Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrogel Synthesis
Preparation of Aqueous Solutions
2.3. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy
2.4. Differential Scanning Calorimetry
2.5. UV-Spectroscopy
2.6. Cloud Point Measurements
2.7. Pulsatile Swelling Studies
3. Results and Discussion
3.1. Preparation of Samples
3.2. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy
3.3. Phase Transition Determination for Physically Crosslinked Hydrogels
3.3.1. Differential Scanning Calorimetry
3.3.2. UV Spectroscopy
3.3.3. Cloud Point Measurements
3.4. Pulsatile Swelling Studies of Chemically Crosslinked Hydrogels
4. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubiak, J.; Allonas, X.; Fouassier, J.; Sionkowska, A.; Andrzejewska, E.; Linden, L.; Rabek, J. Camphorquinone–amines photoinitating systems for the initiation of free radical polymerization. Polymer 2003, 44, 5219–5226. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Soppimath, K.S.; Aminabhavi, T.M.; Dave, A.M.; Kumbar, S.G.; Rudzinski, W.E. Stimulus-Responsive “Smart” Hydrogels as Novel Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 957–974. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Oner, E.T.; Eroglu, M.S. Novel levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release. Carbohydr. Polym. 2017, 165, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Vihola, H.; Laukkanen, A.; Hirvonen, J.; Tenhu, H. Binding and release of drugs into and from thermosensitive poly(N-vinyl caprolactam) nanoparticles. Eur. J. Pharm. Sci. 2002, 16, 69–74. [Google Scholar] [CrossRef]
- Halligan, S.C.; Dalton, M.B.; Murray, K.A.; Dong, Y.; Wang, W.; Lyons, J.G.; Geever, L.M. Synthesis, characterisation and phase transition behaviour of temperature-responsive physically crosslinked poly (N-vinylcaprolactam) based polymers for biomedical applications. Mater. Sci. Eng. C 2017, 79, 130–139. [Google Scholar] [CrossRef]
- Liu, L.; Bai, S.; Yang, H.; Li, S.; Quan, J.; Zhu, L.; Nie, H. Controlled release from thermo-sensitive PNVCL- co -MAA electrospun nanofibers: The effects of hydrophilicity/hydrophobicity of a drug. Mater. Sci. Eng. C 2016, 67, 581–589. [Google Scholar] [CrossRef]
- Góis, J.R.; Serra, A.; Coelho, J. Synthesis and characterization of new temperature-responsive nanocarriers based on POEOMA- b -PNVCL prepared using a combination of ATRP, RAFT and CuAAC. Eur. Polym. J. 2016, 81, 224–238. [Google Scholar] [CrossRef]
- Corrales, T.; Catalina, F.; Peinado, C.; Allen, N. Free radical macrophotoinitiators: An overview on recent advances. J. Photochem. Photobiol. A Chem. 2003, 159, 103–114. [Google Scholar] [CrossRef]
- Williams, C.G.; Malik, A.N.; Kim, T.K.; Manson, P.N.; Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Pei, E. 4D Printing: Dawn of an emerging technology cycle. Assem. Autom. 2014, 34, 310–314. [Google Scholar] [CrossRef]
- Ge, Q.; Sakhaei, A.H.; Lee, H.; Dunn, C.K.; Fang, N.X.; Dunn, M.L. Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Sci. Rep. 2016, 6, 31110. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Pei, E. A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers. Prog. Addit. Manuf. 2019, 4, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Invernizzi, M.; Turri, S.; Levi, M.; Suriano, R. 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. Eur. Polym. J. 2018, 101, 169–176. [Google Scholar] [CrossRef]
