The Properties, Modification, and Application of Banana Starch
Abstract
:1. Introduction
2. Banana Starch Extraction and Chemical Composition
3. Starch Properties
3.1. Granule Morphology
3.2. Crystallinity
3.3. Pasting Properties
3.4. Thermal Properties
3.5. Functional Properties
3.6. Digestibility
4. Modification Practices
4.1. Physical Method
4.1.1. Heat-Moisture Treatment
4.1.2. Annealing
4.1.3. Pregelatinization
4.2. Chemical Method
4.2.1. Esterification
4.2.2. Etherification
4.2.3. Cross-Linking
4.2.4. Oxidation
5. Potential Application in Food Products
6. Potential Application in Non-Food Products
7. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soorianathasundaram, K.; Narayana, C.K.; Paliyath, G. Bananas and Plantains. In Encyclopedia of Food and Health; Academic Press: Oxford, UK, 2016; pp. 320–327. [Google Scholar]
- Gao, H.; Huang, S.; Dong, T.; Yang, Q.; Yi, G. Analysis of Resistant Starch Degradation in Postharvest Ripening of Two Banana Cultivars: Focus on Starch Structure and Amylases. Postharvest Biol. Technol. 2016, 119, 1–8. [Google Scholar] [CrossRef]
- Gibert, O.; Dufour, D.; Giraldo, A.; Sanchez, T.; Reynes, M.; Pain, J.P.; Gonzalez, A.; Fernandez, A.; Diaz, A. Differentiation between Cooking Bananas and Dessert Bananas. 1. Morphological and Compositional Characterization of Cultivated Colombian Musaceae (Musa sp.) in Relation to Consumer Preferences. J. Agric. Food Chem. 2009, 57, 7857–7869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Whistler, R.L.; BeMiller, J.N.; Hamaker, B.R. Banana Starch: Production, Physicochemical Properties, and Digestibility—A Review. Carbohydr. Polym. 2005, 59, 443–458. [Google Scholar] [CrossRef]
- Aurore, G.; Parfait, B.; Fahrasmane, L. Bananas, Raw Materials for Making Processed Food Products. Trends Food Sci. Technol. 2009, 20, 78–91. [Google Scholar] [CrossRef]
- Lii, C.-Y.; Chang, S.-M.; Young, Y.-L. Investigation of the Physical and Chemical Properties of Banana Starches. J. Food Sci. 1982, 47, 1493–1497. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Nuñez-Santiago, M.C.; Alvarez-Ramirez, J.; Bello-Pérez, L.A. Physicochemical, Digestibility and Structural Characteristics of Starch Isolated from Banana Cultivars. Carbohydr. Polym. 2015, 124, 17–24. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M. Densely Packed-Matrices of Heat Moisture Treated-Starch Determine the Digestion Rate Constant as Revealed by Logarithm of Slope Plots. J. Food Sci. Technol. 2021, 58, 2237–2245. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M. Pectin Interaction with Thermally Modified Starch Affects Physicochemical Properties and Digestibility of Starch as Revealed by Logarithm of Slop Plot. CYTA J. Food 2021, 19, 63–71. [Google Scholar] [CrossRef]
- Lovera, M.; Pérez, E.; Laurentin, A. Digestibility of Starches Isolated from Stem and Root Tubers of Arracacha, Cassava, Cush-Cush Yam, Potato and Taro. Carbohydr. Polym. 2017, 176, 50–55. [Google Scholar] [CrossRef]
- Jyothi, A.N.; Sajeev, M.S.; Sreekumar, J.N. Hydrothermal Modifications of Tropical Tuber Starches. 1. Effect of Heat-Moisture Treatment on the Physicochemical, Rheological and Gelatinization Characteristics. Starch-Stärke 2010, 62, 28–40. [Google Scholar] [CrossRef]
- Xie, S.X.; Liu, Q.; Cui, S.W. Starch Modification and Application; CRC Press: Boca Raton, FL, USA, 2005; pp. 357–406. [Google Scholar]
- Taggart, P.; Mitchell, J.R. Starch. In Handbook of Hydrocolloids, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2009; pp. 108–141. [Google Scholar]
- Bello-Perez, L.A.; Agama-Acevedo, E.; Sayago-Ayerdi, S.G.; Moreno-Damian, E.; Figueroa, J.D.C. Some Structural, Physicochemical and Functional Studies of Banana Starches from Two Varieties Growing in Guerrero, Mexico. Starch-Stärke 2000, 52, 68–73. [Google Scholar] [CrossRef]
- Nimsung, P.; Thongngam, M.; Naivikul, O. Compositions, Morphological and Thermal Properties of Green Banana Flour and Starch. Agric. Nat. Resour. 2007, 41, 324–330. [Google Scholar]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; Sobral, P.J.d.A.; Menegalli, F.C. Isolation and Characterization of the Flour and Starch of Plantain Bananas (Musa paradisiaca). Starch-Stärke 2012, 64, 382–391. [Google Scholar] [CrossRef]
- Otegbayo, B.; Lana, O.; Ibitoye, W. Isolation and Physicochemical Characterization of Starches Isolated from Plantain (Musa paradisiaca) and Cooking Banana (Musa Sapientum). J. Food Biochem. 2010, 34, 1303–1318. [Google Scholar] [CrossRef]
- Chávez-Salazar, A.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Castellanos-Galeano, F.J.; Álvarez-Barreto, C.I.; Pacheco-Vargas, G. Isolation and Partial Characterization of Starch from Banana Cultivars Grown in Colombia. Int. J. Biol. Macromol. 2017, 98, 240–246. [Google Scholar] [CrossRef]
- De Barros Mesquita, C.; Leonel, M.; Franco, C.M.L.; Leonel, S.; Garcia, E.L.; dos Santos, T.P.R. Characterization of Banana Starches Obtained from Cultivars Grown in Brazil. Int. J. Biol. Macromol. 2016, 89, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Marta, H.; Cahyana, Y.; Djali, M.; Arcot, J.; Tensiska, T. A Comparative Study on the Physicochemical and Pasting Properties of Starch and Flour from Different Banana (Musa spp.) Cultivars Grown in Indonesia. Int. J. Food Prop. 2019, 22, 1562–1575. [Google Scholar] [CrossRef] [Green Version]
