A Promising Review on Cyclodextrin Conjugated Paclitaxel Nanoparticles for Cancer Treatment
Abstract
:1. Introduction
2. Cyclodextrin Nanoparticles for Anticancer Application
2.1. Cyclodextrin Nanoparticles Used for Breast Cancer Treatment
2.2. Cyclodextrin Nanoparticles Used for Lung Cancer Therapy
2.3. Cyclodextrin Nanoparticles Used for Ovary Cancer Therapy
2.4. Cyclodextrin Nanoparticles Used for Cervical Cancer Therapy
2.5. Cyclodextrin Nanoparticles Used for Liver Cancer Therapy
2.6. Cyclodextrin Nanoparticles Used for Prostate Cancer Therapy
2.7. Cyclodextrin Nanoparticles Used for Colon Cancer Therapy
3. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassanpour, S.H.; Dehghani, M. Review of Cancer from Perspective of Molecular. J. Cancer Res. Pract. 2017, 4, 127–129. [Google Scholar] [CrossRef]
- Gmeiner, W.H.; Ghosh, S. Nanotechnology for Cancer Treatment. Nanotechnol. Rev. 2014, 3, 111–122. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y.S.; Kim, S.; Park, J.H. Hydrophobically Modified Glycol Chitosan Nanoparticles as Carriers for Paclitaxel. J. Control. Release 2006, 111, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Taghdisi, S.M.; Lavaee, P.; Ramezani, M.; Abnous, K. Reversible Targeting and Controlled Release Delivery of Daunorubicin to Cancer Cells by Aptamer-Wrapped Carbon Nanotubes. Eur. J. Pharm. Biopharm. 2011, 77, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Pei, Q.; Hu, X.; Wang, L.; Liu, S.; Jing, X.; Xie, Z. Cyclodextrin/Paclitaxel Dimer Assembling Vesicles: Reversible Morphology Transition and Cargo Delivery. ACS Appl. Mater. Interfaces 2017, 9, 26740–26748. [Google Scholar] [CrossRef] [PubMed]
- Erdoǧar, N.; Esendaǧli, G.; Nielsen, T.T.; Şen, M.; Öner, L.; Bilensoy, E. Design and Optimization of Novel Paclitaxel-Loaded Folate-Conjugated Amphiphilic Cyclodextrin Nanoparticles. Int. J. Pharm. 2016, 509, 375–390. [Google Scholar] [CrossRef]
- Erdoğar, N.; Esendağlı, G.; Nielsen, T.T.; Esendağlı-Yılmaz, G. Therapeutic Efficacy of Folate Receptor-Targeted Amphiphilic Cyclodextrin Nanoparticles as a Novel Vehicle for Paclitaxel Delivery in Breast Cancer. J. Drug Target. 2018, 26, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Pant, A.; Negi, J.S. Novel Controlled Ionic Gelation Strategy for Chitosan Nanoparticles Preparation Using TPP-β-CD Inclusion Complex. Eur. J. Pharm. Sci. 2018, 112, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Zabaleta, V.; Ponchel, G.; Salman, H.; Agüeros, M.; Vauthier, C.; Irache, J.M. Oral Administration of Paclitaxel with Pegylated Poly(Anhydride) Nanoparticles: Permeability and Pharmacokinetic Study. Eur. J. Pharm. Biopharm. 2012, 81, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Vemuri, S.K.; Banala, R.R.; Mukherjee, S.; Uppula, P. Novel Biosynthesized Gold Nanoparticles as Anti-Cancer Agents against Breast Cancer: Synthesis, Biological Evaluation, Molecular Modelling Studies. Mater. Sci. Eng. C 2019, 99, 417–429. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, J.; Zhang, Q.; Yang, S.; Jiang, S.; Huang, C. PTX-Loaded Three-Layer PLGA/CS/ALG Nanoparticle Based on Layer-by-Layer Method for Cancer Therapy. J. Biomater. Sci. Polym. Ed. 2018, 29, 1566–1578. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wen, Y.; Zhu, J.; Zhao, F.; Zhang, Z.X.; Li, J. Thermoresponsive Delivery of Paclitaxel by β-Cyclodextrin-Based Poly(N-Isopropylacrylamide) Star Polymer via Inclusion Complexation. Biomacromolecules 2016, 17, 3957–3963. [Google Scholar] [CrossRef]