- Zhao, T.; Yu, R.; Li, X.; Cheng, B.; Zhang, Y.; Yang, X.; Zhao, X.; Zhao, Y.; Huang, W. 4D printing of shape memory polyurethane via stereolithography. Eur. Polym. J. 2018, 101, 120–126. [Google Scholar] [CrossRef]
- Anufrieva, E.; Gromova, R.; Kirsh, Y.; Yanul, N.; Krakovyak, M.; Lushchik, V.; Pautov, V.; Sheveleva, T. Complexing properties and structural characteristics of thermally sensitive copolymers of N-vinylpyrrolidone and N-vinylcaprolactam. Eur. Polym. J. 2001, 37, 323–328. [Google Scholar] [CrossRef]
- Akın, A.; Işıklan, N. Microwave assisted synthesis and characterization of sodium alginate-graft-poly(N,N′-dimethylacrylamide). Int. J. Biol. Macromol. 2016, 82, 530–540. [Google Scholar] [CrossRef]
- Song, J.; Yu, R.; Wang, L.; Zheng, S.; Li, X. Poly(N-vinylpyrrolidone)-grafted poly(N-isopropylacrylamide) copolymers: Synthesis, characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer 2011, 52, 2340–2350. [Google Scholar] [CrossRef]
- Algi, M.P.; Okay, O. Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur. Polym. J. 2014, 59, 113–121. [Google Scholar] [CrossRef]
- Pagonis, K.; Bokias, G. Upper critical solution temperature—type cononsolvency of poly(N,N-dimethylacrylamide) in water—organic solvent mixtures. Polymer 2004, 45, 2149–2153. [Google Scholar] [CrossRef]
- He, S.; Yaszemski, M.J.; Yasko, A.W.; Engel, P.S.; Mikos, A.G. Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 2000, 21, 2389–2394. [Google Scholar] [CrossRef]
- Dalton, M.B.; Halligan, S.; Killion, J.A.; Wang, W.; Dong, Y.; Nugent, M.; Geever, L.M. The Effect Acetic Acid has on Poly(N-Vinylcaprolactam) LCST for Biomedical Applications. Polym. Technol. Eng. 2018, 57, 1165–1174. [Google Scholar] [CrossRef]
- Ward, I.M. Polymers: Chemistry and Physics of Modern Materials, 3rd ed.; Cowie, J.M.G., Arrighi, V., Eds.; CRC Press: Boca Raton, FL, USA, 2009; Volume 50, p. 670. [Google Scholar] [CrossRef]
- Kozanoǧlu, S.; Özdemir, T.; Usanmaz, A. Polymerization and Characterization of N-vinyl caprolactam. J. Macromol. Sci. Part A 2011, 48, 467–477. [Google Scholar] [CrossRef]
- Lee, B.; Jiao, A.; Yu, S.; You, J.B.; Kim, D.-H.; Im, S.G. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering. Acta Biomater. 2013, 9, 7691–7698. [Google Scholar] [CrossRef] [Green Version]
- Babu, V.R.; Hosamani, K.; Aminabhavi, T. Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N,N′-dimethylacrylamide semi-interpenetrating network microspheres. Carbohydr. Polym. 2008, 71, 208–217. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Liu, H.; Ma, L. Synthesis, swelling and drug release behavior of poly(N,N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel. Mater. Sci. Eng. C 2009, 29, 2116–2123. [Google Scholar] [CrossRef]
- Geever, L.M.; Mínguez, C.M.; Devine, D.M.; Nugent, M.J.D.; Kennedy, J.E.; Lyons, J.G.; Hanley, A.; Devery, S.; Tomkins, P.T.; Higginbotham, C.L. The synthesis, swelling behaviour and rheological properties of chemically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. J. Mater. Sci. 2007, 42, 4136–4148. [Google Scholar] [CrossRef]
- Geever, L.M.; Devine, D.M.; Nugent, M.J.; Kennedy, J.E.; Lyons, J.G.; Hanley, A.; Higginbotham, C.L. Lower critical solution temperature control and swelling behaviour of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. Eur. Polym. J. 2006, 42, 2540–2548. [Google Scholar] [CrossRef]
- Scherzinger, C.; Schwarz, A.; Bardow, A.; Leonhard, K.; Richtering, W. Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels. Curr. Opin. Colloid Interface Sci. 2014, 19, 84–94. [Google Scholar] [CrossRef]