- Fontes, S.; Cavalcanti, M.; Candeia, R.; Almeida, E. Characterization and Study of Functional Properties of Banana Starch Green Variety of Mysore (Musa AAB-Mysore). Food Sci. Technol. 2017, 37, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Hung, P.V.; Cham, N.T.M.; Truc, P.T.T. Characterization of Vietnamese Banana Starch and Its Resistant Starch Improvement. Int. Food Res J. 2013, 20, 205–211. [Google Scholar]
- Parimalavalli, R.; Babu, D. Comparative Study on Properties of Banana Flour, Starch and Autoclaved Starch. Trends Carbohydr. Res. 2014, 6, 38–44. [Google Scholar]
- Utrilla-Coello, R.G.; Rodríguez-Huezo, M.E.; Carrillo-Navas, H.; Hernández-Jaimes, C.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. In Vitro Digestibility, Physicochemical, Thermal and Rheological Properties of Banana Starches. Carbohydr. Polym. 2014, 101, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Chagam, K.R.; Haripriya, S.; Vidya, P. Morphology, Physico-Chemical and Functional Characteristics of Starches from Different Banana Cultivars. J. Food Sci. Technol. 2015, 52, 7289–7296. [Google Scholar]
- Kiin-Kabari, D.; Sanipe, P.; Friday, O. Physico-Chemical and Pasting Properties of Starch from Three Plantain Cultivars Grown in Nigeria. Afr. J. Food Sci. 2014, 8, 484–489. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Santiago, M.; Bello-Pérez, L.; Tecante, A. Swelling-Solubility Characteristics, Granule Size Distribution and Rheological Behavior of Banana (Musa paradisiaca) Starch. Carbohydr. Polym. 2004, 56, 65–75. [Google Scholar] [CrossRef]
- Olatunde, G.O.; Arogundade, L.K.; Orija, O.I. Chemical, Functional and Pasting Properties of Banana and Plantain Starches Modified by Pre-Gelatinization, Oxidation and Acetylation. Cogent Food Agric. 2017, 3, 1283079. [Google Scholar] [CrossRef]
- Cahyana, Y.; Wijaya, E.; Halimah, T.S.; Marta, H.; Suryadi, E.; Kurniati, D. The Effect of Different Thermal Modifications on Slowly Digestible Starch and Physicochemical Properties of Green Banana Flour (Musa acuminata colla). Food Chem. 2019, 274, 274–280. [Google Scholar] [CrossRef]
- Coulibaly, S.; Nemlin, J.; Amani, N.G. Isolation and Partial Characterisation of Native Starches of New Banana and Plantain Hybrids (Musa spp.) in Comparison with That of Plantain Variety Orishele. Starch-Stärke 2006, 58, 360–370. [Google Scholar] [CrossRef]
- Tan, X.; Li, X.; Chen, L.; Xie, F.; Li, L.; Huang, J. Effect of Heat-Moisture Treatment on Multi-Scale Structures and Physicochemical Properties of Breadfruit Starch. Carbohydr. Polym. 2017, 161, 286–294. [Google Scholar] [CrossRef]
- Wei, M.; Andersson, R.; Xie, G.; Salehi, S.; Boström, D.; Xiong, S. Properties of Cassava Stem Starch Being a New Starch Resource. Starch-Stärke 2017, 70, 1700125. [Google Scholar] [CrossRef]
- Zhu, F. Structure, Physicochemical Properties, Modifications, and Uses of Sorghum Starch. Compr. Rev. Food Sci. Food Saf. 2014, 13, 597–610. [Google Scholar] [CrossRef]
- Cahyana, Y.; Titipanillah, R.; Mardawati, E.; Sukarminah, E.; Rialita, T.; Andoyo, R.; Djali, M.; Hanidah, I.-I.; Setiasih, I.S.; Handarini, K. Non-Starch Contents Affect the Susceptibility of Banana Starch and Flour to Ozonation. J. Food Sci. Technol. 2018, 55, 1726–1733. [Google Scholar] [CrossRef]
- Waliszewski, K.N.; Aparicio, M.A.; Bello, L.s.A.; Monroy, J.A. Changes of Banana Starch by Chemical and Physical Modification. Carbohydr. Polym. 2003, 52, 237–242. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Romero-Manilla, R.; Paredes-López, O. Preparation and Properties of Physically Modified Banana Starch Prepared by Alcoholic-Alkaline Treatment. Starch-Stärke 2000, 52, 154–159. [Google Scholar] [CrossRef]
- Babu, D.; Mohan Naik, G.N.; James, J.; Aboobacker, A.B.; Eldhose, A.; Jagan Mohan, R. A Comparative Study on Dual Modification of Banana (Musa paradisiaca) Starch by Microwave Irradiation and Cross-Linking. J. Food Meas. Charact. 2018, 12, 2209–2217. [Google Scholar] [CrossRef]
- Thanyapanich, N.; Jimtaisong, A.; Rawdkuen, S. Functional Properties of Banana Starch (Musa Spp.) and Its Utilization in Cosmetics. Molecules 2021, 26, 3637. [Google Scholar] [CrossRef]
- Bi, Y.; Zhang, Y.; Jiang, H.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Molecular Structure and Digestibility of Banana Flour and Starch. Food Hydrocoll. 2017, 72, 219–227. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Hong, Y.; Bi, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Digestibility and Changes to Structural Characteristics of Green Banana Starch During In vitro Digestion. Food Hydrocoll. 2015, 49, 192–199. [Google Scholar] [CrossRef]
- De la Torre-Gutiérrez, L.; Chel-Guerrero, L.A.; Betancur-Ancona, D. Functional Properties of Square Banana (Musa balbisiana) Starch. Food Chem. 2008, 106, 1138–1144. [Google Scholar] [CrossRef]