- Sun, T.; Guo, Q.; Zhang, C.; Hao, J. Self-Assembled Vesicles Prepared from Amphiphilic Cyclodextrins as Drug Carriers. Langmuir 2012, 28, 8625–8636. [Google Scholar] [CrossRef]
- Van De Manakker, F.; Vermonden, T.; Van Nostrum, C.F.; Hennink, W.E. Cyclodextrin-based polymeric materials: Synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 2009, 10, 3157–3175. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chen, J.; Sheng, J.; Hu, Y.; Jiang, Z. Paclitaxel-Loaded β-Cyclodextrin-Modified Poly(Acrylic Acid) Nanoparticles through Multivalent Inclusion for Anticancer Therapy. Macromol. Biosci. 2016, 16, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Nagesh, P.K.B.; Hatami, E.; Wagh, S. Tannic Acid-Inspired Paclitaxel Nanoparticles for Enhanced Anticancer Effects in Breast Cancer Cells. J. Colloid Interface Sci. 2019, 535, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Shah, V.; Ghosh, A.; Zhang, Z.; Minko, T. Molecular Inclusion Complexes of β-Cyclodextrin Derivatives Enhance Aqueous Solubility and Cellular Internalization of Paclitaxel: Preformulation and In Vitro Assessments. J. Pharm. Pharmacol. 2015, 3, 1–17. [Google Scholar]
- Nieto, C.; Centa, A.; Rodríguez-Rodríguez, J.A.; Pandiella, A.; Del Valle, E.M.M. Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors. Nanomaterials 2019, 9, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agüeros, M.; Zabaleta, V.; Espuelas, S.; Campanero, M.A.; Irache, J.M. Increased Oral Bioavailability of Paclitaxel by Its Encapsulation through Complex Formation with Cyclodextrins in Poly(Anhydride) Nanoparticles. J. Control. Release 2010, 145, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Szarpak-Jankowska, A.; Guillot, R.; Pignot-Paintrand, I.; Picart, C.; Auzély-Velty, R. Cyclodextrin/Paclitaxel Complex in Biodegradable Capsules for Breast Cancer Treatment. Chem. Mater. 2013, 25, 3867–3873. [Google Scholar] [CrossRef]
- Baek, J.S.; Kim, J.H.; Park, J.S.; Cho, C.W. Modification of Paclitaxel-Loaded Solid Lipid Nanoparticles with 2-Hydroxypropyl-β-Cyclodextrin Enhances Absorption and Reduces Nephrotoxicity Associated with Intravenous Injection. Int. J. Nanomed. 2015, 10, 5397–5405. [Google Scholar]
- Baek, J.S.; Cho, C.W. A Multifunctional Lipid Nanoparticle for Co-Delivery of Paclitaxel and Curcumin for Targeted Delivery and Enhanced Cytotoxicity in Multidrug Resistant Breast Cancer Cells. Oncotarget 2017, 8, 30369–30382. [Google Scholar] [CrossRef] [Green Version]
- Hyun, H.; Yoo, Y.B.; Kim, S.Y.; Ko, H.S.; Chun, H.J.; Yang, D.H. Hydrogel-Mediated DOX·HCl/PTX Delivery System for Breast Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 4671. [Google Scholar] [CrossRef] [Green Version]