- Eeckman, F.; Moës, A.J.; Amighi, K. Synthesis and characterization of thermosensitive copolymers for oral controlled drug delivery. Eur. Polym. J. 2004, 40, 873–881. [Google Scholar] [CrossRef]
- Wu, J.; Wei, W.; Wang, L.-Y.; Su, Z.-G.; Ma, G.-H. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 2007, 28, 2220–2232. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Fu, X.; Song, X.; Yang, Q.; Zhang, G. Synthesis and self-assembly of a new amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(ε-caprolactone) block copolymer. Polym. Bull. 2014, 71, 1–18. [Google Scholar] [CrossRef]
- Shi, H.-Y.; Zhang, L.-M. Phase-transition and aggregation characteristics of a thermoresponsive dextran derivative in aqueous solutions. Carbohydr. Res. 2006, 341, 2414–2419. [Google Scholar] [CrossRef]
- Iyer, G.; Tillekeratne, L.V.; Coleman, M.R.; Nadarajah, A. Equilibrium swelling behavior of thermally responsive metal affinity hydrogels, Part I: Compositional effects. Polymer 2008, 49, 3737–3743. [Google Scholar] [CrossRef]
Material Names | Chemical Structures |
---|---|
N-vinylcaprolatam (NVCL) | |
4-(2hydroxyethoxy) phenyl-(2-hydroxy-2-propyl) ketone (Irgacure 2959) | |
Poly (ethylene glycol) Dimethacrylate (PEGDMA) | |
N-vinylpyrrolidone (NVP) | |
N,N-dimethylacrylammide (DMAAm) |
Photoinitiator | Monomer | Comonomers | Crosslinker | ||
---|---|---|---|---|---|
Samples | Irgacure 2959 (wt%) | NVCL (wt%) | NVP (wt%) | DMAAm (wt%) | PEGDMA (wt%) |
C1 | 0.1 | 100 | -- | -- | -- |
S1 | 0.1 | 70 | 30 | -- | -- |
S2 | 0.1 | 70 | -- | 30 | -- |
S3 | 0.1 | 70 | 15 | 15 | -- |
S4 | 0.1 | 70 | 30 | -- | 2 |
S5 | 0.1 | 70 | -- | 30 | 2 |
S6 | 0.1 | 70 | 15 | 15 | 2 |
Functional Group | Shift (cm−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
NVCL | DMAAm | NVP | C1 | S1 | S2 | S3 | S4 | S5 | S6 | |
Aliphatic C-H | 2929, 2858 | 2,937 | 2975, 2886 | 2923, 2856 | 2926, 2859 | 2926, 2858 | 2926, 2859 | 2925, 2861 | 2928, 2864 | 2926, 2862 |
C=O | 1622 | 1608 | 1625 | 1619 | 1618 | 1618 | 1617 | 1618 | 1617 | 1618 |
C-N | 1480 | 1490 | 1488 | 1473 | 1471 | 1474 | 1473 | 1471 | 1483 | 1473 |
-CH2- | 1428 | 1424 | 1424 | 1431 | 1430 | 1431 | 1431 | 1431 | 1431 | 1431 |
C=C | 1662 | 1648 | 1696 | --- | --- | --- | --- | --- | --- | |
=CH and =CH2 | 3105, 975 | 969 | 981, 843 | --- | --- | --- | --- | --- | --- | |
O-H | --- | --- | --- | 3449 | 3443 | 3453 | 3446 | 3420 | 3441 | 3439 |
Gel Code | DSC (°C) | UV-Spectroscopy (°C) | Cloud Point (°C) |
---|---|---|---|
C1 | 32.2 | 35 | 33 ± 0.5 |
S1 | 49.4 | >50 | 49.0 ± 0.5 |
S2 | 32.3 | 32 | 33.0 ± 0.5 |
S3 | 36.3 | 36 | 37.0 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, S.; Halligan, E.; Tie, B.S.H.; Breheny, C.; Geever, L.M. Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications. Polymers 2022, 14, 3155. https://doi.org/10.3390/polym14153155
Zhuo S, Halligan E, Tie BSH, Breheny C, Geever LM. Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications. Polymers. 2022; 14(15):3155. https://doi.org/10.3390/polym14153155
Chicago/Turabian StyleZhuo, Shuo, Elaine Halligan, Billy Shu Hieng Tie, Colette Breheny, and Luke M. Geever. 2022. "Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications" Polymers 14, no. 15: 3155. https://doi.org/10.3390/polym14153155
APA StyleZhuo, S., Halligan, E., Tie, B. S. H., Breheny, C., & Geever, L. M. (2022). Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications. Polymers, 14(15), 3155. https://doi.org/10.3390/polym14153155