- Alimi, B.A.; Workneh, T.S.; Oke, M.O. Effect of Hydrothermal Modifications on the Functional, Pasting and Morphological Properties of South African Cooking Banana and Plantain. CYTA J. Food 2016, 14, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Khawas, P.; Deka, S.C. Effect of Modified Resistant Starch of Culinary Banana on Physicochemical, Functional, Morphological, Diffraction, and Thermal Properties. Int. J. Food Prop. 2017, 20, 133–150. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Rodriguez-Ambriz, S.L.; García-Suárez, F.J.; Gutierrez-Méraz, F.; Pacheco-Vargas, G.; Bello-Pérez, L.A. Starch Isolation and Partial Characterization of Commercial Cooking and Dessert Banana Cultivars Growing in Mexico. Starch-Stärke 2014, 66, 337–344. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, B.; Su, C.; Gong, B.; Zheng, J.; Jiang, H.; Zhang, G.; Li, W. Repeated Heat-Moisture Treatment: A More Effectiveway for Structural and Physicochemical Modification of Mung Bean Starch Compared with Continuous Way. Food Bioproc. Technol. 2020, 13, 452–461. [Google Scholar] [CrossRef]
- Vermeylen, R.; Goderis, B.; Delcour, J.A. An X-Ray Study of Hydrothermally Treated Potato Starch. Carbohydr. Polym. 2006, 64, 364–375. [Google Scholar] [CrossRef]
- Huang, T.-T.; Zhou, D.-N.; Jin, Z.-Y.; Xu, X.-M.; Chen, H.-Q. Effect of Repeated Heat-Moisture Treatments on Digestibility, Physicochemical and Structural Properties of Sweet Potato Starch. Food Hydrocoll. 2016, 54, 202–210. [Google Scholar] [CrossRef]
- Bian, L.; Chung, H.-J. Molecular Structure and Physicochemical Properties of Starch Isolated from Hydrothermally Treated Brown Rice Flour. Food Hydrocoll. 2016, 60, 345–352. [Google Scholar] [CrossRef]
- Kumar, R.; Khatkar, B.S. Thermal, Pasting and Morphological Properties of Starch Granules of Wheat (Triticum aestivum L.) Varieties. J. Food Sci. Technol. 2017, 54, 2403–2410. [Google Scholar] [CrossRef]
- Cornejo-Ramírez, Y.I.; Martínez-Cruz, O.; Del Toro-Sánchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The Structural Characteristics of Starches and Their Functional Properties. CYTA J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Lustosa, B.H.B.; Leonel, M.; Mischan, M. Production of Cassava Flour Instant: The Effects of the Extrusion on the Thermal Properties and Plastic. Acta Sci. Technol. 2009, 31, 14–22. [Google Scholar]
- Wang, J.; Huang, H.H.; Chen, P.S. Structural and Physicochemical Properties of Banana Resistant Starch from Four Cultivars. Int. J. Food Prop. 2017, 20, 1338–1347. [Google Scholar] [CrossRef] [Green Version]
- Englyst, H.N.; Kingman, S.M.; Cummings, J. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. S2), S33–S50. [Google Scholar]
- Cummings, J.H.; Beatty, E.R.; Kingman, S.M.; Bingham, S.A.; Englyst, H.N. Digestion and Physiological Properties of Resistant Starch in the Human Large Bowel. Br. J. Nutr. 1996, 75, 733–747. [Google Scholar] [CrossRef]
- Štěrbová, L.; Bradová, J.; Sedláček, T.; Holasová, M.; Fiedlerová, V.; Dvořáček, V.; Smrčková, P. Influence of Technological Processing of Wheat Grain on Starch Digestibility and Resistant Starch Content. Starch-Stärke 2016, 68, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, K.S.; Siroha, A.K.; Punia, S.; Nehra, M. Effect of Heat Moisture Treatment on Rheological and in Vitro Digestibility Properties of Pearl Millet Starches. Carbohydr. Polym. Technol. Appl. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Polesi, L.F.; Sarmento, S.B.S.; Canniatti-Brazaca, S.G. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation. Rice Sci. 2018, 25, 42–51. [Google Scholar] [CrossRef]
- Toutounji, M.R.; Farahnaky, A.; Santhakumar, A.B.; Oli, P.; Butardo, V.M.; Blanchard, C.L. Intrinsic and Extrinsic Factors Affecting Rice Starch Digestibility. Trends Food Sci. Technol. 2019, 88, 10–22. [Google Scholar] [CrossRef]
- Li, Z.; Guo, K.; Lin, L.; He, W.; Zhang, L.; Wei, C. Comparison of Physicochemical Properties of Starches from Flesh and Peel of Green Banana Fruit. Molecules 2018, 23, 2312. [Google Scholar] [CrossRef] [Green Version]
- Aparicio-Saguilán, A.; Valera-Zaragoza, M.; Perucini-Avendaño, M.; Páramo-Calderón, D.E.; Aguirre-Cruz, A.; Ramírez-Hernández, A.; Bello-Pérez, L.A. Lintnerization of Banana Starch Isolated from Underutilized Variety: Morphological, Thermal, Functional Properties, and Digestibility. CYTA J. Food 2015, 13, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Gallant, D.J.; Bouchet, B.; Buléon, A.; Perez, S. Physical Characteristics of Starch Granules and Susceptibility to Enzymatic Degradation. Eur. J. Clin. Nutr. 1992, 46, S3–S16. [Google Scholar]
- Zavareze, E.d.R.; Dias, A.R.G. Impact of Heat-Moisture Treatment and Annealing in Starches: A Review. Carbohydr. Polym. 2011, 83, 317–328. [Google Scholar] [CrossRef]
- Gunaratne, A.; Hoover, R. Effect of Heat–Moisture Treatment on the Structure and Physicochemical Properties of Tuber and Root Starches. Carbohydr. Polym. 2002, 49, 425–437. [Google Scholar] [CrossRef]
- Miyazaki, M.; Morita, N. Effect of Heat-Moisture Treated Maize Starch on the Properties of Dough and Bread. Food Res. Int. 2005, 38, 369–376. [Google Scholar] [CrossRef]
- Lehmann, U.; Robin, F. Slowly Digestible Starch—Its Structure and Health Implications: A Review. Trends Food Sci. Technol. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Huber, K.C. Physical Modification of Food Starch Functionalities. Annu. Rev. Food Sci. Technol. 2015, 6, 19–69. [Google Scholar] [CrossRef]