- Sharker, S.M.; Kim, S.H.M.; Kim, S.H.M.; In, I.; Lee, H.; Park, S.Y. Target Delivery of β-Cyclodextrin/Paclitaxel Complexed Fluorescent Carbon Nanoparticles: Externally NIR Light and Internally PH Sensitive-Mediated Release of Paclitaxel with Bio-Imaging. J. Mater. Chem. B 2015, 3, 5833–5841. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.; Zhang, Y.M.; Yang, Y. Polysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Liang, N.; Li, Q.; Yan, P.; Sun, S. Biotin and Arginine Modified Hydroxypropyl-β-Cyclodextrin Nanoparticles as Novel Drug Delivery Systems for Paclitaxel. Carbohydr. Polym. 2019, 216, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Bilensoy, E.; Gürkaynak, O.; Doǧan, A.L.; Hincal, A.A. Safety and Efficacy of Amphiphilic SS-Cyclodextrin Nanoparticles for Paclitaxel Delivery. Int. J. Pharm. 2008, 347, 163–170. [Google Scholar] [CrossRef]
- Varan, G.; Benito, J.M.; Mellet, C.O.; Bilensoy, E. Development of Polycationic Amphiphilic Cyclodextrin Nanoparticles for Anticancer Drug Delivery. Beilstein J. Nanotechnol. 2017, 8, 1457–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilensoy, E.; Gürkaynak, O.; Ertan, M.; Şen, M.; Hincal, A.A. Development of Nonsurfactant Cyclodextrin Nanoparticles Loaded with Anticancer Drug Paclitaxel. J. Pharm. Sci. 2008, 97, 1519–1529. [Google Scholar] [CrossRef]
- Varan, G.; Patrulea, V.; Borchard, G.; Bilensoy, E. Cellular Interaction and Tumoral Penetration Properties of Cyclodextrin Nanoparticles on 3D Breast Tumor Model. Nanomaterials 2018, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.S.; Kim, B.S.; Puri, A.; Kumar, K.; Cho, C.W. Stability of Paclitaxel-Loaded Solid Lipid Nanoparticles in the Presence of 2-Hydoxypropyl-β-Cyclodextrin. Arch. Pharm. Res. 2016, 39, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Shen, Y.; Jin, F.; Du, Y.; Ying, X.Y. Paclitaxel/Hydroxypropyl-β-Cyclodextrin Complex-Loaded Liposomes for Overcoming Multidrug Resistance in Cancer Chemotherapy. J. Liposome Res. 2020, 30, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Leiva, M.C.; Ortiz, R.; Contreras-Cáceres, R.; Perazzoli, G.; Mayevych, I. Tripalmitin Nanoparticle Formulations Significantly Enhance Paclitaxel Antitumor Activity against Breast and Lung Cancer Cells in Vitro. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhou, X.; Zhou, H.; Jia, J.; Li, L. Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates. PLoS ONE 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Tong, L.; Chen, W.; Wu, J.; Li, H. Folic Acid-Coupled Nano-Paclitaxel Liposome Reverses Drug Resistance in SKOV3/TAX Ovarian Cancer Cells. Anticancer Drugs 2014, 25, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.S.; Balasubramanian, S.V.; Straubinger, R.M. Pharmaceutical and Physical Properties of Paclitaxel (Taxol) Complexes with Cyclodextrins. J. Pharm. Sci. 1995, 84, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Boztas, A.O.; Karakuzu, O.; Galante, G.; Ugur, Z.; Kocabas, F. Synergistic Interaction of Paclitaxel and Curcumin with Cyclodextrin Polymer Complexation in Human Cancer Cells. Mol. Pharm. 2013, 10, 2676–2683. [Google Scholar] [CrossRef]
