/PEG-FA | doxorubicin (DOX) | FR-positive MCF-7, B16, FR-negative A549 | Reduction-sensitive drug delivery | [35] | improved aqueous stability | ||
HTSCs | doxorubicin (DOX) | MDA-MB-231 | Temperature-responsive ultrasound-triggered local chemotherapy | [36] | kept pores open, pore stabilization and facilitated rapid drug release | ||
TiONts-AuNPs-PEG3000-DTX | docetaxel (DTX) | PC-3 | Drug delivery and radiotherapy | [37] | improved suspension stability | ||
HA-DOX-STS-lipo | doxorubicin (DOX) | MCF-7 and MDA-MB-231 | CD44 receptor-targeted synergistic chemotherapy | [38] | ensured long circulation time | ||
TiONts–DTX | docetaxel (DTX) | 22Rv1 | Drug delivery | [39] | enhanced individualization, enhanced stability | ||
Drug-based nanohybrids (NK-DNH) | oxaliplatin (OXA), 1-Methyl-D-tryptophan (1-MT) | 4T1 | Blockade-based breast cancer therapy | [40] | increased passive targeting, decreased nonspecial accumulation, facilitated self-assembly | ||
HPSN | paclitaxel | HeLa | Photothermal and chemotherapy | [41] | biodistribution, enhanced cellular uptake, and prevented the trapping of the nanoparticles in RES | ||
MSN-hyd-MOP | doxorubicin | HepG2 | Drug delivery | [42] | enhanced cellular internalization | ||
PEG@Cu-Se+DOX | doxorubicin (DOX) | LNCaP and DU145 | Drug delivery and photothermal therapy | [43] | enhanced the aqueous solubility of DOX | ||
pGO-CuS/ICG | - | MCF-7 | Photodynamic therapy | [44] | - | ||
rGO/Au/PPEG | doxorubicin (DOX) | Photochemotherapy | [45] | improved biocompatibility | |||
ZnS@CMC-DOX | Carbohydrate-based nanohybrids | Carboxymethyl cellulose (CMC) | doxorubicin (DOX) | U-87 MG | Drug delivery | [50] | water-soluble capping ligand and biofunctional layer |
MION-CMC and Co-MION-CMC | - | HEK 293T, U87 | Magnetic hyperthermia therapy | [51] | stabilized ligand and functional biocompatible organic coating | ||
CMC/5-FU@MOF-5 | 5- fluorouracil (5-FU) | HeLa | Anticancer oral delivery | [52] | protected 5-FU in digestive system and pH-sensitive release and to carry | ||
CMCelPolyArg and QD nanoconjugates | - | HEK 293T, U-87 MG | Bioimaging and brain cancer cell targeting | [53] | stabilizing agent and capping ligand | ||
AIS@CMC_Cys-based NHs | doxorubicin (DOX) | U-87 MG | Mitochondria-targeted delivery | [54] | - | ||
ZCIS@CMC-FA-DOX | doxorubicin (DOX) | TNBC (FRα+), MCF7 (FRα-), HEK 293T, and | Targeted drug delivery | [55] | nucleation, growth, and stabilization of nanocolloidal dispersions | ||
MION@CMC-DOX | doxorubicin (DOX) | U87 | Drug delivery | [56] | nanoparticlestabilization, biocompatibility, and water-soluble biopolymer ligand | ||
SWCNT-based nanohybrids | Chitosan | paclitaxel and doxorubicin | - | Drug delivery, computational studies | [61] | improved the biocompatibility and biodegradability; chitosan had a significant function in the DOX release mechanism and PAX uptake | |
FITC-PEG-CS-PEI/SN | P-shRNA and paclitaxel | MCF-7/ADR cells | Drug delivery | [62] | good water solubility and excellent biocompatibility, as the polymer backbone to graft LMW PEI using degradable disulfide linkages to construct copolymers with suitable charge density and molecular weights | ||
5-Fu@CS/Zn-MOF@GO | 5-FU (5-fluorouracil) | MDA-MB 231 | Sustained and pH-sensitive drug release | [63] | monodispersion | ||
CYS-CHGZ-NRG | naringenin (NRG) | A431 | Drug delivery | [64] | chitosan stabilized the hydrogel and enabled a sustained release of NRG drug | ||
CH/GO-Ag nanocomposite hydrogel | DOX (doxorubicin) | SW480 | Drug delivery | [65] | sustained and controlled-release drug delivery | ||