- De la Rosa-Millán, J.; Agama, E.; Osorio-Díaz, P.; Bello-Pérez, L.A. Effect of Cooking, Annealing and Storage on Starch Digestibility and Physicochemical Characteristics of Unripe Banana Flour. Rev. Mex. Ing. Qumica 2014, 13, 151–163. [Google Scholar]
- Loypimai, P.; Moongngarm, A. Utilization of Pregelatinized Banana Flour as a Functional Ingredient in Instant Porridge. J. Food Sci. Technol. 2015, 52, 311–318. [Google Scholar] [CrossRef]
- Azaripour, A.; Abbasi, H. Effect of Type and Amount of Modified Corn Starches on Qualitative Properties of Low-Protein Biscuits for Phenylketonuria. Food Sci. Nutr. 2019, 8, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-Y.; Liu, J.; Tang, X.; Shen, X.; Liu, S. Correlations between the Physical Properties and Chemical Bonds of Extruded Corn Starch Enriched with Whey Protein Concentrate. RSC Adv. 2017, 7, 11979–11986. [Google Scholar]
- Liu, Y.; Chen, J.; Luo, S.; Li, C.; Ye, J.; Liu, C.; Gilbert, R.G. Physicochemical and Structural Properties of Pregelatinized Starch Prepared by Improved Extrusion Cooking Technology. Carbohydr. Polym. 2017, 175, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Awolu, O.; Odoro, J.; Adeloye, J.; Lawal, O. Physicochemical Evaluation and Fourier Transform Infrared Spectroscopy Characterization of Quality Protein Maize Starch Subjected to Different Modifications. J. Food Sci. 2020, 85, 3052–3060. [Google Scholar] [CrossRef]
- Nawaz, H.; Wahed, R.; Nawaz, M.; Shahwar, D. Physical and Chemical Modifications in Starch Structure and Reactivity. In Chemical Properties of Starch; Emeje, M., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- BeMiller, J.N. Starches: Conversions, Modifications, and Uses. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; BeMiller, J.N., Ed.; AACC International Press: Washington, DC, USA, 2019; pp. 191–221. [Google Scholar]
- Chagam, K.R.; Haripriya, S.; Sundaramoorthy, H. Effect of Acetylation on Morphology, Pasting and Functional Properties of Starch from Banana (Musa AAB). Indian J. Sci. Res. 2014, 2, 31–36. [Google Scholar]
- Dumancela, K.; Mayorga Llerena, E.; Santamaría, J. Acetylation of Starch Extracted from Rejected Fruits of Musa × Paradisiaca L. to Obtain a Pharmaceutical Disintegrant. Pharm. Pharmacol. 2020, 11, 118–126. [Google Scholar] [CrossRef]
- Singh, H.; Sodhi, N.S.; Singh, N. Structure and Functional Properties of Acetylated Sorghum Starch. Int. J. Food Prop. 2012, 15, 312–325. [Google Scholar] [CrossRef]
- Salcedo, J.; RuyDiaz, J.; Quintero, A. Effect of the Acetylation Process on Native Starches of Yam (Dioscorea spp.). Rev. Fac. Nac. Agron. Medellin 2016, 69, 7997–8006. [Google Scholar] [CrossRef]
- Trela, V.; Ramallo, A.; Albani, O. Synthesis and Characterization of Acetylated Cassava Starch with Different Degrees of Substitution. Braz. Arch. Biol. Technol. 2020, 63, e20180292. [Google Scholar] [CrossRef]
- Carlos-Amaya, F.; Osorio-Diaz, P.; Agama-Acevedo, E.; Yee-Madeira, H.; Bello-Perez, L.A. Physicochemical and Digestibility Properties of Double-Modified Banana (Musa paradisiaca L.) Starches. J. Agric. Food Chem. 2011, 59, 1376–1382. [Google Scholar] [CrossRef]
- Chávez-Murillo, C.E.; Wang, Y.-J.; Bello-Pérez, L.A. Morphological, Physicochemical and Structural Characteristics of Oxidized Barley and Corn Starches. Starch-Stärke 2008, 60, 634–645. [Google Scholar] [CrossRef]
- Bajaj, R.; Singh, N.; Kaur, A. Properties of Octenyl Succinic Anhydride (Osa) Modified Starches and Their Application in Low Fat Mayonnaise. Int. J. Biol. Macromol. 2019, 131, 147–157. [Google Scholar] [CrossRef]
- Bello-Pérez, L.; Bello-Flores, C.; Núñez-Santiago, M.; Coronel-Aguilera, C.; Alvarez-Ramirez, J. Effect of the Degree of Substitution of Octenyl Succinic Anhydride-Banana Starch on Emulsion Stability. Carbohydr. Polym. 2015, 132, 17–24. [Google Scholar] [CrossRef]
- Yu, Z.-Y.; Jiang, S.-W.; Zheng, Z.; Cao, X.-M.; Hou, Z.-G.; Xu, J.-J.; Wang, H.-L.; Jiang, S.-T.; Pan, L.-J. Preparation and Properties of Osa-Modified Taro Starches and Their Application for Stabilizing Pickering Emulsions. Int. J. Biol. Macromol. 2019, 137, 277–285. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Kaur, L.; Singh, J. Chemical Modification of Starch. In Starch in Food, 2nd ed.; Sjöö, M., Nilsson, L., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 283–321. [Google Scholar]
- Lee, J.-S.; Chin-Shin Loh, P.; George, R.; Yusoff, N.F. Optimization of Reaction Conditions for Hydroxypropylation of Saba Banana Starch. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 80, 82–97. [Google Scholar] [CrossRef]
- Lawal, O.S. Starch Hydroxyalkylation: Physicochemical Properties and Enzymatic Digestibility of Native and Hydroxypropylated Finger Millet (Eleusine Coracana) Starch. Food Hydrocoll. 2009, 23, 415–425. [Google Scholar] [CrossRef]
- Sheng, L.; Wu, S.; Zhang, H.; Jiang, X. Synthesis of Hydroxypropyl Dioscorea Alata Starch Rapidly Prepared with Ultrasonic-Microwave Assistance. Adv. Mat. Res. 2012, 550, 1522–1528. Available online: www.scientific.net/AMR.550-553.1522 (accessed on 25 June 2022).