- Bhatt, P.; Lalani, R.; Vhora, I.; Patil, S.; Amrutiya, J. Liposomes Encapsulating Native and Cyclodextrin Enclosed Paclitaxel: Enhanced Loading Efficiency and Its Pharmacokinetic Evaluation. Int. J. Pharm. 2018, 536, 95–107. [Google Scholar] [CrossRef]
- Qian, Q.; Shi, L.; Gao, X.; Ma, Y.; Yang, J. A Paclitaxel-Based Mucoadhesive Nanogel with Multivalent Interactions for Cervical Cancer Therapy. Small 2019, 15, 1–11. [Google Scholar] [CrossRef]
- He, H.; Chen, S.; Zhou, J.; Dou, Y.; Song, L. Cyclodextrin-Derived PH-Responsive Nanoparticles for Delivery of Paclitaxel. Biomaterials 2013, 34, 5344–5358. [Google Scholar] [CrossRef]
- Namgung, R.; Mi Lee, Y.; Kim, J.; Jang, Y.; Lee, B.H. Poly-Cyclodextrin and Poly-Paclitaxel Nano-Assembly for Anticancer Therapy. Nat. Commun. 2014, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varan, C.; Wickström, H.; Sandler, N.; Aktaş, Y.; Bilensoy, E. Inkjet Printing of Antiviral PCL Nanoparticles and Anticancer Cyclodextrin Inclusion Complexes on Bioadhesive Film for Cervical Administration. Int. J. Pharm. 2017, 531, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Xu, S.; Feng, Z.; Deng, H.; Zhang, J. Supramolecular Hydrogel Based on High-Solid-Content MPECT Nanoparticles and Cyclodextrins for Local and Sustained Drug Delivery. Biomater. Sci. 2017, 5, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.X.; Ribes, J.; Díaz, M.; Cléries, R. Primary Liver Cancer: Worldwide Incidence and Trends. Gastroenterology 2004, 127, 5–16. [Google Scholar] [CrossRef]
- Zhu, D.; Tao, W.; Zhang, H.; Liu, G.; Wang, T. Docetaxel (DTX)-Loaded Polydopamine-Modified TPGS-PLA Nanoparticles as a Targeted Drug Delivery System for the Treatment of Liver Cancer. Acta Biomater. 2016, 30, 144–154. [Google Scholar] [CrossRef]
- Cheng, H.; Fan, X.; Wang, X.; Ye, E.; Loh, X.J. Hierarchically Self-Assembled Supramolecular Host-Guest Delivery System for Drug Resistant Cancer Therapy. Biomacromolecules 2018, 19, 1926–1938. [Google Scholar] [CrossRef]
- Barve, A.; Jin, W.; Cheng, K. Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery. J. Control. Release 2014, 187, 118–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaro, S.; Ventura, C.A.; Paolino, D.; Battaglia, D.; Ortuso, F. Preparation, Characterization, Molecular Modeling and In Vitro Activity of Paclitaxel-Cyclodextrin Complexes. Bioorg. Med. Chem. Lett. 2002, 12, 1637–1641. [Google Scholar] [CrossRef]
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [Green Version]
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer Statistics, 2009. CA A Cancer J. Clin. 2009, 59, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Kim, J.J.; Lee, Y.M.; Kim, J.J.; Choi, H.W. Poly-Paclitaxel/Cyclodextrin-SPION Nano-Assembly for Magnetically Guided Drug Delivery System. J. Control. Release 2016, 231, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Veena, K.; Chandrasekhar, S.; Raghu, M.S.; Kumar, K.Y.; Kumar, C.P.; Alswieleh, A.M.; Devi, V.A.; Prashanth, M.K.; Jeon, B.H. Facile green synthesis of samarium sesquioxide nanoparticle as a quencher for biologically active imidazole analogues: Computational and experimental insights. J. Mol. Struct. 2022, 1264, 133235. [Google Scholar] [CrossRef]