PNIPAM/CMCS/MWCNTs semi-IPN nanohybrid hydrogels | DOX (doxorubicin) | L929 | Temperature-responsive and pH-responsive drug delivery | [66] | good biodegradability and biocompatibility, pH-responsivity; carboxymethylated chitosan was used | ||
Chi-MnFe2O4/CNT | DOX (doxorubicin) | U-87 | pH-sensitive drug release | [67] | greater pH-responsiveness and subsequently higher drug release | ||
Chi-CD-Pt-fol-coated Sr–Fe, Sr-HAp, and Sr, Fe-HAp NPs | DOX (doxorubicin) | MG-63 | Drug delivery | [68] | complexed Pt with the polymer and tethered with folate | ||
CPT-GNHs@FHQ-PUL | pullulan | camptothecin | Chago-k1, KATO-III, HepG2 | Drug delivery | [69] | nontoxic, noncarcinogenic, biocompatible, biodegradable, and highly soluble | |
AuNR-Glu | β-glucan | - | MCF-7, HT-29, SW480 | Photothermal therapy | [70,71] | low cytotoxicity and effective photothermal effect | |
DOXO/SPION-PLGA NPs | poly (lactic-co-glycolic acid) (PLGA) | doxorubicin (DOX) | HeLa | NIR-triggered and FA-receptor-targeted drug release | [73] | stabilization | |
PLGA-MTX and PLGA-LDH-MTX | methoteraxate (MTX) | MG-63 | Improved efficacy of drug | [74] | anionic, hydrophobic polymer: improved the overall therapeutic effect of MTX | ||
NIC-PLGA NP | NIC (niclosamide) | MDA-MB-231, L929 | Drug delivery | [75] | good biocompatibility, degradability, and an ample nanocarrier | ||
Fe-soc-MOF@Polypyrrole | Polypyrrole | - | L929, 4T1 | Photothermal therapy | [77] | biocompatible polymer with strong absorption in the NIR region | |
Polypyrrole@UiO-66 nanohybrids | 5-FU (5-fluorouracil) | HeLa | Chemophotothermal therapy | [78] | biocompatibility, high conductivity, and excellent photothermal conversion efficiency | ||
Casein-CFNP-I-BT | Protein based NHs | Casein | cinnamaldehyde | L929, A549 | pH- and magnetic-responsive drug delivery | [79] | drug carrier |
CaseiIaFe2O4nanohybrid carrier | hesperidin | MDA-MB-231, SKOV-3 | Drug delivery | [80] | drug delivery | ||
PEC-GO-Fe3O4-PAC | pectin | PTX (paclitaxel) | L-929, MCF-7 | Drug delivery | [81] | stabilizing agent | |
FA-BSA/GO/DOX | albumin | DOX (doxorubicin) | MCF-7 | Targeted drug delivery | [82] | stabilizer and targeting | |
Cu-MOF/MTX@GM | gelatin microsphere biopolymer | MTX (methotrexate) | MCF-7 | Drug delivery | [83] | pH-sensitive | |
TA-PEI-GO nanohybrid | Poly(ethyleneimine) baed nanohybrids | 5-FU (5-fluorouracil) | - | pH-sensitive drug delivery | [84] | a water-soluble cationic polymer | |
DOX-FA-Poly-MFNPs | DOX (doxorubicin) | HeLa, HaCaT | Thermo/pH-sensitive drug release | [85] | dual-responsive triggering, i.e., pH and temperature | ||
MTN | TRAIL | U87MG | Gene delivery | [86] | - | ||
Magnetite nanocluster charge-switchable nanohybrids | Pluronic F127 | PTX (paclitaxel) | HepG2 | Chemotherapy | [87] | charge-conversion ability via the co-hybridization; can also be used as the delivery carriers of SPIONs aggregates | |
L-PD | PTX (paclitaxel) | MDA-MB-231 | Reduction-triggered drug release | [88] | formed the matrix for drug loading | ||
LDH nanohybrids | Other polymers | (Poly(ε-caprolactone) | raloxifene hydrochloride | HeLa | Drug delivery | [89] | improved the therapeutic efficacy of the hydrophobic anticancer drugs by enhancing bioavailability |
pCluster | poly-L-lysine(PLL) | β-cetenin | A549, B16F10, HCT116, Hep3B | Targeted therapy | [90] | triggered the self-assembly of the pParticle into the massive pCluster | |
LDPM nanohybrids | poly(N-vinylpyrrolidone) | DOX (doxorubicin), mitoxantrone (MXT) | KB cells | Drug delivery | [91] | to improve their colloidal stability and for pH sensitivity | |
HCuS@Cu2S@Au-P-RGD-DOX | poly(oligo(ethylene oxide) | DOX (doxorubicin) | U87MG | Photothermal therapy and photoswitchable drug delivery | [92] | thermosensitive polymer | |