- Liu, H.; Li, M.; Chen, P.; Yu, L.; Chen, L.; Tong, Z. Morphologies and Thermal Properties of Hydroxypropylated High-Amylose Corn Starch. Cereal Chem. 2010, 87, 144–149. [Google Scholar] [CrossRef]
- Olayinka, F.; Olayinka, O.; Olu-Owolabi, B.; Adebowale, K.O. Effect of Chemical Modifications on Thermal, Rheological and Morphological Properties of Yellow Sorghum Starch. J. Food Sci. Technol. 2015, 52, 8364–8370. [Google Scholar] [CrossRef] [Green Version]
- Lawal, O.S. Studies on the Hydrothermal Modifications of New Cocoyam (Xanthosoma sagittifolium) Starch. Int. J. Biol. Macromol. 2005, 37, 268–277. [Google Scholar] [CrossRef]
- Karim, A.A.; Nadiha, M.Z.; Chen, F.K.; Phuah, Y.P.; Chui, Y.M.; Fazilah, A. Pasting and Retrogradation Properties of Alkali-Treated Sago (Metroxylon sagu) Starch. Food Hydrocoll. 2008, 22, 1044–1053. [Google Scholar] [CrossRef]
- Kim, H.-S.; Choi, H.-S.; Kim, B.-Y.; Baik, M.-Y. Ultra High Pressure (Uhp)-Assisted Hydroxypropylation of Corn Starch. Carbohydr. Polym. 2011, 83, 755–761. [Google Scholar] [CrossRef]
- Hazarika, B.J.; Sit, N. Effect of Dual Modification with Hydroxypropylation and Cross-Linking on Physicochemical Properties of Taro Starch. Carbohydr. Polym. 2016, 140, 269–278. [Google Scholar] [CrossRef]
- Oladebeye, A.; Oshodi, A.; Amoo, I.A.; Karim, A. Hydroxypropyl Derivatives of Legume Starches: Functional, Rheological and Thermal Properties. Starch-Stärke 2013, 65, 762–772. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, J.; Luo, S.-J.; Liu, C.-M.; Liu, W. Effect of Food Additives on Starch Retrogradation: A Review. Starch-Stärke 2015, 67, 69–78. [Google Scholar] [CrossRef]
- Orsuwan, A.; Sothornvit, R. Effect of Miniemulsion Cross-Linking and Ultrasonication on Properties of Banana Starch. Int. J. Food Sci. Technol. 2015, 50, 298–304. [Google Scholar] [CrossRef]
- Sánchez-Rivera, M.M.; García-Suárez, F.J.L.; Velázquez del Valle, M.; Gutierrez-Meraz, F.; Bello-Pérez, L.A. Partial Characterization of Banana Starches Oxidized by Different Levels of Sodium Hypochlorite. Carbohydr. Polym. 2005, 62, 50–56. [Google Scholar] [CrossRef]
- Cahyana, Y.; Pratiwi, P.A.; Marta, H.; Djali, M.; Halim, I.R.; Urrohmah, S.; Khairunnissa, D.S.; Sutardi, A.A. Oxidation by Hydrogen Peroxide Changes Crystallinity and Physicochemical Properties of Banana Flour. IOP Conf. Ser. Earth Environ. Sci. 2019, 292, 012007. [Google Scholar] [CrossRef]
- Naknaen, P.; Tobkaew, W.; Chaichaleom, S. Properties of Jackfruit Seed Starch Oxidized with Different Levels of Sodium Hypochlorite. Int. J. Food Prop. 2017, 20, 979–996. [Google Scholar] [CrossRef] [Green Version]
- Obadi, M.; Zhu, K.-X.; Peng, W.; Sulieman, A.A.; Mohammed, K.; Zhou, H.-M. Effects of Ozone Treatment on the Physicochemical and Functional Properties of Whole Grain Flour. J. Cereal Sci. 2018, 81, 127–132. [Google Scholar] [CrossRef]
- Halal, S.L.M.E.; Colussi, R.; Pinto, V.Z.; Bartz, J.; Radunz, M.; Carreño, N.L.V.; Dias, A.R.G.; Zavareze, E.d.R. Structure, Morphology and Functionality of Acetylated and Oxidised Barley Starches. Food Chem. 2015, 168, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Ward, R.; Gao, Q. Effect of Heat-Moisture Treatment on the Formation and Physicochemical Properties of Resistant Starch from Mung Bean (Phaseolus radiatus) Starch. Food Hydrocoll. 2011, 25, 1702–1709. [Google Scholar] [CrossRef]
- Olayinka, O.O.; Adebowale, K.O.; Olu-Owolabi, B.I. Effect of Heat-Moisture Treatment on Physicochemical Properties of White Sorghum Starch. Food Hydrocoll. 2008, 22, 225–230. [Google Scholar] [CrossRef]
- Xie, H.; Gao, J.; Xiong, X.; Gao, Q. Effect of Heat-Moisture Treatment on the Physicochemical Properties and In Vitro Digestibility of the Starch-Guar Complex of Maize Starch with Varying Amylose Content. Food Hydrocoll. 2018, 83, 213–221. [Google Scholar] [CrossRef]
- Jayakody, L.; Hoover, R. Effect of Annealing on the Molecular Structure and Physicochemical Properties of Starches from Different Botanical Origins—A Review. Carbohydr. Polym. 2008, 74, 691–703. [Google Scholar] [CrossRef]
- Björck, I.; Liljeberg, H.; Ostman, E. Low Glycemic Index Foods. Br. J. Nutr. 2000, 83 (Suppl. S1), S149–S155. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Castaño, V.D.; Vasco-Leal, J.F.; Cuellar-Nuñez, L.; Luzardo-Ocampo, I.; Castellanos-Galeano, F.; Álvarez-Barreto, C.; Bello-Pérez, L.A.; Cortés-Rodriguez, M. Novel Osa-Modified Starch from Gros Michel Banana for Encapsulation of Andean Blackberry Concentrate: Production and Storage Stability. Starch-Stärke 2021, 73, 2000180. [Google Scholar] [CrossRef]
- Zheng, Z.; Stanley, R.; Gidley, M.; Dhital, S. Structural Properties and Digestion of Green Banana Flour as a Functional Ingredient in Pasta. Food Funct. 2015, 7, 771–780. [Google Scholar] [CrossRef]