- Raj, T.V.; Hoskeri, P.A.; Hamzad, S.; Anantha, M.S.; Joseph, C.M.; Muralidhara, H.B.; Kumar, K.Y.; Alharti, F.A.; Jeon, B.H.; Raghu, M.S. Moringa Oleifera leaf extract mediated synthesis of reduced graphene oxide-vanadium pentoxide nanocomposite for enhanced specific capacitance in supercapacitors. Inorg. Chem. Commun. 2022, 142, 109648. [Google Scholar]
- Pawar, A.A.; Sahoo, J.; Verma, A.; Alswieleh, A.M.; Lodh, A.; Raut, R.; Lakkakula, J.; Jeon, B.H.; Islam, M. Azadirachta indica-Derived Silver Nanoparticle Synthesis and Its Antimicrobial Applications. J. Nanomater. 2022, 2022, 4251229. [Google Scholar] [CrossRef]
- Modi, S.; Yadav, V.K.; Choudhary, N.; Alswieleh, A.M.; Sharma, A.K.; Bhardwaj, A.K.; Khan, S.H.; Yadav, K.K.; Cheon, J.K.; Jeon, B.H. Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth. Materials 2022, 15, 2393. [Google Scholar] [CrossRef]
- Malini, S.; Roy, A.; Raj, K.; Raju, K.A.; Ali, I.H.; Mahesh, B.; Yadav, K.K.; Islam, S.; Jeon, B.H.; Lee, S.S. Sensing beyond Senses: An Overview of Outstanding Strides in Architecting Nanopolymer-Enabled Sensors for Biomedical Applications. Polymers 2022, 14, 601. [Google Scholar] [CrossRef]
Size (nm) | Zeta potential (mV) | Yield (%) | PTX content (μg/mg NP) | EE (%) | |
---|---|---|---|---|---|
NP | 179 ± 2 | −48.1 ± 0.8 | 91.3 ± 3.1 | – | – |
PTX-NP | 204 ± 4 | −38.3 ± 2.1 | 51.2 ± 6.6 | 0.29 ± 0.1 | 0.14 |
PTX-CD NP | 298 ± 6 | −39.3 ± 5.2 | 68.6 ± 4.4 | 38 ± 3.1 | 28.1 |
PTX-HPCD NP | 307 ± 7 | −42.1 ± 1.4 | 63.3 ± 2.9 | 167 ± 8.3 | 97.4 |
PTX-NHCD NP | 310 ± 6 | −34.5 ± 3.9 | 59.5 ± 4.6 | 91 ± 7.6 | 61.6 |
Types of Nanoparticles (NPs) | Types of Cyclodextrin | Types of Cancer/Cell Lines | Preparation Technique | Miscellaneous | References |
---|---|---|---|---|---|
C6 NPs, CD/C6 NVs and CD/NP (C6) NVs | β-cyclodextrins (β-CDs) | HepG2 cells -Liver cancer | 1H NMR, ROESY, XRD, FTIR, TEM, SEM, AFM, DLS | [5] | |
FCD-1 and FCD-2 NPs | Amphiphilic CD derivatives | Breast cancer L929 cell, T-47D, and ZR-75-1 human breast cancer cells. | Freeze drying | Student’s t-test, F-test, ANOVA, SEM, 1H NMR, DSC, | [6] |
FCD-1 and FCD-2 NPs | Amphiphilic CD | Breast cancer, 4T1 cancer cells, female Balb/c mice | Freeze drying | ANOVA, F-test | [7] |
β-cyclodextrinpoly (N-isopropylacrylamide) star polymer | β-CD, Me-β-CD, HP-β-CD | AT3B-1 cells | Lyophilization Freeze drying | 1H NMR, FTIR, DLS, DSC | [12] |
mono [6-deoxy-N-ethylamino-(N′-1-anthraquinone)]- β-cyclodextrin nanostructure | β-CD | Liver cancer HCC cell line, HepG2 | TEM, SEM, DLS, 2D NMR ROESY | [13] | |
Synthesis of P-CD-AA-PTX NPs | β-CD-modified poly (acrylic acid) | H22 cell line -Lung cancer | Lyophilization | DLS, TEM, FTIR, IR, 1H NMR | [15] |
PTX-CD NP, PTX-HPCD NPs | β-CD, HPCD, NHCD | Metastatic breast cancer Male Wistar rat | Mann–Whitney U-test | [19] | |