β-CD-(PLA-PDMAEMA-PEtOxMA)21/Au/DOX | {poly(lactide)-poly(2-(dimethylamino) ethyl methacrylate)-poly[oligo(2-ethyl-2-oxazoline)methacrylate]} | DOX (doxorubicin) | HepG2 | Theranostics | [93] | - | |
Polymer-coated MSNs | poly(dimethylaminoethylmethacrylates) | DOX (doxorubicin) | MCF-7 | Controlled release | [94] | sensitive to visible light and pH | |
HA-MNP-LPs | hexadecylamine polymer | DTX (docetaxel) | MCF-7 | NIR-triggered drug delivery | [95] | NIR-stimulated drug release | |
(PSS/DOXO/PLL)2/HA-coated GNRs | poly (sodium-4-styrenesulfonate | DOX (doxorubicin) | HeLa, MDA-MB-231 | Combinatorial therapeutics | [96] | to mask the toxic hexadecyltrimethyl ammonium bromide (CTAB) layer | |
FU-GO/NHs | polyvinylpyrrolidone | FU (fluorouracil) | MCF-7 | Temperature-sensitive drug delivery | [97] | - | |
Dendrimer/carbon dot nanohybrids | Polyethylene glycol 1000 vitamin E succinate (TPGS) | DOX (doxorubicin) | MDR reversal | [98] | Pg-P inhibitor | ||
Peptide-Au SNH | peptide-auric | MDM2 antagonist | SW480, MCF-7, A375, HCT116, Hep3B, HepG2, A549 | Peptide therapy | [99] | colloidal stability | |
PU nanohybrids | polyurethane | dexamethasone | MDA-MB-231 | Drug delivery | [100] | GO coating material | |
DQ-PGEA | poly(glycidyl methacrylate) | antioncogene p53 | 4T1, HEK293 | Gene delivery | [101] | pH-responsive drug release | |
polydopamine@ZIF-8 | polydopamine | melphalan | MCF-7 | Zinc and drug delivery | [102] | negligible cytotoxicity and good biocompatibility, and were stable in vivo for several weeks | |
CPT@PCPP-AuNPs | poly(bis(carboxyphenoxy)phosphazene) | CPT (camptothecin) | MDA-MB-231 | Drug delivery | [103] | to avoid loss of drug at normal pH | |
DOX@LR/oHA-APBA nanohybrids | oligomeric hyaluronic acid-aminophenylboronic acid | DOX (doxorubicin) | MCF-7 | Drug delivery | [104] | biocompatibility, and controlled release | |
CD-MSN@UP | Poly-Nvinylimidazole and 1-vinyl-2-(hydroxymethyl)imidazole19 | (S)-10-Hydroxycamptothecin | - | Temperature-sensitive drug delivery | [105] | - | |
P-LNP/AXT | polypeptide | AXT (axitinib) | SH-SY5YP, BT-474, SCC7 | Drug delivery | [106] | - | |
NP-PBAMs | poly (butyl methacrylate-coacrylamide-co-methacrylic acid) | letrozole | L929, MDA-MB-231 | pH-, light-, temperature-, and magnetically switchable drug delivery and photothermal therapy | [107] | drug carrier | |
Fe3O4@ SiO2–PDMAEMA nanoparticles | poly(N,N dimethylaminoethyl methacrylate) | DOX (doxorubicin) | A549 | CO2-switchable drug | [108] | reversibly binding with CO2 in water, exhibiting hydrophilic/hydrophobic chain conformation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Sharipov, M.; Turaev, A.; Azizov, S.; Azizov, I.; Makhado, E.; Rahdar, A.; Kumar, D.; Pandey, S. Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications. Polymers 2022, 14, 3027. https://doi.org/10.3390/polym14153027
Kumar A, Sharipov M, Turaev A, Azizov S, Azizov I, Makhado E, Rahdar A, Kumar D, Pandey S. Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications. Polymers. 2022; 14(15):3027. https://doi.org/10.3390/polym14153027
Chicago/Turabian StyleKumar, Arun, Mirkomil Sharipov, Abbaskhan Turaev, Shavkatjon Azizov, Ismatdjan Azizov, Edwin Makhado, Abbas Rahdar, Deepak Kumar, and Sadanand Pandey. 2022. "Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications" Polymers 14, no. 15: 3027. https://doi.org/10.3390/polym14153027
APA StyleKumar, A., Sharipov, M., Turaev, A., Azizov, S., Azizov, I., Makhado, E., Rahdar, A., Kumar, D., & Pandey, S. (2022). Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications. Polymers, 14(15), 3027. https://doi.org/10.3390/polym14153027