- Ovando-Martinez, M.; Sáyago-Ayerdi, S.; Agama-Acevedo, E.; Goñi, I.; Bello-Pérez, L.A. Unripe Banana Flour as an Ingredient to Increase the Undigestible Carbohydrates of Pasta. Food Chem. 2009, 113, 121–126. [Google Scholar] [CrossRef]
- Noor Aziah, A.A.; Ho, L.H.; Noor Shazliana, A.A.; Bhat, R. Quality Evaluation of Steamed Wheat Bread Substituted with Green Banana Flour. Int. Food Res. J. 2012, 19, 869–876. [Google Scholar]
- Aparicio-Saguilán, A.; Sayago-Ayerdi, S.; Vargas-Torres, A.; Tovar, J.; Ascencio-Otero, T.; Bello-Pérez, L. Slowly Digestible Cookies Prepared from Resistant Starch-Rich Lintnerized Banana Starch. J. Food Compos. Anal. 2007, 20, 175–181. [Google Scholar] [CrossRef]
- Cahyana, Y.; Rangkuti, A.; Siti Halimah, T.; Marta, H.; Yuliana, T. Application of Heat-Moisture-Treated Banana Flour as Composite Material in Hard Biscuit. CYTA J. Food 2020, 18, 599–605. [Google Scholar] [CrossRef]
- Pelissari, F.; Andrade-Mahecha, M.; Sobral, P.; Menegalli, F.C. Nanocomposites Based on Banana Starch Reinforced with Cellulose Nanofibers Isolated from Banana Peels. J. Colloid Interface Sci. 2017, 505, 154–167. [Google Scholar] [CrossRef]
- Viana, E.B.M.; Oliveira, N.L.; Ribeiro, J.S.; Almeida, M.F.; Souza, C.C.E.; Resende, J.V.; Santos, L.S.; Veloso, C.M. Development of Starch-Based Bioplastics of Green Plantain Banana (Musa paradisiaca L.) Modified with Heat-Moisture Treatment (HMT). Food Packag. Shelf Life 2022, 31, 100776. [Google Scholar] [CrossRef]
- Wang, J.; Euring, M.; Ostendorf, K.; Zhang, K. Biobased Materials for Food Packaging. J. Bioresour. Bioprod. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Restrepo, A.E.; Rojas, J.D.; García, O.R.; Sánchez, L.T.; Pinzón, M.I.; Villa, C.C. Mechanical, Barrier, and Color Properties of Banana Starch Edible Films Incorporated with Nanoemulsions of Lemongrass (Cymbopogon Citratus) and Rosemary (Rosmarinus officinalis) Essential Oils. Food Sci. Technol. Int. 2018, 24, 705–712. [Google Scholar] [CrossRef]
- Taweechat, C.; Wongsooka, T.; Rawdkuen, S. Properties of Banana (Cavendish spp.) Starch Film Incorporated with Banana Peel Extract and Its Application. Molecules 2021, 26, 1406. [Google Scholar] [CrossRef]
- Sartori, T.; Menegalli, F.C. Development and Characterization of Unripe Banana Starch Films Incorporated with Solid Lipid Microparticles Containing Ascorbic Acid. Food Hydrocoll. 2016, 55, 210–219. [Google Scholar] [CrossRef]
- Medeiros Silva, V.D.; Coutinho Macedo, M.C.; Rodrigues, C.G.; Neris dos Santos, A.; de Freitas e Loyola, A.C.; Fante, C.A. Biodegradable Edible Films of Ripe Banana Peel and Starch Enriched with Extract of Eriobotrya Japonica Leaves. Food Biosci. 2020, 38, 100750. [Google Scholar] [CrossRef]
- Pongsuwan, C.; Boonsuk, P.; Sermwittayawong, D.; Aiemcharoen, P.; Mayakun, J.; Kaewtatip, K. Banana Inflorescence Waste Fiber: An Effective Filler for Starch-Based Bioplastics. Ind. Crops Prod. 2022, 180, 114731. [Google Scholar] [CrossRef]
- García-Ramón, J.A.; Carmona-García, R.; Valera-Zaragoza, M.; Aparicio-Saguilán, A.; Bello-Pérez, L.A.; Aguirre-Cruz, A.; Alvarez-Ramirez, J. Morphological, Barrier, and Mechanical Properties of Banana Starch Films Reinforced with Cellulose Nanoparticles from Plantain Rachis. Int. J. Biol. Macromol. 2021, 187, 35–42. [Google Scholar] [CrossRef]
- Silvia, R.C.; Angel, M.F.; Alejandro, A.S.; Rodrigo, N.C.; Aurelio, R.H.; José Eduardo, B.G.; Páramo Calderón, D.E. Modification of Banana Starch (Musa paradisiaca L.) with Polyethylene Terephthalate: Virgin and Bottle Waste. Carbohydr. Res. 2021, 508, 108401. [Google Scholar] [CrossRef]
- Ramírez-Hernández, A.; Aparicio-Saguilán, A.; Reynoso-Meza, G.; Carrillo-Ahumada, J. Multi-Objective Optimization of Process Conditions in the Manufacturing of Banana (Musa paradisiaca L.) Starch/Natural Rubber Films. Carbohydr. Polym. 2017, 157, 1125–1133. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Zhang, C.; Deng, Y.; Xie, P.; Liu, L.; Cheng, J. Research Advances in Chemical Modifications of Starch for Hydrophobicity and Its Applications: A Review. Carbohydr. Polym. 2020, 240, 116292. [Google Scholar] [CrossRef]
- Azmin, S.N.H.M.; Hayat, N.A.b.M.; Nor, M.S.M. Development and Characterization of Food Packaging Bioplastic Film from Cocoa Pod Husk Cellulose Incorporated with Sugarcane Bagasse Fibre. J. Bioresour. Bioprod. 2020, 5, 248–255. [Google Scholar] [CrossRef]