PTX–CD complex | Hydroxypropyl β-cyclodextrin, methyl β-cyclodextrin | PC-3, A2780, MCF-7, HT-29 and A549 -Prostate cancer, ovarian carcinoma, breast cancer, colorectal adenocarcinoma, and lung cancer | Lyophilization | Statistical analysis: single-factor ANOVA, t-test H NMR, XRD | [17] |
APPZ NPs | β-CD | BT474, SKBR3, OVCAR3, and HS5 cell lines -Breast cancer and ovarian cancer | FTIR | [18] | |
(HA-CD/PLL) capsules | β-CD, DM-β- CD, HACD | Breast cancer MDA-MB-231 cell line | Layer by layer deposition Host-guest complexation | 1H NMR, SEM | [20] |
PS and PSC SLNs | HPCD | Breast cancer MCF-7cells Female BALB/c nude mice | Hot-melted sonication | Student’s t-test | [21] |
GDCP hydrogel | β-cyclodextrin | MCF-7 cells | Lyophilization | One-way analysis of variance (ANOVA) | [23] |
HA-FCN (hyaluronic acid fluorescence carbon nanoparticles | β-CD | Breast cancer MDAMB-231 and MDCK (normal cells) | Freeze drying | NMR, TEM, XRD | [24] |
Adamantylamine-modified gold nanoparticles (AuNPs) | HACD | Breast cancer, MCF-7, NIH3T3 (fibroblast cells) | XPS, HR-TEM, AFM, ICP | [25] | |
(biotin-arg(pbf)-HP-β-CD) NPs | HP-β-CD | Breast cancer MCF-7 | Lyophilization | TEM, XRD | [26] |
Nanosphere and nano-capsules of 6-0-CAPRO-β-CD | Amphiphilic β-CD, 6-0-CAPRO-β-CD | L929 mouse fibroblast cells, MCF-7 cell line, Breast cancer | Nanoprecipitation technique | SEM, AFM, two-way ANOVA, Kruskall–Wallis analysis, and Tukey test | [27] |
6OCaproβCD, CS-6OcaproβCD, PC βCDC6 | Amphiphilic cyclodextrin | Breast cancer MCF-7, L929 fibroblast cell line | Lyophilization | Student’s t-test | [28] |
(6-0-CAPRO-β-CD) NPs | Amphiphilic cyclodextrin | Metastatic breast cancer | Lyophilization | FTIR, SEM, 1H NMR, DSC | [29] |
PCX-loaded 6OCapro β-CD and PCX-loaded PC β-CDC6 NPs | (6OCapro β-CD) and (PC β- CDC6) | Breast cancer cells and fibroblast cells -Breast cancer | 3D multicellular tumor model Lyophilization, freeze-drying method | FTIR, IR, SEM | [30] |
PS-NPs, PSC-NPs, and SLN | Hydroxypropyl-β-cyclodextrin | MCF-7 ADR cells Breast cancer | Hot-melted sonication | Student’s t-test | [31] |
paclitaxel/hydroxypropHydroxyl-β-cyclodextrin complex-loaded liposomes | HP-β-CD | Lung cancer, A549/T cells, Female Balb/c nude mice | Lyophilization | DSC, XRD, DLS, TEM | [32] |
Tripalm-NPs | β-CD | Breast cancer and lung cancer -MCF-7, MDA-MB231, SKBR3, T47D - NCI-H460, A549, NCI-H520, | t-test ANOVA | [33] | |
GNPs, PGNPs | SH-β-CD | Lung cancer H460 and H460PTX cells | TEM | [34] | |
PTX–CD complex | HP β-CD, DM β-CD, HE β-CD | Hey-1b, -Ovarian cancer -IC 50: 5–10 nM drug | Rotary evaporation | NMR, IR Female Balb/C mice of ca | [36] |
PCDT | β-cyclodextrin | Ovarian, lung, prostate, and breast cancer. -A2780, SKOV-3, H1299, DU-145, MCF-7 | Freeze drying | 1H NMR, FTIR, IC50 of curcumin-PCDT-7.7 and 13.4 μM | [37] |
DLPLs | DMβCD | SKOV3 epithelial ovarian cancer cell line -Ovarian cancer -Sprague Dawley female rats -Female Balb/c mice | Modified co-solvent evaporation method Thin-film hydration method Lyophilization | DSC, FTIR, XRD, SEM, TEM Student’s t-test For liposome: 33 full factorial design | [38] |