- Oyeoka, H.C.; Ewulonu, C.M.; Nwuzor, I.C.; Obele, C.M.; Nwabanne, J.T. Packaging and Degradability Properties of Polyvinyl Alcohol/Gelatin Nanocomposite Films Filled Water Hyacinth Cellulose Nanocrystals. J. Bioresour. Bioprod. 2021, 6, 168–185. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Zhang, Y.; Li, F.; Jiao, X.; Li, Q. The Effects of Cellulose Nanocrystal and Cellulose Nanofiber on the Properties of Pumpkin Starch-Based Composite Films. Int. J. Biol. Macromol. 2021, 192, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qu, Q.; Gao, S.; Tang, G.; Liu, K.; He, S.; Huang, C. Biomass Derived Carbon as Binder-Free Electrode Materials for Supercapacitors. Carbon 2019, 155, 706–726. [Google Scholar] [CrossRef]
- Kasturi, P.R.; Ramasamy, H.; Meyrick, D.; Sung Lee, Y.; Kalai Selvan, R. Preparation of Starch-Based Porous Carbon Electrode and Biopolymer Electrolyte for All Solid-State Electric Double Layer Capacitor. J. Colloid Interface Sci. 2019, 554, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh Dhapola, P.; Pandey, S.P.; Singh, P.K.; Chauhan, M. Corn-Starch Based Porous Carbon and IL Based Electrolyte for High Efficient Supercapacitor. Mater. Today Proc. 2021, 34, 842–845. [Google Scholar] [CrossRef]
Variety | Moisture (%) | Ash (%) | Lipid (%) | Protein (%) | Total Starch (%) | Fiber (%) | Amylose (%) | Reference |
---|---|---|---|---|---|---|---|---|
Musa AAB—Mysore Var. | 12.30 | 0.09 | NR | 0.44 | 90.08 | NR | 37.88 | [21] |
White Manzano | NR | 0.08 | 0.06 | 0.22 | 99.6 | NR | 30.3 | [22] |
Dwarf Cavendish | NR | 0.09 | 0.09 | 0.34 | 99.5 | NR | 26.5 | |
Nanicao | 14.00 | 0.13 | 0.18 | 0.61 | 84.94 | 0.14 | NR | [19] |
Grand Naine | 10.82 | 0.09 | 0.26 | 0.38 | 87.86 | 0.59 | NR | |
Maca | 8.60 | 0.26 | 0.36 | 0.63 | 89.67 | 0.47 | NR | |
Prata-Ana | 9.90 | 0.38 | 0.46 | 0.99 | 87.88 | 0.38 | NR | |
Fhia 18 | 10.28 | 0.34 | 0.01 | 1.09 | 88.08 | 0.18 | NR | |
Terra var. | 7.38 | 0.11 | 1.82 | 1.77 | NR | NR | 33.11 | [23] |
Banana (Kluai Khai var) | 7.83 | 0.05 | 0.03 | 0.17 | NR | NR | 20.32 | [15] |
Banana (Hom Tong var.) | 7.30 | 0.06 | 0.10 | 0.21 | NR | NR | 13.36 | |
Banana (Namwa var.) | 7.16 | 0.05 | 0.12 | 0.20 | NR | NR | 28.03 | |
Banana (Enano var.) | 7.03 | 1.43 | 0.73 | 0.92 | NR | NR | 25.38 | |
Banana (Morado var.) | 8.75 | 1.17 | 0.73 | 0.83 | NR | NR | 21.99 | [24] |
Banana (Valery var.) | 8.96 | 1.27 | 0.78 | 0.93 | NR | NR | 19.32 | |
Banana (macho var.) | 7.72 | 1.11 | 0.82 | 0.98 | NR | NR | 26.35 | |
Banana (Terra var.) | 8.00 | 0.03 | 0.02 | 0.97 | 94.80 | 0.28 | 35.00 | [16] |
Banana (Karpuravali var.) | 10.55 | 1.24 | 0.22 | 1.17 | 87.30 | NR | 27.66 | [25] |
Banana (Poovan var.) | 9.53 | 0.78 | 0.25 | 0.67 | 81.71 | NR | 23.10 | |
Banana (Sevvazhai var.) | 11.18 | 1.68 | 0.23 | 1.15 | 89.62 | NR | 32.05 | |
Banana (Thenvazhai var.) | 8.76 | 2.08 | 0.28 | 0.86 | 85.63 | NR | 24.63 | |
Plantain (Fench horn var.) | 11.56 | 0.05 | NR | NR | NR | NR | 29.96 | [26] |
Plantain (Cadaba var.) | 12.86 | 0.29 | NR | NR | NR | NR | 30.66 | |
Plantain (Agbaba var) | 13.15 | 0.45 | NR | NR | NR | NR | 30.91 | |
Banana (Macho var.) | 9.90 | 0.54 | 2.46 | 2.03 | 98.10 | NR | NR | [27] |
Banana (Honduras var.) | 13.60 | 0.92 | 0.72 | 2.16 | 69.39 | 0.47 | 42.07 | [28] |
Plantain (Agbaba var) | 11.20 | 0.62 | 0.44 | 2.53 | 63.90 | 0.72 | 38.79 | |
Banana (Kapas var.) | 8.92 | NR | 0.24 | 0.96 | 90.02 | NR | 38.63 | [20] |
Banana (Kepok var.) | 6.83 | NR | 0.06 | 1.01 | 82.69 | NR | 40.88 | |
Banana (Ambon var.) | 7.98 | NR | 0.05 | 1.25 | 81.64 | NR | 32.56 | |
Banana (Nangka var.) | 7.97 | NR | 0.12 | 1.58 | 81.53 | NR | 37.78 | |
Plantain (Gros Michel var.) | 7.8 | 0.50 | 0.8 | 1.1 | 74.9 | NR | 22.76 | [18] |
Plantain (Dominico Hartón var.) | 8.2 | 0.34 | 0.5 | 0.9 | 84.0 | NR | 31.12 | |
Plantain (FHIA 20 var.) | 7.3 | 0.29 | 0.6 | 0.9 | 83.5 | NR | 28.58 |
Variety | Relative Crystallinity (%) | Crystalline Type | Reference |
---|---|---|---|
Banana (Kapas var.) | 37.78 | B-type | [8] |
Banana (Nendran var.) | 35.96 | A-type | [37] |
Banana (Kapas var.) | 35.8 | B-type | [34] |
Banana (Hom Khieo var.) | 23.54 | B-type | [38] |
Banana (Namwa var.) | 26.84 | B-type | |
Banana | 30 | B-type | [24] |
Plantain (Dominico Harton var.) | 21.9 | C-type | [18] |
Plantain (FHIA 20 var.) | 21.4 | C-type | |
Plantain (Gros Michel var.) | 18.4 | C-type | |
Banana (Musa Dwarf Red banana var.) | 29.84 | C-type | [39] |
Banana (Pisang Awak var.) | 33.02 | C-type | |
Banana (Cavendish) | 31.26 | C-type | |
Banana (Musa Cocinea var.) | 32.84 | C-type | [40] |
Banana (Williams banana var.) | 33.02 | C-type | |
Banana (Nangka var.) | 33.2 | B-type | [20] |
Banana (Ambon var.) | 34.76 | B-type | |
Banana (Kepok var.) | 39.36 | B-type | |
Banana (Kapas var.) | 38.64 | B-type |
Variety | PT (°C) | PV (cP) | HV (cP) | BD (cP) | FV (cP) | SV (cP) | Reference |
---|---|---|---|---|---|---|---|
Kapas | 79.11 | 4037 | 3049 | 988 | 5308 | 2258 | [20] |
Kepok | 80.70 | 3996.5 | 2778 | 1218.5 | 4796 | 2018 | |
Ambon | 77.27 | 4529 | 3294.5 | 1234.5 | 4506.5 | 1212.25 | |
Nangka | 76.58 | 4535.5 | 3409.5 | 1126 | 4995.5 | 1586 | |
Culinary Banana | 81.80 | 4507 | 4060 | 447 | 4214 | 154 | [43] |
Cooking Banana starch | 75.10 | 6403 | 5443 | 960 | 7090 | 1647 | [42] |
Plantain banana starch | 83.15 | 5447 | 4783 | 664 | 7743 | 2960 | |
Mysore | 79.1 | 5455.3 | 3034 | 2421.3 | 3985 | 951 | [21] |
Macho | 81.2 | 4152 | NR | 1290 | 4189 | 1327 | [44] |
Enano | 77.2 | 4026 | NR | 1415 | 4072 | 1461 | |
Morado | 70.5 | 4141 | NR | 1648 | 3412 | 919 | |
Valery | 76.6 | 4848 | NR | 1534 | 3986 | 672 |
Variety | To (°C) | Tp (°C) | Tc (°C) | Tc–To | ΔH (J/g) | Reference |
---|---|---|---|---|---|---|
Macho | 69.46 | 74.4 | 81.6 | NR | 13.0 | [36] |
Criollo | 71.4 | 75.0 | 80.4 | NR | 14.8 | |
Nanicão | 68.07 | 70.58 | 73.73 | 5.66 | 14.73 | [19] |
Grand Naine | 68.65 | 71.11 | 74.21 | 5.56 | 13.22 | |
Macã | 69.23 | 72.17 | 75.36 | 6.13 | 10.61 | |
Prata-Anã | 67.79 | 71.02 | 74.64 | 6.85 | 12.94 | |
FHIA 18 | 68.5 | 71.69 | 74.67 | 6.17 | 9.45 | |
Mysore | 67.54 | 75.18 | 87.56 | 20.02 | 12.38 | [21] |
Macho | 74.6 | 78.7 | 92.4 | NR | 15.1 | [24] |
Valery | 71.9 | 76.2 | 88.71 | NR | 14.8 | |
Morado | 60.9 | 70.2 | 83.2 | NR | 10.4 | |
Enano | 71.3 | 78.4 | 91.5 | NR | 14.9 | |
Valery | 72.31 | 75.90 | 90.19 | 17.88 | 12.86 | [44] |
Morado | 59.89 | 68.03 | 81.25 | 21.36 | 10.65 | |
Enano | 71.30 | 77.21 | 91.56 | 20.26 | 14.56 | |
Macho (plantain) | 76.02 | 79.98 | 99.08 | 23.06 | 14.53 | |
Terra starch (plantain) | 72.1 | 74.9 | 78.3 | 6.3 | 14.7 | [16] |
Terra flour (plantain) | 72.3 | 76.2 | 80.5 | 8.2 | 13.0 | |
Karpuravali | 63.70 | 71.12 | 84.34 | NR | 16.05 | [25] |
Poovan | 62.08 | 69.63 | 82.35 | NR | 15.06 | |
Sevvazhai | 65.54 | 72.81 | 87.99 | NR | 16.68 | |
Thenvazhai | 63.14 | 70.31 | 84.63 | NR | 16.41 |
Variety | SP (g/g) | Sol (%) | Syneresis (%) | WAC (%) | OAC (%) | Ref |
---|---|---|---|---|---|---|
Nanicao | 13.20 | 5.44 | NR | NR | NR | [19] |
Grand Naine | 15.19 | 6.85 | NR | NR | NR | |
Maca | 14.42 | 9.88 | NR | NR | NR | |
Prata-Ana | 14.66 | 11.61 | NR | NR | NR | |
Fhia 18 | 14.88 | 6.67 | NR | NR | NR | |
Banana (Honduras Var.) | 1.38 | NR | NR | 136.53 | 136.77 | [28] |
Plantain (Agbaba var) | 1.99 | NR | NR | 130.45 | 194.05 | |
Banana (Monthan Var.) | NR | NR | NR | 176.10 | 186.56 | [23] |
Banana (Terra var.) | 24.00 | 13.7 | NR | NR | NR | [16] |
Plantain (Fench horn var.) | 9.48 | 7.49 | NR | 65.50 | NR | [26] |
Plantain (Cadaba var.) | 10.76 | 3.55 | NR | 54.40 | NR | |
Plantain (Agbaba var) | 10.10 | 5.02 | NR | 62.90 | NR | |
Banana (Musa AAA Cavendish) | 85.13 | 5.31 | NR | NR | NR | [53] |
Banana (Musa ABB Bluggoe) | 89.64 | 1.29 | NR | NR | NR | |
Banana (Musa ABB Pisang Awak) | 97.96 | 9.70 | NR | NR | NR | |
Banana (Musa AA Pisang Mas) | 82.45 | 8.69 | NR | NR | NR | |
Plantain (Kapas Var.) | NR | NR | 12.16 | 156.00 | NR | [9] |
Plantain (Kapas Var.) | NR | 4.63 | 26.93 | 137.00 | NR | [34] |
Plantain (Kapas var.) | NR | 4.48 | 22.23 | 149.00 | NR | [20] |
Plantain (Kepok var.) | NR | 4.42 | 32.14 | 151.00 | NR | |
Plantain (Nangka var) | NR | 4.36 | 17.62 | 174.00 | NR | |
Banana (Ambon var) | NR | 3.21 | 0.59 | 178.00 | NR |
Variety | RDS (%) | SDS (%) | RS (%) | Reference |
---|---|---|---|---|
Musa Dwarf Red banana | 2.34 | 12.12 | 85.54 | [39] |
Musa ABB Pisang Awak | 3.03 | 4.81 | 92.16 | |
Musa AAA Cavendish | 8.19 | 6.61 | 85.20 | |
Green Banana | 1.7 | 4.3 | 94.1 | [60] |
Kapas | 0.43 | 0.59 | 98.98 | [8] |
Musa coccinea | 7.3053 | 14.7230 | 77.9718 | [40] |
Williams banana | 8.3249 | 6.4137 | 85.2614 | |
Kapas | 0.41 | 0.61 | 98.98 | [9] |
Gros Michel | 4.31 | 11.82 | 83.87 | [18] |
Dominico Harton | 1.24 | 8.73 | 90.03 | |
FHIA 20 | 3.19 | 5.10 | 91.71 | |
Macho | 1.3 | 6.8 | 91.9 | [7] |
Enano | 5.8 | 4.4 | 89.9 | |
Valery | 7.2 | 4.7 | 88.1 | |
Morado | 16.6 | 18.1 | 65.3 | |
Unripe Banana | 3.2 | 13.2 | 65.8 | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marta, H.; Cahyana, Y.; Djali, M.; Pramafisi, G. The Properties, Modification, and Application of Banana Starch. Polymers 2022, 14, 3092. https://doi.org/10.3390/polym14153092
Marta H, Cahyana Y, Djali M, Pramafisi G. The Properties, Modification, and Application of Banana Starch. Polymers. 2022; 14(15):3092. https://doi.org/10.3390/polym14153092
Chicago/Turabian StyleMarta, Herlina, Yana Cahyana, Mohamad Djali, and Giffary Pramafisi. 2022. "The Properties, Modification, and Application of Banana Starch" Polymers 14, no. 15: 3092. https://doi.org/10.3390/polym14153092
APA StyleMarta, H., Cahyana, Y., Djali, M., & Pramafisi, G. (2022). The Properties, Modification, and Application of Banana Starch. Polymers, 14(15), 3092. https://doi.org/10.3390/polym14153092