PAA -β-CD/PAA-TAX nanogel | β-CD | Cervical cancer HeLa cells and U14 cervical carcinoma cells expressing GFP (U14-GFP) | Esterification of PAA and TAX | 1H NMR, FTIR, DLS, and TEM | [39] |
Ac-aCD5 NPs, Ac-aCD15NPs, Ac-aCD 180NPs, Ac-aCD 240 NPs | α-cyclodextrin | B16F10, Hela, HepG2, MCF-7 and MDA-MB-231 cells, Female Balb/C mice Metastasis cancer, cervical cancer, liver cancer, and breast cancer | Solvent evaporation technique | DLS, FTIR, GPC, TEM, SEM | [40] |
pPTX and pCD nanoassembly | Co-polymer: poly(isobutylrnr-alt-MAnh), poly [IB-alt-MAnh] and poly (methyl vinyl ether-alt-MAnh), poly [MVE-alt-MAnh] | MCF-7, HeLa and HCT-8 cell lines -Breast cancer, cervical cancer, and colon cancer | Multivalent polymer-polymer complex Freeze drying Molecular simulation of inclusion complex | DLS, TEM, H-NMR | [41] |
CDV-PCL NPs | HP-β-CD | Cervical cancer L929 fibroblast cells, HeLa cells | Lyophilization | DSC, FTIR, SEM Student’s t-test | [42] |
PTX-loaded mPECT NPs and PTX-mPECT NP/α-CDgel | Methoxy poly (ethylene glycol)-b-poly (ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-un-decanone) (mPECT) | Human cervical cancer cells HeLa and human hepatoma cells 7703, Murine breast tumor 4T1, Balb/c mice Breast cancer and cervical cancer | Freeze drying | DLS, TEM, SEM, Student’s unpaired t-test | [43] |
β-CD-g-(PNIPAAm-b-POEGA) x polymer | β-CD | HepG2 liver cancer/MDR1 cells or NIH-H460 lung cancer cells Liver cancer | Western blot method | 1H NMR, DLS, TEM, RT-PCR | [46] |
PTX–CYDs complexes | β-CD (1) 2,6-Dimethyl-β-CD (2) 2,3,6-trimethyl-β-CD (3) | DU145 -Prostate cancer | Freeze drying | FTIR, H NMR, DSC, Molecular modeling study using: 1. Monte Carlo using Macro Model package 2. Quasi-flexible docking using MOLINE | [48] |
BPEI-SPION NPs | β-cyclodextrin | MCF-7, CT26, HeLa Breast cancer, cervical carcinoma, and colon cancer | Freeze-thaw method | 1H NMR, TGA, TEM, | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velhal, K.; Barage, S.; Roy, A.; Lakkakula, J.; Yamgar, R.; Alqahtani, M.S.; Yadav, K.K.; Ahn, Y.; Jeon, B.-H. A Promising Review on Cyclodextrin Conjugated Paclitaxel Nanoparticles for Cancer Treatment. Polymers 2022, 14, 3162. https://doi.org/10.3390/polym14153162
Velhal K, Barage S, Roy A, Lakkakula J, Yamgar R, Alqahtani MS, Yadav KK, Ahn Y, Jeon B-H. A Promising Review on Cyclodextrin Conjugated Paclitaxel Nanoparticles for Cancer Treatment. Polymers. 2022; 14(15):3162. https://doi.org/10.3390/polym14153162
Chicago/Turabian StyleVelhal, Kamini, Sagar Barage, Arpita Roy, Jaya Lakkakula, Ramesh Yamgar, Mohammed S. Alqahtani, Krishna Kumar Yadav, Yongtae Ahn, and Byong-Hun Jeon. 2022. "A Promising Review on Cyclodextrin Conjugated Paclitaxel Nanoparticles for Cancer Treatment" Polymers 14, no. 15: 3162. https://doi.org/10.3390/polym14153162
APA StyleVelhal, K., Barage, S., Roy, A., Lakkakula, J., Yamgar, R., Alqahtani, M. S., Yadav, K. K., Ahn, Y., & Jeon, B. -H. (2022). A Promising Review on Cyclodextrin Conjugated Paclitaxel Nanoparticles for Cancer Treatment. Polymers, 14(15), 3162. https://doi.org/10.3390/polym14153162